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Abstract

Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to
sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum pe-
nalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome
this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This
paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework.
The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum
distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are com-
pared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation
show that the proposed methods work well for bias and mean squared error. The methods are applied to Black-
stone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments
estimator, and existing MPLEs.

Keywords: annual maximum daily rainfall, Beta distribution, bootstrap-based selection, L-moments
estimation, penalty function, quantile estimation

1. Introduction

Generalized extreme value distribution (GEVD) has been used widely as a significant modelling tool
to make an inference of extreme events such as heavy rainfall, wind speed, snowfall, earthquake and
other related disciplines (Castillo et al., 2005; Coles 2001; Katz et al., 2002; Zhu et al., 2013). Sev-
eral estimation methods for GEVD parameters were developed in previous studies such as maximum
likelihood estimation (MLE) or the method of L-moments estimation (L-ME). It is also found that
MLE sometimes over-estimates the positive value of shape parameter & (rightly heavy tail case) in
a small sample size. Consequently, it causes large bias and variance of extreme upper quantiles. In
order to solve this problem, Coles and Dixon (1999) proposed a maximum penalized likelihood es-
timation (MPLE) that gives a penalty for a large value of & by considering an exponential penalty
function. Martins and Stedinger (2000) considered a Beta probability density function (pdf) which
can be treated as a prior for Bayesian approach.

The two hyper-parameters (HP) should be specified in both of Martins-Stedinger and Coles-Dixon
penalty (or prior) functions. They selected a specific value for the HP based on experimentation and
experience. Martins and Stedinger (2000) used a Beta(6, 9) pdf. This choice of prior restricts shape
parameter to a plausible range (—0.5 < & < 0.5) consistent with rainfall and flood flows observed
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worldwide (Huard et al., 2010). The actual variance of the generalized extreme value (GEV) random
variable is infinite when & > 0.5; in addition, the MLE of parameters is non-regular (asymptotic
optimality is no more guaranteed) when ¢ < —0.5. However, their selection of the HP in a Beta
distribution, which plays a very important role in this framework, depends on subjective experiences
and experiments that are not fully explained. Thus, Park (2005) introduced a Monte Carlo simulation-
based systematic way to select the HP of the Beta pdf. His recommendation is Beta(2.5, 2.5) pdf.

However, the selection of the HP are irrelevant to the present data. There might be no problem
if we treat the Beta pdf as a prior probability which was specified before the current data is given.
But, if we treat the Beta pdf as a penalty function, it might be desirable to select the HP using given
data because the data shows what HP to use. Thus, in this paper, we propose data-adaptive methods to
select the HP of a Beta pdf, based on the MLE of shape parameter £&. These methods are compared with
the existing approaches. The performance evaluations for GEVD are conducted through a simulation
study to illustrate that such a Beta penalty with optimally selected HP produces desirable quantile
estimates.

Section 2 describes the GEVD, estimations methods and penalty functions. The proposed methods
are presented in Section 3. Simulation study to evaluate the performance of the proposed methods is
given in Section 4. Real data examples with Blackstone river flood discharge rate and Korean heavy
rainfall are provided in Section 5. Discussion and conclusion are given in Section 6.

2. Generalized extreme value distribution and parameter estimation
The cumulative distribution function of the GEVD is as follows (Choi, 2015; Coles, 2001):

1+g(x_“)]_f}, if &0, Q2.1

(o

F(x;u,0,8) = exp {—

for 1 + é(x — w)/o > 0, where u, o > 0 and ¢ are location, scale and shape parameter, respectively.
The case for & = 0 in (2.1) is well known as the Gumbel distribution. By inverting (2.1), quantiles of
GEVD are given by

Xp=p— % [1 - (~log(p)) €], foré 0. 2.2)

Estimates of x,, are obtained after substituting the estimates of (u, o, €) into (2.2) for various p-values.

Regarding the range of &, it is reported that & usually lies between —0.5 and 0.5 in hydrological
practice. In addition, the GEVD has finite variance when ¢ < 0.5 and is regular when & > -0.5.
Thus ¢ is confined between —0.5 and 0.5 in Martins and Stedinger (2000) and Park (2005) while it is
extended to near 1.0 in Coles and Dixon (1999) (Figure 1).

