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THE INCOMPLETE GENERALIZED τ -HYPERGEOMETRIC

AND SECOND τ -APPELL FUNCTIONS

Rakesh Kumar Parmar and Ram Kishore Saxena

Abstract. Motivated mainly by certain interesting recent extensions
of the generalized hypergeometric function [Integral Transforms Spec.

Funct. 23 (2012), 659–683] and the second Appell function [Appl. Math.

Comput. 219 (2013), 8332–8337] by means of the incomplete Pochham-
mer symbols (λ; κ)

ν
and [λ; κ]

ν
, we introduce here the family of the in-

complete generalized τ -hypergeometric functions 2γ
τ

1 (z) and 2Γτ

1 (z). The
main object of this paper is to study these extensions and investigate their
several properties including, for example, their integral representations,

derivative formulas, Euler-Beta transform and associated with certain
fractional calculus operators. Further, we introduce and investigate the
family of incomplete second τ -Appell hypergeometric functions Γτ1,τ2

2

and γ
τ1,τ2

2 of two variables. Relevant connections of certain special cases
of the main results presented here with some known identities are also
pointed out.

1. Introduction, definitions and preliminaries

Throughout this paper, N, Z− and C denote the sets of positive integers,
negative integers and complex numbers, respectively,

N0 := N ∪ {0} and Z
−
0 := Z

− ∪ {0} .

The familiar incomplete Gamma functions γ(s, κ) and Γ(s, κ) defined by

(1.1) γ(s, κ) :=

∫ κ

0

ts−1 e−t dt
(

ℜ(s) > 0; κ ≧ 0
)

and

(1.2) Γ(s, κ) :=

∫ ∞

κ

ts−1 e−t dt
(

κ ≧ 0; ℜ(s) > 0 when κ = 0
)

,
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respectively, satisfy the following decomposition formula:

(1.3) γ(s, κ) + Γ(s, κ) := Γ(s)
(

ℜ(s) > 0
)

.

Each of these functions plays an important rôle in the study of the analytic
solutions of a variety of problems in diverse areas of science and engineering
(see, e.g., [1, 3, 7, 11, 14, 15, 17, 20, 21, 22, 29, 30, 31, 40, 43]).

Recently, Srivastava et al. [28] introduced and studied in a rather systematic
manner the following two families of generalized incomplete hypergeometric
functions:

pγq

[

(α1, κ), α2, . . . , αp;
β1, . . . , βq;

z

]

=

∞
∑

n=0

(α1;κ)n(α2)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
(1.4)

and

pΓq

[

(α1, κ), α2, . . . , αp;
β1, . . . , βq;

z

]

=

∞
∑

n=0

[α1;κ]n(α2)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
,(1.5)

where, in terms of the incomplete Gamma functions γ(s, κ) and Γ(s, κ) defined
by (1.1) and (1.2), respectively, the incomplete Pochhammer symbols (λ;κ)ν
and [λ;κ]ν (λ; ν ∈ C; κ ≧ 0) are defined as follows:

(1.6) (λ;κ)ν :=
γ(λ+ ν, κ)

Γ(λ)
(λ, ν ∈ C; κ ≧ 0)

and

(1.7) [λ;κ]ν :=
Γ(λ+ ν, κ)

Γ(λ)
(λ, ν ∈ C; κ ≧ 0),

so that, obviously, these incomplete Pochhammer symbols (λ;κ)ν and [λ;κ]ν
satisfy the following decomposition relation:

(1.8) (λ;κ)ν + [λ;κ]ν := (λ)ν (λ; ν ∈ C; κ ≧ 0).

Here, and in what follows, (λ)ν (λ, ν ∈ C) denotes the Pochhammer symbol
(or the shifted factorial) which is defined (in general) by
(1.9)

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=







1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the
Γ-quotient exists (see, for details, [31, p. 21 et seq.]).

As already observed by Srivastava et al. [28], the definitions (1.4) and (1.5)
readily yield the following decomposition formula:

pγq

[

(α1, κ), α2, . . . , αp;
β1, . . . , βq;

z

]

+ pΓq

[

(α1, κ), α2, . . . , αp;
β1, . . . , βq;

z

]

= pFq

[

α1, α2, . . . , αp;
β1, . . . , βq;

z

]

(1.10)
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for the familiar generalized hypergeometric function pFq [26].
More recently, Çetinkaya [6] introduced and studied various properties of the

following two families of the incomplete second Appell hypergeometric functions
γ2 and Γ2:

(1.11) γ2[(α, κ), β1, β2; γ1, γ2;x1, x2] =

∞
∑

m,p=0

(α;κ)m+p(β1)m(β2)p
(γ1)m(γ2)p

xm
1

m!

xp
2

p!

and

(1.12) Γ2[(α, κ), β1, β2; γ1, γ2;x1, x2] =
∞
∑

m,p=0

[α;κ]m+p(β1)m(β2)p
(γ1)m(γ2)p

xm
1

m!

xp
2

p!
.

