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GENERALIZED HYERES–ULAM STABILITY OF A

QUADRATIC FUNCTIONAL EQUATION WITH INVOLUTION

IN QUASI-β-NORMED SPACES

MOHAMMAD JANFADA∗ AND GHADIR SADEGHI

Abstract. In this paper, using a fixed point approach, the generalized
Hyeres–Ulam stability of the following quadratic functional equation

f(x+y+z)+f(x+σ(y))+f(y+σ(z))+f(x+σ(z)) = 3(f(x)+f(y)+f(z))

will be studied, where f is a function from abelian group G into a quasi-
β-normed space and σ is an involution on the group G. Next, we consider
its pexiderized equation of the form

f(x+ y+ z)+ f(x+σ(y))+ f(y+σ(z))+ f(x+σ(z)) = g(x)+ g(y)+ g(z)

and its generalized Hyeres–Ulam stability.
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1. Introduction and preliminaries

A classical question in the theory of functional equations is the following:
“When is it true that a function which approximately satisfies a functional equa-
tion E must be close to an exact solution of E?” If there exists an affirmative
answer we say that the equation E is stable [11]. During the last decades several
stability problems for various functional equations have been investigated by nu-
merous mathematicians. We refer the reader to the survey articles [11, 12, 22]
and monographs [9, 13, 15, 18, 23] and references therein.

Let G, be a abelian group and X be a normed space. A function f : G → X
satisfying the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1)

Received June 24, 2010. Revised September 17, 2010. Accepted October 26, 2010.
∗Corresponding author.

c© 2011 Korean SIGCAM and KSCAM.

1421



1422 M. Janfada and Gh. Sadeghi

is called the quadratic functional equation. The Hyers-Ulam stability of the
quadratic equation (1) on normed spaces has been studied in [8]. A mapping
σ : G → G is called an involution if σ is a group homomorphism for which
σ2 = I. For f : G → X, and an involution σ on G, the Hyers-Ulam stability of
the quadratic functional equation with involution

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y) (2)

have been studied by many authors in various cases and by different methods,
(for example see [5], [16] and [25]).

Consider the following functional equations,

f(x+ y + z) + f(x− y) + f(y − z) + f(x− z) = 3f(x) + 3f(y) + 3f(z), (3)

and its pexiderized form as follows

f(x+ y + z) + f(x− y) + f(y − z) + f(x− z) = g(x) + g(y) + g(z). (4)

This equations, their solutions and their Hyers-Ulam stability is studied in [1],
[2], [3] and [4].

In this paper we adopt the ideas of Cădariu and Radu [7], S.-M. Jung and
Z.-H. Lee [16] to investigate the Hyers-Ulam-Rassias stability of the equation

f(x+y+z)+f(x+σ(y))+f(y+σ(z))+f(x+σ(z)) = 3f(x)+3f(y)+3f(z), (5)

and its pexiderized form as follows

f(x+ y+ z)+ f(x+σ(y))+ f(y+σ(z))+ f(x+σ(z)) = g(x)+ g(y)+ g(z). (6)

on abelian groups using a fixed point method, so we need some preliminaries in
this area.

For a nonempty set M, a function d : M×M → [0,∞] is called a generalized
metric on M if d satisfies
(M1) d(x, y) = 0 if and only if x = y;
(M2) d(x, y) = d(y, x) for all x, y ∈ M;
(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ M.
Trivially the only one difference of the generalized metric from the usual metric
is that the range of the former is permitted to include infinity.
We now introduce one of fundamental results of fixed point theory. For the
proof, we refer to [17]. This theorem will play an important role in proving our
main theorem.

Theorem 1. Let (M, d) be a generalized complete metric space. Assume that
Λ : M → M is a strictly contractive operator with the Lipschitz constant L < 1.
If there exists a nonnegative integer k such that d(Λk+1x,Λkx) < ∞ for some
x ∈ M, then the following are true:
(a) The sequence {Λnx} converges to a fixed point x∗ of Λ;
(b) x∗ is the unique fixed point of Λ in

M∗ = {y ∈ X : d(Λkx, y) < ∞};
(c) If y ∈ M∗, then d(y, x∗) ≤ 1

1−Ld(Λy, y).
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We consider some basic concept concerning quasi-β-normed spaces and some
preliminary result. We fixed a real number β with 0 < β ≤ 1 and K denote
either C or R. Let X be a linear spaces over K. A quasi-β-norm on X is a
function ‖.‖β : X → [0,∞), for which
(N1) ‖x‖β = 0, if and only if x = 0;
(N2) ‖λx‖β = |λ|β .‖x‖β , for all λ ∈ K and all x ∈ X;
(N3) There is a constant k ≥ 1 such that ‖x + y‖β ≤ k(‖x‖β + ‖y‖β), for all
x, y ∈ X.