2.1. Maximum likelihood estimation

Under the assumption that the observations xi, xz, ..., x, are independent variables having the GEVD,
the negative log-likelihood function of (i, 0, &) is

n

)

i=1

|+ E(xi — ) I+ E(xi — ) E’ (2.3)
o o

—l, o, €) :nln0'+(l + é);m

provided that 1 + &((x; —w)/o) > O fori = 1,...,n. The MLE of u,o and & can be obtained by
minimizing (2.3). We have to use a numerical optimization algorithm such as Newton type optimizer
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Figure 1: Penalty functions of Park, Martins-Stedinger, and Coles-Dixon.

since no explicit minimizer is available in minimizing (2.3). In this study, R package ‘ismev’ was
used to obtain the MLE (Coles, 2001).

2.2. Method of L-moments estimation

The L-moments were introduced by Hosking (1990) as a linear combination of expectations of order
statistics. The natural estimator of L-moments based on an observed sample of data is a linear com-
bination of the ordered data values. The " sample L-moments (/,) defined by Hosking (1990) are
unbiased estimators of the population L-moments.

The method of L-ME obtains parameter estimates by equating the first k sample L-moments to the
corresponding population quantities. The L-ME of GEVD are given as (Hosking et al., 1985; Zhu et
al., 2013):

ﬁ:ll—%{l—r(ué)}, (2.4)
A hé

77 (1-28)r(1+8) @
& = 7.8590c + 2.9554¢7, (2.6)

where ¢ = 2/(3 + 73) —log(2)/log(3), and 73 is the L-skewness defined as 73 = I3/, from the sample.
It is known that the L-ME works better than the MLE for small sample size. Moreover it is less
sensitive to outlier (Hosking and Wallis, 1997).

These L-moments and L-ME have been used widely in many research fields including meteorol-
ogy, civil engineering, and hydrology (for example, Busababodhin et al., 2016; Meshgi and Khalili,
2009; Murshed et al., 2014; Zhu et al., 2013). We used R package ‘lmom’ developed by Hosking
(2015) to calculate the sample L-moments and the L-ME of GEVD.
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2.3. Maximum penalized likelihood estimation

For the small sample size, the MLE sometimes gives poor performance and over-estimates the large
positive value of ¢ severely. Consequently it causes large bias and variance of extreme upper quantiles.
In order to solve this problem, Coles and Dixon (1999) and Martins and Stedinger (2000) proposed to
use penalty functions on the positive value of £. The penalized negative log-likelihood to be minimized
to obtain the MPLE is

Lpen(pt, 07, &) = = In(L(, 0, £)) + In(p(&)), 2.7)

where p(£) is a penalty function on &.
Coles and Dixon (1999) proposed the following penalty function;

1. if£<0,
p(€) = {exp {—/1(1%5 - 1) } if0<é<, (2.8)
0, ife> 1,

for non-negative values of @ and A. For the HP, Coles and Dixon (1999) suggested to use the com-
bination @ = 1 and 4 = 1 (Figure 1). For this function, we call it Coles-Dixon (CD) penalty as an
abbreviation. Martins and Stedinger (2000) proposed the following penalty function, a Beta(a, 8) pdf
on & between —0.5 and 0.5:

(0.5 +&)7'(0.5 - ¢!
B(a,B) ’

where B(a,8) = I'(@)['(8)/T'(a + B) is the beta function. They chose @ = 9 and § = 6 based on prior
hydrological information and experiments. For this function, we call it MS penalty as an abbreviation.
Park (2005) recommended to use @ = 2.5 and 8 = 2.5. Yoon et al. (2010) considered a full Bayesian
approach for the selection of HP. We denote the MPLEs using CD, MS, and Park penalties as the
MPLE-CD, MPLE-MS, and MPLE-P, respectively.

p&) =

(2.9)

3. Proposed approach
3.1. Selection of HP based on distance to ¢ estimator

In order to select the HP (a, 8) in the Beta pdf on & between —0.5 and 0.5 as in (2.9), we considered
the distance between the estimator (MLE for the first time) and MPLE of £. The proposed method is:

e Method SHM (selection of the HP based on the MLE):
Step 1. Compute the MLE of GEV parameters, and denote it £;.