In 2001, Virchenko et al. [42, p. 90, Eq. (5)] have studied and investigated
(see also [12]) the following generalized τ -hypergeometric function:

(1.13) 2R
τ
1 (a, b; c; z) = 2R1 (a, b; c; τ ; z) =

Γ(c)

Γ(b)

∞
∑

n=0

(a)nΓ(b+ τn)

Γ(c+ τn)

zn

n!
(

τ > 0, |z| < 1 ; ℜ(c) > ℜ(b) > 0
)

They gave the Euler type integral representation as follows [42, p. 91, Eq.
(6)]:

2R1 (a, b; c; τ ; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1 − t)c−b−1 (1− ztτ )−a dt.(1.14)

(

τ > 0; | arg(1− z)| < π; ℜ(c) > ℜ(b) > 0
)

The special case when τ = 1 in (1.13) and (1.14) yields the familiar represen-
tations of Gauss’s hypergeometric function [23].

Moreover, Al-Shammery and Kalla [2] introduced and studied various prop-
erties of second τ -Appell’s hypergeometric functions as:

F τ1,τ2
2 [α, β1, β2; γ1, γ2;x1, x2](1.15)

:=
Γ(γ1)Γ(γ2)

Γ(β1)Γ(β2)

∞
∑

m1,m2=0

(α)m1+m2
Γ(β1 + τ1m1)Γ(β2 + τ2m2)

Γ(γ1 + τ1m1)Γ(γ2 + τ2m2)

xm1

1

m1!

xm2

2

m2!

(

τ1, τ2 > 0; |x1|+ |x2| < 1
)

.

Motivated essentially by the demonstrated potential for applications of these
incomplete hypergeometric functions pγq and pΓq, and the incomplete second
Appell hypergeometric functions γ2 and Γ2 in many diverse areas of mathe-
matical, physical, engineering and statistical sciences (see, for details, [6, 28]
and the references cited therein), we aim here at systematically investigating
the family of the incomplete generalized τ -hypergeometric function 2γ

τ
1 (z) and

2Γ
τ
1(z). For each of these incomplete generalized τ -hypergeometric function, we

obtain integral representations, derivative formula, Euler-Beta transform and
associated with the fractional calculus operators. Further, we introduce and
investigate the family of incomplete second τ -Appell hypergeometric functions
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Γτ1,τ2
2 and γτ1,τ2

2 of two variables. Some interesting special cases of our main
results are also pointed out. For various other investigations involving general-
izations of the hypergeometric function pFq of p numerator and q denominator
parameters, which were motivated essentially by the pioneering work of Srivas-
tava et al. [28], the interested reader may be referred to several recent papers
on the subject (see, e.g., [6, 8, 9, 16, 27, 33, 35, 36, 37, 38, 39] and the references
cited in each of these papers).

2. The incomplete generalized τ -hypergeometric function

In terms of the incomplete Pochhammer symbol (λ;κ)ν and [λ;κ]ν defined
by (1.6) and (1.7), we introduce the families of the incomplete generalized
τ -hypergeometric function 2γ

τ
1 (z) and 2Γ

τ
1(z) as follows: For a, b,∈ C and

c ∈ C \ Z−
0 , we have

(2.1) 2γ
τ
1 (z) = 2γ

τ
1 ((a, κ), b; c; z) =

Γ(c)

Γ(b)

∞
∑

n=0

(a;κ)nΓ(b+ τn)

Γ(c+ τn)

zn

n!

(κ ≧ 0; τ > 0, |z| < 1 ; ℜ(c) > ℜ(b) > 0 when κ = 0)

and

(2.2) 2Γ
τ
1(z) = 2Γ

τ
1((a, κ), b; c; z) =

Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn)

zn

n!

(κ ≧ 0; τ > 0, |z| < 1 ; ℜ(c) > ℜ(b) > 0 when κ = 0).

In view of (1.8), these families of incomplete generalized τ -hypergeometric
function satisfy the following decomposition formula:

2γ
τ
1 ((a, κ), b; c; z) + 2Γ

τ
1((a, κ), b; c; z) = 2R

τ
1 (a, b; c; z),(2.3)

where 2R
τ
1(z) is the generalized τ -hypergeometric function [12, 42].