It follows from condition (N3) that

‖
2n∑

i=1

xi‖β ≤ kn
2n∑

i=1

‖xi‖β , ‖
2n+1∑

i=1

xi‖ ≤ kn+1
2n+1∑

i=1

‖xi‖β (7)

for all n ∈ N and allx1, x2, ..., x2n+1 ∈ X
The pair (X, ‖.‖β) is called a quasi-β-normed space if ‖.‖β is a quasi-β-norm

on X. The smallest possible k is called the modulus of concavity of ‖.‖β . A
quasi-β-Banach space is a complete quasi-β-normed space.

A quasi-β-normed ‖.‖β is called a (β, p)-norm (0 < p ≤ 1) if

‖x+ y‖pβ ≤ ‖x‖pβ + ‖y‖pβ
for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach
space.

Given a p-norm, the formula d(x, y) := ‖x−y‖p gives us a translation invariant
metric on X. By the Aoki–Rolewicz Theorem, each quasi-norm is equivalent to
some p-norm. Since it is much easier to work with p-norms than quasi-norms,
henceforth we restrict our attention mainly to p-norms [6]. In [26], J. Tabor
has investigated stability of the Cauchy functional equations (see [19]) in quasi-
Banach spaces. One can see [10], [14], [20, 21], and [27] for some other works on
stability in quasi-normed spaces.

Recently generalized stability of additive functional equations in quasi-β-
normed spaces has been studied by J. Rassias and H.-M. Kim [24].

2. Stability Results

Throughout this section G is an abelian group, X, is a (β, p)-Banach space
with p-normed ‖.‖β and σ : G → G is an involution on G, (i.e. σ is a group
homomorphism for which σ2 = σ). With f : G → X, consider the following
quadratic functional equation

f(x+ y + z) + f(x+ σ(y)) + f(y + σ(z)) + f(x+ σ(z)) = 3(f(x) + f(y) + f(z))

and suppose

Df(x, y, z) = f(x+ y + z) + f(x+ σ(y)) + f(y + σ(z)) + f(x+ σ(z))

− 3(f(x) + f(y) + f(z)). (8)
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Theorem 2. Let 0 < L < 1, 0 < β ≤ 1 and φ : G×G×G → [0,∞) be a mapping
for which

φ(2x, 2y, 2z) ≤ 4β
p

√
L

2
φ(x, y, z), (9)

φ(x+ σ(x), y + σ(y), z + σ(z)) ≤ 4β
p

√
L

2
φ(x, y, z), (10)

(11)

for all x, y, z ∈ G. Also let f : G → X be a mapping for which f(0) = 0 and

‖Df(x, y, z)‖β ≤ φ(x, y, z), x, y, z ∈ G. (12)

Then there exists a unique function Q : G → X such that DQ(x, y, z) = 0 and

‖Q(x)− f(x)‖β ≤ 1

4β
1

p
√
1− L

φ(x, x, 0). (13)

Proof. Obviously σ(0) = 0. From (12), we have

‖Df(x, x, 0)‖β = ‖f(2x) + f(x+ σ(x))− 4f(x)− 3f(0)‖β ≤ φ(x, x, 0). (14)

so

‖f(2x) + f(x+ σ(x))

4
− f(x)‖β ≤ 1

4β
φ(x, x, 0), (15)

Let M be the set of all functions from G into X. Define d : M×M → [0,∞] by

d(g, h) = inf{C ∈ [0,∞], ‖g(x)− h(x)‖β ≤ C
1
pφ(x, x, 0), for all x ∈ G}.

One can verify that (M, d) is a complete generalized metric space (for example
see the proof of Theorem 3.1 in [16] ). Now define Λ : M → M by

Λ(g)(x) =
g(2x) + g(x+ σ(x))

4
.