Step 2. Find the (@, 8) which minimize the distance €y, —&(a, 8)|, where &(a, B) is the MPLE for given
(a, B). Denote such selected HP as (a*, 8*%).

The estimator is now obtained by the MPLE with a Beta(a*, 8*) penalty function. In this method,
we still respect the MLE from data but restrict & to be in [-0.5,0.5] and to follow a Beta distribution.
In minimizing the distance between MLE and MPLE of ¢ in Step 2, a grid search was applied by
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Figure 2: Distribution of selected values (a*,B*) from the selection of HP based on the maximum likelihood
estimator (SHM) method for ¢ = 0.4 and for sample sizes n = 30.

changing @ and 8 from 2 to 14 by increment 2. Then, a finer grid search is performed around the
coarsely found optimal set of (a*,8*). That is, the distance computation over the grids of (a* —
I, a* =05, a*, a*+05 a*+1)x(B* -1, B =05, B*, B* + 0.5, B* + 1) are tried. We refer this
method as a selection of the HP based on the MLE, or SHM in abbreviation.

Figure 2 shows distributions of selected values (a*, 8*) from the SHM method. It was calculated
for 1000 random samples generated from GEVD for ¢ = 0.4 and for sample sizes n = 30. The value
(2, 10) was selected the most often.

Figure 3 shows probability density plot of & obtained by the methods considered in this paper.
It was calculated for 1,000 random samples generated from GEVD for ¢ = 0.4 and for sample sizes
n = 30. It was drawn using the function “density” in the R program in which a Gaussian kernel density
estimation method is implemented. The legends ‘pbeta(2.5,2.5)’, ‘pbeta(6,9)’, and ‘proposed’ in this
figure stand for the MPLE with Park, Martins-Stedinger, and the SHM method, respectively. Figure
3 ahows that MPLE-P and MPLE-MS under-estimate severely. MLE has big variance. The proposed
methods work well and has smaller variance than MLE.

3.2. Bootstrap-based selection of the hyperparameters

We will obtain the sample distribution of £ by using bootstrap samples, and then find the (a, 8) which
minimize the distance between the distribution of Beta(a, ) and the sample distribution of £. For a
given data set, we obtain B MLEs of ¢ from B bootstrap samples. The relative frequency is then calcu-
lated for each category. Here the number (K) of categories and the width of category are automatically
selected by “hist” function in R software. Usually K is chosen between 10 and 15. Only the estimates
£in [-0.5,0.5] are used when computing relative frequencies. That means that the estimates outside
[-0.5,0.5] are eliminated; subsequently, the total number of the remaining estimates is then used as
a denominator in computing relative frequencies. This is done to make a set of relative frequencies
form a kind of probability mass function inside the interval [-0.5, 0.5].
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Figure 3: Probability density plot of & for & = 0.4 and for sample sizes n = 30. The vertical line represents for

the true value of ¢&. The legends Pbeta(2.5,2.5), Pbeta(6,9), and ‘proposed’ stand for the maximum penalized

likelihood estimation with Park, and Martins-Stedinger, and the SHM (selection of hyperparameters based on the
maximum likelihood estimator) method, respectively.

e Method BSHM (bootstrap based selection of the HP using the MLE):
After the above computation, the following measure of discrepancy is minimized with respect to

(@ B);
K

0@.p = [p(ew:a.8) - F(Ew)| - 3.1
k=1

where p(é(k); a,pf) is, as in (2.9), the pdf of Beta(a, 8) at the center point of kh category, and f (é(k)) is
the relative frequency of & at k”* category. A grid search that is the same as the algorithm in the above
subsection is used. Because of computational costs, we set B = 100. We call this method a bootstrap
based selection of the HP using the MLE, or BSHM in short.