It is noted in passing that, in view of the decomposition formula (2.3),
it is sufficient to discuss the properties and characteristics of the incomplete
generalized τ -hypergeometric function 2Γ

τ
1(z).

Remark 1. The special cases of (2.1) and (2.2) when τ = 1 are easily seen to
reduce to the known families of the incomplete Gauss hypergeometric functions
[28, p. 664, Eq. (3.1)] and [28, p. 664, Eq. (3.2)]:

2γ1[(a, κ), b; c; z] =

∞
∑

n=0

(a;κ)n (b)n
(c)n

zn

n!
and

2Γ1[(a, κ), b; c; z] =

∞
∑

n=0

[a;κ]n (b)n
(c)n

zn

n!



THE INCOMPLETE τ -HYPERGEOMETRIC FUNCTIONS 367

respectively. Also, the special cases of (2.1) and (2.2) when τ = 1 and κ = 0 is
seen to yield the classical Gauss’s hypergeometric function (see, e.g., [15, 23]):

2F1(a, b; c; z) =

∞
∑

n=0

(a)n (b)n
(c)n

zn

n!
(|z| < 1 ; ℜ(c) > ℜ(b) > 0) .

2.1. Integral representations

In this section, we present certain integral representations of the incomplete
generalized τ -hypergeometric function 2Γ

τ
1(z) by applying (1.2) and (1.7).

Theorem 1. The following integral representation for 2Γ
τ
1(z) in (2.2) holds

true:

2Γ
τ
1 [(a, κ), b; c; z] =

1

Γ(a)

∫ ∞

κ

e−t ta−1
1Φ

τ
1(b; c; zt)dt,(2.4)

(

κ ≧ 0; ℜ(z) < 1, ℜ(a) > 0 when κ = 0
)

where 1Φ
τ
1 (b; c; z) is the τ-confluent hypergeometric function introduced by

Virchenko [41]:

1Φ
τ
1(z) = 1Φ

τ
1 (b; c; z) =

Γ(c)

Γ(b)

∞
∑

n=0

Γ(b+ τn)

Γ(c+ τn)

zn

n!
(2.5)

(τ > 0, ℜ(c) > ℜ(b) > 0) .

Proof. Using the definition of the incomplete Pochhammer symbol [a;κ]n in
(2.2) by considering the integral representation resulting from (1.2) and (1.7)
and using (2.5), we are led to the desired result (2.4) asserted by Theorem
1. �

Theorem 2. The following integral representation for 2Γ
τ
1(z) in (2.2) holds

true:

2Γ
τ
1 [(a, κ), b; c; z] =

1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1
1Γ0 [(a, κ) ; ; ztτ ] dt

(2.6)

(

τ > 0, ℜ(c) > ℜ(b) > 0 ; κ ≧ 0
)

.

Proof. Considering the following elementary identity involving the Beta func-
tion:

Γ(c)

Γ(b)

Γ(b+ τn)

Γ(c+ τn)
=

(b)τn
(c)τn

=
B(b + τn, c− b)

B(b, c− b)

=
1

B(b, c− b)

∫ 1

0

tb+τn−1(1− t)c−b−1 dt

(

τ > 0, ℜ(c) > ℜ(b) > 0
)
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in (2.2) and interchanging summation and integration under the stated condi-
tions, we have

2Γ
τ
1 [(a, κ), b; c; z] =

1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1
∞
∑

n=0

(a;κ)n
(zt)τn

n!
.

Finally, using the definition (1.5), we get the desired integral representation
(2.6) asserted by Theorem 2. �

Theorem 3. The following relationship with the incomplete gamma function

Γ(s, κ) defined by (1.2) holds true:

2Γ
τ
1 [(a, κ), b; b; z] =

(1− z)−a

Γ(a)
Γ(a, κ(1 − z)) (|z| < 1; κ ≧ 0).(2.7)

Proof. Putting c = b in (2.4), we immediately obtain the following simplified
form:

2Γ
τ
1 [(a, κ), b; b; z] =

1

Γ(a)

∫ ∞

κ

e−t(1−z) ta−1dt.(2.8)

Now by setting t = u
1−z and dt = du

1−z in (2.8), we have

2Γ
τ
1 [(a, κ), b; b; z] =

(1 − z)−a

Γ(a)

∫ ∞

κ(1−z)

e−u ua−1du (|z| < 1),(2.9)

which is precisely the assertion (2.7) asserted by Theorem 3. �

Theorem 4. The following relationship with the complementary error function

erfc(z) holds true:

2Γ
τ
1

((

1

2
, κ

)

, b; b; 1− z

)