From (15) one can see that

d(Λ(f), f) ≤ 1

4βp
< ∞. (16)

Now we show that Λ is strictly contractive. For given g, h ∈ M, let d(f, g) ≤ C,
for some C ∈ [0,∞]. Thus

‖g(x)− h(x)‖pβ ≤ Cφp(x, x, 0).

It follows from definition of Λ, (9) and (10) that

‖(Λg)(x)− (Λh)(x)‖pβ ≤ 1

4βp
[‖g(2x)− h(2x)‖pβ

+ ‖g(x+ σ(x))− h(x+ σ(x))‖pβ
]

≤ C

4βp
[
φp(2x, 2x, 0) + φp(x+ σ(x), x+ σ(x), 0)

]

≤ LCφp(x, x, 0), (17)
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for all x ∈ G, that is, d(Λg,Λh) ≤ LC. We hence conclude that d(Λg,Λh) ≤
Ld(g, h). Therefor Λ is strictly contractive because 0 < L < 1. By mathematical
induction we obtain

Λnf(x) =
1

22n
[
f(2nx) + (2n − 1)f(2n−1x+ 2n−1σ(x))

]
. (18)

Now by Theorem 1, there exists a fixed point Q of Λ which is unique in M∗ =
{g ∈ M : d(Λf, g) < ∞}. Also d(Λnf,Q) → 0 as n → ∞. This, by definition of
d, implies that there exists a sequence {Cn}n∈N such that Cn → 0, as n → ∞,
and for all x ∈ G,

d(Λnf(x), Q(x)) ≤ Cn,

therefore for any x ∈ G,

lim
n→∞

‖Λnf(x)−Q(x)‖pβ = 0.

Hence

Q(x) = lim
n→∞

Λnf(x) = lim
n→∞

1

22n
[
f(2nx)+ (2n− 1)f(2n−1x+2n−1σ(x))

]
, (19)

for each x ∈ G. Now by (9), (10), (12) and the fact that 0 < L < 1 we have

‖DQ(x, y, z)‖pβ = ‖Q(x+ y + z) +Q(x+ σ(y)) +Q(y + σ(z)) +Q(x+ σ(z))

−3(Q(x) +Q(y) +Q(z))‖pβ
= lim

n→∞
1

22pβn
‖[f(2n(x+ y + z))

+(2n − 1)f(2n−1(x+ y + z) + 2n−1σ(x+ y + z))
]

+
[
f(2n(x+ σ(y))) + (2n − 1)f(2n−1(x+ σ(y)) + 2n−1σ(x+ σ(y)))

]

+
[
f(2n(y + σ(z))) + (2n − 1)f(2n−1(y + σ(z)) + 2n−1σ(y + σ(z)))

]

+
[
f(2n(x+ σ(z))) + (2n − 1)f(2n−1(x+ σ(z)) + 2n−1σ(x+ σ(z)))

]

−3
[
f(2nx) + (2n − 1)f(2n−1x+ 2n−1σ(x))

]

−3
[
f(2ny) + (2n − 1)f(2n−1y + 2n−1σ(y))

]

−3
[
f(2nz) + (2n − 1)f(2n−1z + 2n−1σ(z))

]‖pβ
≤ lim

n→∞
1

4pβn
[‖f(2n(x+ y + z)) + f(2n(x+ σ(y))) + f(2n(y + σ(z)))

+f(2n(x+ σ(z))) + 3(f(2nx) + f(2ny) + f(2nz))‖pβ
+(2n − 1)pβ‖f(2n−1(x+ y + z) + 2n−1σ(x+ y + z))

+f(2n−1(x+ σ(x)) + 2n−1(y + σ(y)))

+f(2n−1(y + σ(y)) + 2n−1(z + σ(z)))

+f(2n−1(x+ σ(x)) + 2n−1(z + σ(z)))

+3
[
f(2n−1x+ 2n−1σ(x)) + f(2n−1y

+2n−1σ(y)) + f(2n−1z + 2n−1σ(z))
]‖pβ

]
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≤ lim
n→∞

[ 1

4βnp
φp(2nx, 2ny, 2nz)

+
(2n − 1)

βp

4βnp
φp(2n−1(x+ σ(x)), 2n−1(y + σ(y)) + 2n−1(z + σ(z)))

]

≤ lim
n→∞

1

4pβn
(
4pβ

2
L)n(1 +

(2n − 1)pβ

4pnβ
)φp(x, y, z)

= lim
n→∞

(
L

2
)n(1 +

(2n − 1)pβ

4pnβ
)φp(x, y, z) = 0.