3.3. Selection of the hyperparameters minimizing prediction squared error

As an analogy to the selection of the smoothing parameter, we consider the following prediction
squared error (pse);

1 n
pse(@.f) = ~ > [f(@.B) - oI (32)
i=1

where x(; is the i’ order statistic from the original data, and % (a,$) is the quantile estimate for
the plotting position p;, = (i — .35)/n, as recommended by Hosking et al. (1985) for the GEVD.
This is obtained by plugging the MPLE with HP (e, ) into the quantile function (2.2). The HP which
minimize pse(a, () are selected. A grid search that is the same as the algorithm in the above subsection
is used with B = 200. We call this method as a selection of the HP using the pse criterion, or SHPSE
in abbreviation. Table 1 provides a description on the abbreviated names of the estimation methods
considered in this paper.
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Table 1: Description on the abbreviated names of the estimation methods considered in this paper

Methods Description Details
SHM Selection of hyperparameters using the MLE Subsection 3.1
BSHM Bootstrap based selection of hyperparameters using the MLE Subsection 3.2
SHPSE Selection of hyperparameters minimizing prediction squared error Equation (3.2)
MPLE-P Maximum penalized likelihood estimation using Park’s penalty Beta(2.5,2.5) pdf
MPLE-MS Maximum penalized likelihood estimation using Martins-Stedinger’s penalty Beta(9, 6) pdf
MPLE-CD Maximum penalized likelihood estimation using Coles-Dixon’s penalty Equation (2.8)
L-ME Method of L-moments estimation Subsection 2.2
MLE Maximum likelihood estimation Subsection 2.1

pdf = probability density function.

Table 2: The bias of ¢ estimators obtained by proposed and other estimation methods as the true £ ranges from
—0.49 to 0.49 with sample size of 30

Methods -0.49 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49 Sum
SHM 0.031 -0.014 -0.021 -0.024 -0.021 -0.020 -0.013 -0.013 -0.014 -0.022 -0.070 0.265
BSHM 0.031 -0.019 -0.026 -0.027 -0.021 -0.017 -0.008 -0.006 -0.007 -0.022 -0.073 0.258
SHPSE 0.041 -0.005 -0.009 0.005 0.046 0.080 0.073 0.039 -0.056 -0.148 -0.238 0.740

MPLE-P 0.152 0.097 0.063 0.032 0.008 0.017 -0.039 -0.070 -0.103 -0.142 -0.197 0.921
MPLE-MS 0361 0293 0235 0.174 0.115 0.058 0.003 -0.059 -0.119 -0.182 -0.248 1.846
MPLE-CD -0.051 -0.051 -0.035 -0.03 -0.028 -0.036 -0.040 -0.054 -0.062 -0.073 -0.106 0.567
L-ME 0.002 -0.011 -0.002 -0.003 -0.007 -0.022 -0.023 -0.039 -0.046 -0.064 -0.096 0.316
MLE -0.051 -0.051 -0.034 -0.028 -0.021 -0.020 -0.012 -0.011 0.002 0.021 0.017 0.270

Sum is obtained by the summation of the absolute biases. Table 1 provides descriptions on the abbreviated names of methods.

4. Monte Carlo simulation

In order to evaluate the performance of the proposed method, we compared the proposed estimator to
the other estimators by Monte Carlo simulation study. For the comparison of accuracy, we calculated
the bias and the root mean squared error (RMSE) of ¢ estimators;

M

Biast©) = == ) (&-£). 1)

i=1

and

RMSE(¢) = 4.2)

We have generated M = 1,000 random samples from GEVD for sample sizes n = 30, 60 and for given
shape parameters & € (—0.5,0.5). Other parameters are fixed as location ¢ = 0 and scale o = 1,
because these parameters are location and scale equivariant.