=
1
√
z
erfc(

√
κz) (κ ≧ 0).(2.10)

Proof. Upon replacing z by 1 − z and putting a = 1
2 in (2.7), we find that

the incomplete generalized τ -hypergeometric function 2Γ
τ
1(z) reduces to the

complementary error function erfc(z) (see, e.g., [22, p. 726]) as follows:

2Γ
τ
1

((

1

2
, κ

)

, b; b; 1− z

)

=
z−

1
2

Γ
(

1
2

)Γ(
1

2
, κz) =

1
√
z
erfc(

√
κz)

�

Remark 2. The special cases of (2.6) and (2.4) when τ = 1 are easily seen to
reduce to the known integral representations of the incomplete Gauss hyperge-
ometric functions [28, p. 665, Eq. (3.6)] and [28, p. 672, Eq. (3.53)]:

2Γ1[(a, κ), b; c; z] =
1

Γ(a)

∫ ∞

κ

e−t ta−1
1F1(b; c; zt) dt(2.11)

and

2Γ1[(a, κ), b; c; z] =
1

B(b, c− b)

∫ 1

0

tb−1(1 − t)c−b−1
1Γ0 [(a, κ) ; ; zt] dt

(2.12)
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respectively. Also, the special cases of (2.6) and (2.4) when τ = 1 and κ = 0 are
seen to yield the classical integral representations of Gauss’s hypergeometric
function (see, e.g., [23]):

2F1[a, b; c; z] =
1

Γ(a)

∫ ∞

0

e−t ta−1
1F1(b; c; zt)dt(2.13)

and

2F1[a, b; c; z] =
1

B(b, c− b)

∫ 1

0

tb−1(1 − t)c−b−1 (1− zt)−a dt.(2.14)

respectively.

2.2. Derivative formula

Theorem 5. Each of the following derivative formula for 2Γ
τ
1(z) holds true:

dn

dzn
[2Γ

τ
1((a, κ), b; c; z)](2.15)

=
(a)nΓ(c)Γ(b + τn)

Γ(b)Γ(c+ τn)
2Γ

τ
1 [(a+ n, κ), b+ τn; c+ τn; z]

and
(

d

dz

)m
[

zc−1
2Γ

τ
1((a, κ), b; c;ωz

τ)
]

(2.16)

=
zc−m−1Γ(c)

Γ(c−m)
2Γ

τ
1((a, κ), b; c−m;ωzτ) (ℜ(c−m) > 0, m ∈ N),

where a, b, c, ω ∈ C; ℜ(τ) > 0, ℜ(a) > 0, ℜ(b) > 0, ℜ(c) > 0; ℜ(κ) ≥ 0.

Proof. Differentiating n times both sides of (2.2) with respect to z, we can easily
obtain a derivative formula for the incomplete generalized τ -hypergeometric
function 2Γ

τ
1(z) asserted by (2.15).

Next, according to the uniform convergence of the series (2.2), differentiating
term by term under the sign of summation, we have

(

d

dz

)m
[

zc−1
2Γ

τ
1((a, κ), b; c;ωz

τ)
]

=
Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn)

ωn

n!

(

d

dz

)m
[

zc+τn−1
]

=
Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn−m)

ωn

n!
zc+τn−m−1

= zc−m−1Γ(c)Γ(c−m)

Γ(b)Γ(c−m)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn−m)
(ωzτ )n,

which, in view of the definition (2.2), yields the desired representation (2.16).
�
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2.3. Euler-Beta transform

The Euler-Beta transform of the function f(z) is defined, as usual, by

(2.17) B{f(z);µ, ν} =

∫ 1

0

zµ−1(1 − z)ν−1f(z) dz.

Theorem 6. The following Euler-Beta transform representation for the 2Γ
τ
1(z)

in (2.2) holds true:

(2.18) B {2Γ
τ
1 [(a, κ), b; c;ωz

τ ] : c, ν} := B(c, ν)2Γ
τ
1 [(a, κ), b; c+ ν;ω]

(τ > 0; ℜ(a) > 0, ℜ(ν) > 0, ℜ(b) > 0, ℜ(c) > 0).

Proof. Using the definition (2.17) of the Euler-Beta transform, we find from
(2.2)

B {2Γ
τ
1 [(a, κ), b; c;ωz

τ ] : c, ν}(2.19)

:=

∫ 1

0

zc−1(1− z)ν−1
2Γ

τ
1 [(a, κ), b; c;ωz

τ ]dz

=

∫ 1

0

zc−1(1− z)ν−1

(

Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b + τn)

Γ(c+ τn)

ωnzn

n!