By Theorem 1 and (16), we obtain

d(f,Q) ≤ 1

1− L
d(Λf, f) ≤ 1

4pβ(1− L)
, (20)

that is, (13) is true for all x ∈ G.
For the uniqueness part, it is enough to show that Q ∈ M∗, i.e. d(Λ(f), Q) < ∞.
The fact that Λ is a contraction implies that

d(Λ(f), Q) = d(Λ(f),Λ(Q))

≤ Ld(f,Q) ≤ L

1− L
d(Λf, f) ≤ L

4pβ(1− L)
< ∞,

hence Q ∈ M∗, and this completes the proof. ¤
In a similar way, by applying Theorem 1, we can prove the following theorem.

Theorem 3. Let 0 < L < 1, 0 < β ≤ 1 and φ : G×G×G → [0,∞) be a mapping
for which

φ(x, y, z) ≤ 1

4β
p

√
L

2
φ(2x, 2y, 2z) (21)

φ(x+ σ(x), y + σ(y), z + σ(z)) ≤ 2βφ(2x, 2y, 2z) (22)

for all x, y, z ∈ G. Also let f : G → X be a mapping with

‖Df(x, y, z)‖β ≤ φ(x, y, z), x, y, z ∈ G. (23)

Then there exists a unique function Q : G → X such that DQ(x, y, z) = 0 and

‖Q(x)− f(x)‖β ≤ 1

4β
p

√
L

1− L
φ(x, x, 0). (24)

Proof. We use the same definitions for M and d as in the proof of Theorem 2.
From (23), we have

‖Df(
x

2
,
x

2
, 0)‖β = ‖f(x) + f(

x

2
+

σ(x)

2
)− 4f(

x

2
)‖β ≤ φ(

x

2
,
x

2
, 0), (25)

and

‖Df(
x

4
+

σ(x)

4
,
x

4
+

σ(x)

4
, 0)‖β = ‖2f(x

2
+

σ(x)

2
)− 4f(

x

4
+

σ(x)

4
)‖β

≤ φ(
x

4
+

σ(x)

4
,
x

4
+

σ(x)

4
, 0) (26)



Generalized Hyeres–Ulam stability of a quadratic functional equation 1427

Now define Λ : M → M by

(Λh)(x) = 4
[
h(

x

2
)− 1

2
h(

x

4
+

σ(x)

4
)
]
.

Therefore, it follows by (25), (26), (23), (21) and (22) that for any x ∈ G,

‖f(x) − (Λf)(x)‖pβ = ‖f(x)− 4
[
f(

x

2
)− 1

2
f(

x

4
+

σ(x)

4
)
]‖pβ

≤ ‖f(x) + f(
x

2
+

σ(x)

2
)− 4f(

x

2
)‖pβ

+ ‖f(x
2
+

σ(x)

2
)− 2f(

x

4
+

σ(x)

4
)‖pβ

≤ φp(
x

2
,
x

2
, 0) +

1

2pβ
φp(

x

4
+

σ(x)

4
,
x

4
+

σ(x)

4
, 0)

≤ L

2.4pβ
φp(x, x, 0) +

1

2pβ
L

2.4pβ
2pβφp(x, x, 0))

=
1

4pβ
Lφp(x, x, 0).

This means that

d(Λf, f) ≤ 1

4pβ
L. (27)

Also Λ is a strictly contractive operator. In fact for given g, h ∈ M, if d(f, g) <
C, C ∈ [0,∞], then for all x ∈ G, ‖g(x) − h(x)‖pβ ≤ Cφ(x, x, 0), thus by (21),

(22) and definition of Λ,

‖(Λf)(x)− (Λg)x‖pβ = 4pβ‖g(x
2
)− 1

2
g(

x

4
+

σ(x)

4
)− h(

x

2
)− 1

2
h(

x

4
+

σ(x)

4
)‖pβ

≤ 4pβ‖g(x
2
)− h(

x

2
)‖pβ

+ 2pβ‖g(x
4
+

σ(x)

4
)− h(

x

4
+

σ(x)

4
)‖pβ

≤ 4pβCφp(
x

2
,
x

2
, 0) + 2pβCφp(

x

4
+

σ(x)

4
,
x

4
+

σ(x)

4
, 0)

≤ LCφp(x, x, 0).