Table 2 and Figure 4 show the results of the bias of £ estimates (Bias(£)). There are negative biases
both in the MLE for negative ¢ and in the L-ME for positive £&. The MPLE-P and MPLE-MS are good
only for near zero &, but are worst for £ far from zero. The sizes of biases for & = 0.4 are larger than
those for & = 0.2. Based on the summation of the absolute biases (sum), BSHM method works the
best and SHM and MLE work well. MPLE-MS is the worst in general. Table 3 and Figure 5 show
the results of the RMSE of ¢ estimates (RMSE(¢)). The MLE and L-ME work similarly while those
are not good for & far from zero. SHM and BSHM and methods work well for general &, specially
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Figure 4: The bias of ¢ estimators obtained by four estimation methods (MLE, L-ME, MPLE-MS, and SHM)
with sample size of 30. Description on the abbreviated names of methods is given in Table 1.

Table 3: The root mean squared error of ¢ estimators obtained by proposed and other estimation methods as the
true ¢ ranges from —0.49 to 0.49 with sample size of 30

Methods -049 -04 -0.3 -0.2 —-0.1 0 0.1 0.2 0.3 0.4 0.49 sum
SHM 0.080 0.098 0.135 0.145 0.157 0.175 0.178 0.173 0.174 0.141 0.139 1.595
BSHM 0.078 0.097 0.133 0.149 0.162 0.179 0.182 0.181 0.173 0.137 0.136 1.607
SHPSE 0.114  0.117 0.169 0215 0.267 0295 0.265 0.225 0200 0222 0.289 2.377
MPLE-P 0.1s8 0.122  0.114 0.106 0.112 0.115 0.132 0.138 0.158 0.178 0.227 1.561
MPLE-MS  0.366 0300 0.243 0.18 0.132 0.090 0.068 0.089 0.137 0.192 0.256 2.057
MPLE-CD 0.167 0.155 0.162 0.151 0.151 0.162 0.162 0.165 0.172 0.161 0.178 1.786
L-ME 0.159  0.151 0.150 0.138 0.140 0.153 0.162 0.167 0.18 0.183 0.211 1.798
MLE 0.167 0.155 0.164 0.154 0.160 0.177 0.182 0.186 0.200 0.203 0.213 1.960

Table 1 provides descriptions on the abbreviated names of methods.

for ¢ far from zero. Note that SHPSE work badly. MPLE-MS works well only for & between 0.0 and
0.3, but worst for & far from zero. The MPLE-P works well for & between —0.3 and 0.0, and is the
best in the sense of the summation of the RMSEs (sum). From the results based on both bias and
mean squared error criterion, we would conclude that the SHM and BSHM work better than the other
estimation methods.

5. Real data examples
5.1. Blackstone River data

We considered the data of the annual flood discharge rates of the Blackstone River at Woonsocket, RI,
USA, given in Pericchi and Rodriguez-Iturbe (1985), and Mudholkar and Hutson (1998). This data is
for a period of 37 years with unit of f3/s.

To judge the overall goodness-of-fit, we use the Kolmogorov-Smirnov (K-S) statistic and the
average scaled absolute error (ASAE) (Castillo et al., 2005),

Z |x(l) x(,)|

Xy ~ x(l)

ASAE = (5.1
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Figure 5: The root mean squared error (RMSE) of ¢ estimators obtained by four estimation methods (MLE,
L-ME, MPLE-MS, and SHM) with sample size of 30. Table 1 provides descriptions on the abbreviated names.

Table 4: Result of the analysis and comparison of the estimation methods for the Blackstone river data

[ s & ASAE CM CIU CIL CI range
SHM 4432.9 1866.2 0.268 0.027 0.126 0.472 0.100 0.372
BSHM 4474.1 1845.9 0.203 0.029 0.114 0.326 0.086 0.240
SHPSE 4469.0 1846.8 0.210 0.029 0.115 0.368 0.074 0.294
MPLE-P 4453.1 1851.4 0.232 0.028 0.118 0.411 0.084 0.327
MPLE-MS 4467.8 1846.3 0.211 0.029 0.115 0.350 0.082 0.268
MPLE-CD 4441.5 1857.2 0.250 0.027 0.122 0.481 0.087 0.394
L-ME 4256.8 1441.3 0.479 0.017 0.109 0.616 —-0.046 0.662
MLE 4430.6 1867.3 0.269 0.027 0.127 0.533 0.097 0.436