)

.

Upon interchanging the order of integration and summation in (2.19), which
can easily be justified by uniform convergence under the constraints stated with
(2.17), we get

B {2Γ
τ
1 [(a, κ), b; c;ωz

τ ] : c, ν}

:=
Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn)

ωn

n!

(
∫ 1

0

zc+τn−1(1− z)ν−1dz

)

=
Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn)

ωn

n!

Γ(c+ τn)Γ(ν)

Γ(c+ ν + τn)

=
Γ(c)Γ(ν)Γ(c + ν)

Γ(b)Γ(c+ ν)

ωn

n!

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ ν + τn)
.

Using the definition (2.2), we get the desired representation (2.18). �

2.4. Fractional calculus approach

In this section, we derive certain interesting properties of the incomplete
generalized τ -hypergeometric function 2Γ

τ
1(z) in (2.2) associated with right-

sided Riemann-Liouville fractional integral operator Iµα+ and the right-sided

Riemann-Liouville fractional derivative operator Dµ
α+, which are defined as

follows (see, e.g., [14, 19, 25]):

(2.20)
(

Iµα+ϕ
)

(x) =
1

Γ(µ)

∫ x

α

ϕ(t)

(x− t)1−µ
dt

(

µ ∈ C, ℜ(µ) > 0
)
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and

(2.21)
(

Dµ
α+ϕ

)

(x)=

(

d

dx

)n
(

In−µ
α+ ϕ

)

(x)
(

µ ∈ C, ℜ(µ) > 0; n=[ℜ(µ)] + 1
)

,

where [x] means the greatest integer not exceeding real x.
Another generalization of Riemann-Liouville fractional derivative operator

Dµ
α+ in (2.21) by introducing a right-sided Riemann-Liouville fractional deriv-

ative operator Dµ, ν
α+ of order 0 < µ < 1 and type 0 ≦ ν ≦ 1 with respect to x

by Hilfer (see, e.g.,[13]) is given as follows:

(

Dµ, ν
α+ ϕ

)

(x) =

(

I
ν(1−µ)
α+

d

dx

)

(

I
(1−ν)(1−µ)
α+ ϕ

)

(x)(2.22)

(

µ ∈ C, ℜ(µ) > 0; n = [ℜ(µ)] + 1
)

.

The generalization (2.22) yields the classical Riemann-Liouville fractional
derivative operator Dµ

α+ when ν = 0.

Theorem 7. Let α ∈ R+ = [0,∞), a, b, c, µ, ω ∈ C and ℜ(a) > 0, ℜ(b) >
0, ℜ(c) > 0, ℜ(µ) > 0, τ > 0. Then, for x > α, the following relations hold

true:
(

Iµα+
[

(t− α)c−1
2Γ

τ
1((a, κ), b; c;ω(t− α)τ )

])

(x)(2.23)

=
(x− α)c+µ−1Γ(c)

Γ(c+ µ)
2Γ

τ
1((a, κ), b; c+ µ;ω(x− α)τ ),

(

Dµ
α+

[

(t− α)c−1
2Γ

τ
1((a, κ), b; c;ω(t− α)τ )

])

(x)(2.24)

=
(x− α)c−µ−1Γ(c)

Γ(c− µ)
2Γ

τ
1 [(a, κ), b; c− µ;ω(x− α)τ )

and
(

Dµ, ν
α+

[

(t− α)c−1
2Γ

τ
1((a, κ), b; c;ω(t− α)τ )

])

(x)(2.25)

=
(x− α)c−µ−1Γ(c)

Γ(c− µ)
2Γ

τ
1 [(a, κ), b; c− µ;ω(x− α)τ ).

Proof. By virtue of the formulas (2.20) and (2.2), the term-by-term fractional
integration and the application of the relation [25]:
(2.26)
(

Iαa+[(t− a)β−1]
)

(x) =
Γ(β)

Γ(α+ β)
(x−a)α+β−1

(

α, β ∈ C, ℜ(α) > 0, ℜ(β) > 0
)

yields, for x > α,
(

Iµα+[(t− α)c−1
2Γ

τ
1((a, κ), b; c;ω(t− α)τ )]

)

(x)(2.27)

=

(

Iµα+

[

Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn)n!
ωn (t− α)c+τn−1

])
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=
(x− α)c+µ−1Γ(c)

Γ(c+ µ)
2Γ

τ
1 [(a, κ), b; c+ µ;ω(x− α)τ ).