This implies that d(Λf,Λg) ≤ Ld(g, h). Thus by Theorem 1, there exists a
unique function Q : G → X which is a fixed point of Λ in M∗ and Q =
limn→∞ Λn(f). But using mathematical induction one may obtain that

(Λnf)(x) = 22n
[
f(

x

2n
) + (

1

2n
− 1)f(

x

2n+1
+

σ(x)

2n+1
)
]
.

A similar argument to the proof of Theorem 2, shows that DQ(x, y, z) = 0,
x, y, z ∈ G, and by Theorem 2(c) and (27), we get

d(f,Q) ≤ 1

4pβ
L

1− L
.

This completes the proof. ¤
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Remark 1. Suppose σ(x) = x, so if for x, y, z ∈ G,
Df(x, y, z) = f(x+y+z)+f(x+y)+f(y+z)+f(x+z)−3(f(x)+f(y)+f(z)) = 0,

then Df(0, 0, 0) = f(0) = 0, and for any x, y ∈ G,
Df(x, y, 0) = 2

(
f(x+ y)− f(x)− f(y)

)
= 0.

Hence f satisfies in the Cauchy equation and so is an additive function. Now
with σ(x) = x, 0 < L < 1, and φ satisfying (9) and (10), suppose

‖Df(x, y, z)‖β ≤ φ(x, y, z)

so by Theorem 2, and the above assertion, there exists an additive mapping Q
such that for all x ∈ G

‖Q(x)− f(x)‖ ≤ 1

4β
p

√
L

1− L
φ(x, x, 0).

A similar argument can be concluded with the conditions of Theorem 3.

In the sequel we consider the pexiderized form of the quadratic functional
equation (5). For f, g : G → X we consider the following pexiderized quadratic
equation

f(x+y+z)+f(x+σ(y))+f(y+σ(z))+f(x+σ(z)) = g(x)+g(y)+g(z). (28)

with the involution σ. Let

Df,g(x, y, z) : = f(x+ y + z) + f(x+ σ(y)) + f(y + σ(z)) + f(x+ σ(z))

− g(x)− g(y)− g(z).

Also for φ : G × G × G → X, put

φ̃(x, y, z) =
(
φp(x+ y + z, 0, 0) + φp(x+ σ(y), 0, 0) + φp(y + σ(z), 0, 0)

+ φp(x+ σ(z), 0, 0) + 3pβφp(x, y, z) + φp(0, 0, 0)
) 1

p ,

and

ψ̃(x, y, z) =
(
φp(x, y, z) + φp(x, 0, 0) + φp(0, y, 0) + φp(0, 0, z) + 2pβφp(0, 0, 0)

) 1
p .

For studying the Hyer-Ulam stability of (28), we need the following lemma.

Lemma 1. Suppose f, g : G → X and φ : G×G×G → X are functions for which

‖Df,g(x, y, z)‖β ≤ φ(x, y, z), x, y, z ∈ G (29)

and φ satisfies (9) and (10), then for any x, y, z ∈ G,
‖Df (x, y, z) + 5f(0)‖β ≤ ψ̃(x, y, z), (30)

‖Dg(x, y, z) + 5g(0)‖β ≤ φ̃(x, y, z). (31)
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Proof. It is easy to see that

Df,g(x+ y + z, 0, 0) = 3f(x+ y + z)− g(x+ y + z) + f(0)− 2g(0), (32)

Df,g(x+ σ(y), 0, 0) = 3f(x+ σ(y))− g(x+ σ(y)) + f(0)− 2g(0), (33)

Df,g(y + σ(z), 0, 0) = 3f(y + σ(z))− g(y + σ(z)) + f(0)− 2g(0), (34)

Df,g(x+ σ(z), 0, 0) = 3f(x+ σ(z))− g(x+ σ(z)) + f(0)− 2g(0). (35)