Estimates of u, o, and ¢, ASAE, CM, CIU, and CIL, and the range of CI. Table 1 provides descriptions on the abbreviated
names of methods. ASAE = average scaled absolute error; CM = Cramer-von Mises Statistic; CIU = upper bounds of 95%
confidence interval of &; CIL = lower bounds of 95% confidence interval of £.

where x; are the ascendingly ordered observations, and X; is obtained from the quantile function
(2.2) with the estimates plugged in the equation for the plotting position p;,, = (i — 0.35)/n, as
recommended by Hosking and Wallis (1997) for the GEVD.

Table 4 provides the estimation of u, o, and ¢ along with ASAE, Cramer—von Mises statistic (CM),
upper and lower bounds of 95% confidence interval (CIU and CIL) of ¢), and the range of confidence
interval (CI range). To compute the confidence intervals of &, the profile likelihood approach was
used for MLE based methods, while the bootstrap (B = 1,000) method was used for L-ME. The
profile likelihood of GEV for & is defined as (Coles, 2001)

Ly(&0:%) = Ej}ng, 7,603 X) (5.2)

where L(-) is the likelihood function for given data x = xi,..., x,. The L-ME works well for criteria
of ASAE and CM, while BSHM works well for CM criterion and CI range. Note that the CI range of
L-ME is the worst.
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Table 5: Estimates of shape parameter £, ASAE, and K-S statistic for the annual maximum of daily rainfall data
in twelve Korean sites, for five estimation methods

Location MPLE-P MPLE-MS SHM (a*,B%) BSHM (a*,B%) MLE
Dacgwallyeong & 0.221 0.196 0.285 0.165 0.283
W= 42 ASAE 0.017 0.017 0.016 4,12) 0.017 (10, 14) 0.016
K-S 0.064 0.061 0.072 0.062 0.072
Dacjeon ¢ 0.199 0.176 0.311 0.240 0.304
w4 ASAE 0.026 0.025 0.031 4, 14) 0.027 (6, 14) 0.031
K-S 0.096 0.098 0.083 0.092 0.084
Pohang & 0.233 0.212 0.264 0.213 0.267
n= 64 ASAE 0.017 0.017 0.017 2,4) 0.018 (8, 14) 0.017
K-S 0.073 0.072 0.073 0.072 0.073
Gunsan & 0.228 0.201 0.286 0.286 0.286
n = 45 ASAE 0.034 0.034 0.033 4,12) 0.033 4, 12) 0.033
K-S 0.108 0.104 0.116 0.116 0.116
Wando & 0.232 0.199 0.312 0.295 0.313
n=dd ASAE 0.033 0.034 0.034 4, 14) 0.034 4,12) 0.034
K-S 0.103 0.109 0.091 0.094 0.091
Seogwipo & 0.206 0.186 0.250 0.234 0.250
n=52 ASAE 0.026 0.026 0.027 2,4) 0.027 6, 14) 0.027
K-S 0.086 0.089 0.082 0.084 0.082
Buyeo & 0.248 0.215 0.314 0.200 0.319
ne 4l ASAE 0.020 0.020 0.018 4, 14) 0.021 8, 12) 0.019
K-S 0.087 0.082 0.095 0.080 0.096
Imsil & 0.214 0.187 0.287 0.287 0.292
n=dd ASAE 0.035 0.035 0.038 4,12) 0.038 4,12) 0.039
K-S 0.089 0.092 0.081 0.081 0.082
Jeongeup & 0.224 0.202 0.263 0.204 0.267
n = A3 ASAE 0.021 0.022 0.019 2,4) 0.023 (8, 14) 0.019
K-S 0.083 0.084 0.082 0.084 0.082
Haenam & 0.292 0.240 0.401 0.338 0.405
w42 ASAE 0.021 0.026 0.012 (2, 10) 0.017 4, 14) 0.012
K-S 0.068 0.077 0.061 0.065 0.060
Goheung & 0.233 0.203 0.309 0.250 0.301
= dl ASAE 0.020 0.023 0.013 4, 14) 0.019 (6, 14) 0.014
K-S 0.081 0.083 0.079 0.080 0.079
Yeongdeok & 0.269 0.222 0.377 0411 0.384
= 40 ASAE 0.024 0.028 0.023 2,98) 0.025 2,12) 0.023
K-S 0.095 0.098 0.085 0.082 0.084
No. of the best ASAE 4 4 8 1 6
No. of the best K-S 0 3 6 4 5