Next, by (2.21) and (2.2), we find that
(

Dµ
α+[(t− α)c−1

2Γ
τ
1((a, κ), b; c;ω(t− α)τ )]

)

(x))(2.28)

=

(

d

dx

)n
(

In−µ
α+ [(t− α)c−1

2Γ
τ
1((a, κ), b; c;ω(t− α)τ )]

)

(x)

=

(

d

dx

)n [
(x− α)c+n−µ−1Γ(c)

Γ(c− µ+ n)
2Γ

τ
1 [(a, κ), b; c− µ+ n;ω(x− α)τ )

]

.

Applying (2.16), we are led to the desired result (2.24).
Finally, by (2.22) and (2.2), we have

(

Dµ, ν
α+

[

(t− α)c−1
2Γ

τ
1((a, κ), b; c;ω(t− α)τ )

])

(x))(2.29)

=

(

Dµ, ν
α+

[

Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b + τn)

Γ(c+ τn)n!
ωn (t− α)c+τn−1

])

(x)

=
Γ(c)

Γ(b)

∞
∑

n=0

[a;κ]nΓ(b+ τn)

Γ(c+ τn)n!
ωn
(

Dµ, ν
α+

[

(t− α)c+τn−1
])

(x).

Using the known relation of Srivastava and Tomovski [34, p. 203, Eq. (2.18)]

(

Dµ, ν
α+

[

(t− α)λ−1
])

(x) =
Γ(λ)

Γ(λ− µ)
(x− a)λ−µ−1(2.30)

(

x > α; 0 < µ < 1; 0 ≦ ν ≦ 1; ℜ(λ) > 0
)

in (2.29), we are led to the desired result (2.25). �

Remark 3. The special cases of (2.23)-(2.25) when τ = 1 yield the correspond-
ing known relations for the generalized τ -hypergeometric function [24].

3. The incomplete second τ -Appell functions

Further, we introduce the incomplete second Appell τ -hypergeometric func-
tions γτ1,τ2

2 and Γτ1,τ2
2 of two variables as follows: For a, b1, b2 ∈ C and

c1, c2 ∈ C \ Z−
0 , we have

γτ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, x2](3.1)

=
Γ(c1)Γ(c2)

Γ(b1)Γ(b2)

∞
∑

m1,m2=0

(a;κ)m1+m2
Γ(b1 + τ1m1)Γ(b2 + τ2m2)

Γ(c1 + τ1m1)Γ(c2 + τ2m2)

xm1

1

m1!

xm2

2

m2!

(

κ ≧ 0; τ1, τ2 > 0; |x1|+ |x2| < 1 when κ = 0
)

and

Γτ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, x2](3.2)
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=
Γ(c1)Γ(c2)

Γ(b1)Γ(b2)

∞
∑

m1,m2=0

[a;κ]m1+m2
Γ(b1 + τ1m1)Γ(b2 + τ2m2)

Γ(c1 + τ1m1)Γ(c2 + τ2m2)

xm1

1

m1!

xm2

2

m2!

(

κ ≧ 0; τ1, τ2 > 0; |x1|+ |x2| < 1 when κ = 0
)

.

In view of (1.8), these families of incomplete second τ -Appell function satisfy
the following decomposition formula:

γτ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, x2] + Γτ1,τ2

2 [(a, κ), b1, b2; c1, c2;x1, x2](3.3)

= F τ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, x2],

where F τ1,τ2
2 is the second τ -Appell function [2].

Remark 4. The special cases of (3.1) and (3.2) when τ1 = 1 = τ2 are easily
seen to reduce to the known families of the incomplete second Appell functions
(1.11) and (1.12), respectively.

Also the special cases of (3.1) and (3.2) when τ1 = 1 = τ2 and κ = 0 are
easily seen to reduce to the classical second Appell functions [4, 5].

In view of the decomposition formula (3.3), it is sufficient to discuss the
properties and characteristics of the incomplete second τ -Appell function Γτ1,τ2

2 .

3.1. Integral representations

Theorem 8. The following integral representation for Γτ1,τ2
2 in (3.2) holds

true:

Γτ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, x2](3.4)

=
1

Γ(a)

∫ ∞

κ

e−t ta−1
1Φ

τ1
1

[

b1;
c1;

x1t

]

1Φ
τ2
1

[

b2;
c2;

x2t

]

dt

(

κ ≧ 0; τ1, τ2 > 0; ℜ(x1 + x2) < 1, ℜ(a) > 0 when κ = 0
)

.