So these relations and (29) and definition of ψ̃, imply that

‖Dg(x, y, z)− 5g(0)‖pβ
≤ ‖g(x+ y + z)− 3f(x+ y + z)− f(0) + 2g(0)‖pβ
+‖g(x+ σ(y))− 3f(x+ σ(y))− f(0) + 2g(0)‖pβ
+‖g(y + σ(z))− 3f(y + σ(z))− f(0) + 2g(0)‖pβ
+‖g(x+ σ(z))− 3f(x+ σ(z))− f(0)− 2g(0)‖pβ
+3pβ‖f(x+ y + z) + f(x+ σ(y)) + f(y + σ(z))

+f(x+ σ(z))− g(x)− g(y)− g(z)‖pβ + ‖4f(0)− 3g(0)‖pβ
≤ φp(x+ y + z, 0, 0) + φp(x+ σ(y), 0, 0) + φp(y + σ(z), 0, 0)

+φp(x+ σ(z), 0, 0) + 3pβφp(x, y, z) + φp(0, 0, 0)

= φ̃p(x, y, z).

This implies the inequality (42). The inequality (41) can be concluded similarly.
¤

Theorem 4. Let 0 < L < 1, 0 < β ≤ 1 and φ : G×G×G → [0,∞) be a mapping
for which

φ(2x, 2y, 2z) ≤ 4β
p

√
L

2
φ(x, y, z) (36)

φ(x+ σ(x), y + σ(y), z + σ(z)) ≤ 4β
p

√
L

2
φ(x, y, z) (37)

for all x, y, z ∈ G. Also let f, g : G → X be mappings with f(0) = g(0) = 0 and

‖Df,g(x, y, z)‖β ≤ φ(x, y, z), x, y, z ∈ G. (38)

Then there exists a unique function Q : G → X such that DQ(x, y, z) = 0 and

‖Q(x)− f(x)‖β ≤ 1

4β
1

p
√
1− L

φ̃(x, x, 0) (39)

‖3Q(x)− g(x)‖β ≤ 1

4β
1

p
√
1− L

ψ̃(x, x, 0) (40)

Proof. Lemma 1 and f(0) = g(0) = 0 imply that

‖Df (x, y, z)‖pβ ≤ ψ̃(x, y, z), (41)

‖Dg(x, y, z)‖pβ ≤ φ̃(x, y, z). (42)
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Using (36) and (37) one can easily see that

φ̃(2x, 2y, 2z) ≤ 4β
p

√
L

2
φ̃(x, y, z)

and

φ̃(x+ σ(x), y + σ(y), z + σ(z)) ≤ 4β
p

√
L

2
φ̃(x, y, z),

also

ψ̃(2x, 2y, 2z) ≤ 4β
p

√
L

2
ψ̃(x, y, z)

and

ψ̃(x+ σ(x), y + σ(y), z + σ(z)) ≤ 4β
p

√
L

2
ψ̃(x, y, z).

Now by Theorem 2, there exist unique functions Q1, Q2 : G → X such that
DQ1(x, y, z) = DQ2(x, y, z) = 0, for which

‖Q1(x)− f(x)‖β ≤ 1

4β
1

p
√
1− L

φ̃(x, x, 0)

and

‖Q2(x)− g(x)‖β ≤ 1

4β
1

p
√
1− L

ψ̃(x, x, 0).

It is enough to show that 3Q2 = Q1. By Theorem 2, with Λ as in the proof of
Theorem 2,

Q1(x) = limn→∞Λn(f)(x) and Q2(x) = limn→∞Λn(g)(x). (43)

On the other hand by (18), (38), (36) and (37) we have

‖3Λn(f)(x)− Λn(g)(x)‖pβ ≤ 1

22npβ
‖3f(2nx)− g(2nx)‖pβ

+
(2n − 1)pβ

22npβ
‖3f(2n−1(x+ σ(x)))− g(2n−1(x+ σ(x)))‖pβ

≤ 1

22npβ
φp(2nx, 0, 0) +

(2n − 1)pβ

22npβ
φp(2n−1(x+ σ(x)), 0, 0)

≤ 1

4npβ
(
4pβ

2
L)n(1 +

2(2n − 1)pβ

4pβL
)φp(x, 0, 0) → 0 as n → ∞.