The selected values (o*, 8*) from SHM and BSHM are provided. Table 1 provides descriptions on the abbreviated names
of methods. ASAE = average scaled absolute error; K-S = Kolmogorov-Smirnov.

5.2. Korean heavy rainfall data

In this section, we compared the performance of the proposed method with existing MPLEs using
Korean heavy rainfall data. Annual daily maximum precipitation (unit: mm) record are considered
for 75 weather stations which has at least 20 years observation (Korea Meteorological Administration,
2016). The stations with relatively large positive MLE value of & (> 0.25) are selected. Table 5 shows
the 12 stations.

The estimates of £, ASAE, and K-S statistic for various methods are given in Table 5 for the 12
stations. The selected values (a*,8*) from SHM and BSHM are provided. Based on the number of
the best at the bottom of Table 5, the SHM method works best compared to other methods.
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6. Discussion

In this paper, we restrict the range of shape parameter to be in (-0.5,0.5) because the variance of
GEV random variable is infinite when & > 0.5 and the MLE of parameters is non-regular (asymptotic
optimality is no more guaranteed) when ¢ < —0.5. Therefore, our concern was concentrated on Beta
pdf only. One can release this restriction to (—1.0, 1.0). For this case, one can use the Coles-Dixon
(CD) penalty function (2.8). Based on our experimental experience on the CD penalty function, the
HP @ = 1,4 = 1 work well. If a data-adaptive selection of HP (a, 1) in CD penalty function is
recommended, one can consider a criterion like a pse(e, 4) similar as in (3.2) to choose the best @ and
A from the data.

In Step 2 of the SHM method, one can consider refining the grid search using the increment 0.5 or
0.2. That may be able to find the HP that makes the density function very narrow and concentrate to
the MLE, so that the MPLE be near the MLE. However, to our experiments showed that refining the
grid did not improve the results obtained using the coarse grid as reported in this paper.

One can consider a criterion with the help of the method of L-ME. For example, the distance
between population L-moments (calculated from the MPLE) and sample L-moments, i.e., |13 — 3]
can be used to select the HP, where 73 and #; are population L-skewness and sample L-skewness,
respectively. The HP minimizing the above distance is then selected. We expect this MPLE, guided
by L-ME, to work well because L-ME works better than the MLE for small sample size. It is a topic
for future research.

We tried the following bootstrap based criterion, using the pse as in Efron and Tibshirani (1993);

n

pse’(a, B) = % > s @B - xo ©6.1)

i=1

where Xi; (1, v) is the same as the above but is obtained from the MPLE for a bootstrap sample x;,
i=1,2,...,n. Averaging this quantity pse*(u, v) over B bootstrap samples provides an estimate of the
expected prediction squared error. We denote this average by pse(u, v). The HP minimizing pse(u, v)
can be selected; however, the disadvantage of this bootstrap approach was not reported it in this paper
because it a computational cost, and it did not work well in our brief simulation study.

7. Conclusion

A data adaptive method to select the HP of Beta pdf on the shape parameter of GEVD is presented in
a MPLE framework that enables the data to tell us what HP to use. For given data, the optimal HP
is obtained from the minimum distance between the MLE and MPLE. The performance evaluation
experiments for GEVDs by Monte Carlo simulation show that the proposed estimators often work
well. Blackstone river data and Korean heavy rainfall data are fitted to illustrate the usefulness of the
proposed methods. Our recommendation is to use the SHM method among some estimations consid-
ered in this study. The details of the SHM are described in Subsection 3.1. A computer program for
the proposed methods developed using R software is available upon request from the corresponding
author.
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