Proof. Using the integral representation of the Pochhammer symbol (α)m1+m2

and the definition of τ -confluent hypergeometric function (2.5) in (3.2), we are
led to the desired result (3.4) asserted by Theorem 8. �

Theorem 9. The following integral representation for Γτ1,τ2
2 in (3.2) holds

true:

Γτ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, x2](3.5)

=
1

B(b1, c1 − b1)B(b2, c2 − b2)

×

∫ 1

0

∫ 1

0

tb1−1sb2−1(1− t)c1−b1−1(1 − s)c2−b2−1

× (1− x1t
τ1 − x2s

τ2)−a Γ (a, κ(1− x1t
τ1 − x2s

τ2))

Γ(a)
dt ds

(

κ ≧ 0; τ1, τ2 > 0; ℜ(cj) > ℜ(bj) > 0 (j = 1, 2) when κ = 0
)

.
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Proof. Considering the following elementary identity involving the Beta func-
tion B(β, γ):

(3.6)
(β)ν
(γ)ν

=
B(β + ν, γ − β)

B(β, γ − β)
=

1

B(β, γ − β)

∫ 1

0

tβ+ν−1(1− t)γ−β−1 dt

(

ℜ(γ) > ℜ(β) > max{0,−ℜ(ν)}
)

in (3.2), we have

Γτ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, x2]

(3.7)

=
1

B(b1, c1 − b1)B(b2, c2 − b2)

∫ 1

0

∫ 1

0

tb1−1sb2−1(1− t)c1−b1−1(1− s)c2−b2−1

× Γ2[(a, κ), b1, b2; b1, b2;x1t
τ1 , x2s

τ2 ] dt ds

and using the relation [6, p. 8334, Eq. (22)]:

Γ2[(a, κ), b1, b2; b1, b2;x1t, x2s] = (1− x1t− x2s)
−a Γ (a, κ(1− x1t− x2s))

Γ(a)
,

we get the desired multiple integral representation (3.5) asserted by Theorem
9. �

Remark 5. The special cases of (3.4) and (3.5) when τ1 = 1 = τ2 are easily
seen to reduce to the known integral representations of the incomplete second
Appell functions [6, p. 8333, Eq. (10)] and [6, p. 8335, Eq. (24)]:

Γ2[(a, κ), b1, b2; c1, c2;x1, x2](3.8)

=
1

Γ(a)

∫ ∞

κ

e−t ta−1
1F1

[

b1;
c1;

x1t

]

1F1

[

b2;
c2;

x2t

]

dt

(

κ ≧ 0; ℜ(x1 ++x2) < 1, ℜ(a) > 0 when κ = 0
)

and

Γ2[(a, κ), b1, b2; c1, c2;x1, x2]

(3.9)

=
1

B(b1, c1 − b1)B(b2, c2 − b2)

∫ 1

0

∫ 1

0

tb1−1sb2−1(1− t)c1−b1−1(1− s)c2−b2−1

× (1− x1t− x2s)
−a Γ (a, κ(1− x1t− x2s))

Γ(a)
dt ds

(

κ ≧ 0;ℜ(cj) > ℜ(bj) > 0 (j = 1, 2) when κ = 0
)

,

respectively.
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Also, the special cases of (2.6) and (2.4) when τ1 = 1 = τ2 and κ = 0 are
seen to yield the classical integral representations of second Appell functions
(see, e.g., [4, 31]).

F2[(a, κ), b1, b2; c1, c2;x1, x2](3.10)

=
1

Γ(a)

∫ ∞

o

e−t ta−1
1F1

[

b1;
c1;

x1t

]

1F1

[

b2;
c2;

x2t

]

dt

(

ℜ(x1 + x2) < 1, ℜ(a) > 0
)

and

F2[(a, κ), b1, b2; c1, c2;x1, x2]

(3.11)

=
1

B(b1, c1 − b1)B(b2, c2 − b2)
∫ 1

0

∫ 1

0

tb1−1sb2−1(1− t)c1−b1−1(1− s)c2−b2−1 (1− x1t− x2s)
−a dt ds

(

ℜ(cj) > ℜ(bj) > 0 (j = 1, 2)
)

,

respectively.

3.2. Connections with certain known functions

Theorem 10. The following relationship with the incomplete gamma function

Γ(s, κ) defined by (1.2) holds true:

Γτ1,τ2
2 [(a, κ), b1, b2; b1, b2;x1, x2] =

(1 − x1 − x2)
−a

Γ(a)
Γ(a, κ(1− x1 − x2))

(3.12)

(|x1 + x2| < 1; κ ≧ 0).