Now (43) implies that 3Q2 = Q1. This completes the proof. ¤

As in Theorem 3, in a similar way, by applying Lemma 1, and the same
argument as in the proof of Theorem 4, we can state the following conclusion.

Theorem 5. Let 0 < L < 1, 0 < β ≤ 1 and φ : G × G × G → [0,∞) be a
mapping for which

φ(x, y, z) ≤ 1

4β
p

√
L

2
φ(2x, 2y, 2z) (44)

φ(x+ σ(x), y + σ(y), z + σ(z)) ≤ 2βφ(2x, 2y, 2z) (45)
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for all x, y, z ∈ G. Also let f, g : G → X be mappings with f(0) = g(0) = 0 and

‖Df,g(x, y, z)‖β ≤ φ(x, y, z), x, y, z ∈ G. (46)

Then there exists a unique function Q : G → X such that DQ(x, y, z) = 0 and

‖Q(x)− f(x)‖β ≤ 1

4β
p

√
L

1− L
φ̃(x, x, 0) (47)

‖3Q(x)− g(x)‖β ≤ 1

4β
p

√
L

1− L
ψ̃(x, x, 0). (48)

Remark 2. As a conclusion of Theorems 4 and 5, and 1, with σ(x) = x, one
may obtain that the function Q in Theorems 4 and 5 is additive.

Corollary 1. Suppose 0 < p < 1 and p+1
2 < β ≤ 1. Let E be a normed space

and let X be a complete (β, p)-normed space. If for some positive ε, functions
f, g : E → X satisfy

‖Df,g(x, y, z)‖β ≤ ε(‖x‖p + ‖y‖p + ‖z‖p) (49)

and ‖x + σ(x)‖p ≤ 2p‖x‖p, for all x ∈ E, then there exists a unique function
Q : E → X such that DQ(x, y, z) = 0, for all x, y, z ∈ E. Furthermore

‖f(x)−Q(x)‖β ≤ ε
p

√
2p2+1 + 2 + 2p.3pβ

4pβ − 2p2+1
‖x‖p (50)

‖g(x)− 3Q(x)‖β ≤ ε
p

√
2p2 + 2

4pβ − 2p2+1
‖x‖p (51)

Proof. Put φ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p), for all x, y, z ∈ E, and set L =
2p

2+1

4pβ . Then 0 < L < 1 and

φ(2x, 2y, 2z) = 4β
p

√
L

2
φ(x, y, z).

Moreover we have

φ(x+ σ(x), y + σ(y), z + σ(z)) ≤ 4β
p

√
L

2
φ(x, y, z).

According to Theorem 4, there exists a unique function Q : E → X such that
DQ(x, y, z) = 0, x, y, z ∈ E, and (50), (51) holds, for all x ∈ E. ¤

Corollary 2. For a fixed numbers q > 1 and ε > 0, let 0 < β < q−1
2 . Suppose

pq > 1E and X is are normed space and complete (β, p)-normed spaces, respec-
tively. Also let for f, g : E → X, Df,g(x, y, z) ≤ ε(‖x‖q + ‖y‖q + ‖z‖q), for all
x, y, z ∈ E, and ‖x + σ(x)‖p ≤ 2p+β‖x‖p, for all x ∈ E. Then there exists a
unique function Q : E → X such that DQ(x, y, z) = 0, x, y, z ∈ E and

‖f(x)−Q(x)‖β ≤ ε
p

√
2pq(1 + 2pβ) + 2 + 2p.3pβ

2pq−1 − 4pβ
‖x‖q (52)
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‖g(x)− 3Q(x)‖β ≤ ε p

√
2p + 2

2pq−1 − 4pβ
‖x‖q (53)

Proof. Set φ(x, y, z) = ε(‖x‖q + ‖y‖q + ‖z‖q), for all x, y, z ∈ E, and L = 4pβ

2pq−1 .
Then 0 < L < 1 and

φ(x, y, z) =
1

4β
p

√
L

2
φ(2x, 2y, 2z).

Moreover we have

φ(x+ σ(x), y + σ(y), z + σ(z)) ≤ 2βφ(2x, 2y, 2z).

According to Theorem 5, there exists a unique function Q : E → X such that
DQ(x, y, z) = 0, x, y, z ∈ E, and (52), (53) holds, for all x ∈ E. ¤
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