Proof. Putting c1 = b1 and c2 = b2 in (3.4), we obtain the following simplified
form:

Γτ1,τ2
2 [(a, κ), b1, b2; b1, b2;x1, x2] =

1

Γ(a)

∫ ∞

κ

e−t(1−x1−x2) ta−1dt.(3.13)

Now by setting t = u
1−x1−x2

and dt = du
1−x1−x2

in (3.13), we have

Γτ1,τ2
2 [(a, κ), b1, b2; b1, b2;x1, x2](3.14)

=
(1 − x1 − x2)

−a

Γ(a)

∫ ∞

κ(1−x1−x2)

e−u ua−1du (|z| < 1),

which is precisely the assertion (3.12) asserted by Theorem 10. �
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Theorem 11. The following relationship with the complementary error func-

tion erfc(z) holds true:

Γτ1,τ2
2

[(

1

2
, κ

)

, b1, b2; b1, b2; 0, 1− z

]

= Γτ1,τ2
2

[(

1

2
, κ

)

, b1, b2; b1, b2; 1− z, 0

]

=
1
√
z
erfc(

√
κz) (κ ≧ 0).(3.15)

Proof. Upon replacing x1 = 0 and x2 = 1 − z or x2 = 0 and x1 = 1 − z and
putting a = 1

2 in (3.12), we can easily find that the incomplete second τ -Appell
function Γτ1,τ2

2 reduces to the complementary error function erfc(z) as follows:

Γτ1,τ2
2

[(

1

2
, κ

)

, b1, b2; b1, b2; 0, 1− z

]

= Γτ1,τ2
2

((

1

2
, κ

)

, b1, b2; b1, b2; 1− z, 0

)

=
1
√
z
erfc(

√
κz).

�

Theorem 12. Each of the following relationship with the incomplete general-

ized τ-hypergeometric function 2Γ
τ
1(z) in (2.2) holds true for κ ≧ 0 :

(3.16) Γτ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, 0] = 2Γ

τ1
1 [(a, κ), b1; c1; x1];

(3.17) Γτ1,τ2
2 [(a, κ), b1, b2; c1, c2; 0, x2] = 2Γ

τ2
1 [(a, κ), b2; c2; x2];

(3.18)

Γτ1,τ2
2 [(a, κ), b1, b2; b1, c2;x1, x2]=(1− x1)

−a
2Γ

τ2
1

[

(a, κ(1− x1)), b2; c2;
x2

1−x1

]

;

(3.19)

Γτ1,τ2
2 [(a, κ), b1, b2; c1, b2;x1, x2]=(1− x2)

−a
2Γ

τ1
1

[

(a, κ(1− x2)), b1; c1;
x1

1−x2

]

.

Proof. The proofs of (3.16) to (3.19) are direct consequences of the definitions
(3.2) and (3.4). �

Corollary 1. Each of the following relationship with the incomplete Gauss

hypergeometric function 2Γ1(z) in (1.5) holds true for κ ≧ 0 :

(3.20) Γ1,τ2
2 [(a, κ), b1, b2; c1, c2;x1, 0] = 2Γ1 [(a, κ), b1; c1; x1];

(3.21) Γτ1,1
2 [(a, κ), b1, b2; c1, c2; 0, x2] = 2Γ1 [(a, κ), b2; c2; x2];

(3.22)

Γτ1,1
2 [(a, κ), b1, b2; b1, c2;x1, x2] = (1− x1)

−a
2Γ1

[

(a, κ(1− x1)), b2; c2;
x2

1−x1

]

;

(3.23)

Γ1,τ2
2 [(a, κ), b1, b2; c1, b2;x1, x2] = (1− x2)

−a
2Γ1

[

(a, κ(1− x2)), b1; c1;
x1

1−x2

]

.
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4. Concluding remarks and observations

In our present investigation, with the help of the incomplete Pochhammer
symbols (λ;κ)ν and [λ;κ]ν , we have introduced the incomplete generalized
τ -hypergeometric function 2γ

τ
1 (z) and 2Γ

τ
1(z) and investigated their diverse

properties such mainly as integral representations, derivative formula, Euler-
beta transform and obtain Riemann-Liouville fractional integration and differ-
entiation formulas. Further, we have introduced and investigated the family
of incomplete second τ -Appell hypergeometric functions Γτ1,τ2

2 and γτ1,τ2
2 of

two variables. The special cases of the results presented here when κ = 0
would reduce to the corresponding well-known results for the generalized τ -
hypergeometric function (see, for details, [10, 12, 18, 24, 41, 42]) and second
τ -Appell function (see, for details, [2]).

The expressions of the integrals, which we have evaluated in this paper, are
( presumably ) new and generalize the results in the existing literature (see,
for details, [4, 23, 31, 32]).

Acknowledgements. The authors are thankful to the reviewer(s) for their
valuable suggestions to put the paper in present form.
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