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REGIONS OF VARIABILITY FOR GENERALIZED
α-CONVEX AND β-STARLIKE FUNCTIONS,

AND THEIR EXTREME POINTS

Shaolin Chen and Aiwu Huang

Abstract. Suppose that n is a positive integer. For any real number α
(β resp.) with α < 1 (β > 1 resp.), let K〈n〉(α) (K〈n〉(β) resp.) be the
class of analytic functions in the unit disk D with f(0) = f ′(0) = · · · =

f (n−1)(0) = f (n)(0)−1 = 0, Re(
zf(n+1)(z)

f(n)(z)
+1) > α (Re(

zf(n+1)(z)

f(n)(z)
+1) <

β resp.) in D, and for any λ ∈ D, let K〈n〉(α, λ) (K〈n〉(β, λ) resp.) denote

a subclass of K〈n〉(α) (K〈n〉(β) resp.) whose elements satisfy some con-
dition about derivatives. For any fixed z0 ∈ D, we shall determine the two
regions of variability V 〈n〉(z0, α) (V 〈n〉(z0, β) resp.) and V 〈n〉(z0, α, λ)

(V 〈n〉(z0, β, λ) resp.). Also we shall determine the extreme points of the

families of analytic functions which satisfy f(D) ⊂ V 〈n〉(z0, α) (f(D) ⊂
V 〈n〉(z0, β) resp.) when f ranges over the classes K〈n〉(α) (K〈n〉(β) resp.)

and K〈n〉(α, λ) (K〈n〉(β, λ) resp.), respectively.

1. Introduction and preliminaries

We denote the class of analytic functions in the unit disk D = {z ∈ C :
|z| < 1} by H(D), and we think of H(D) as a topological vector space endowed
with the topology of uniform convergence over compact subsets of D. We let
K〈n〉(α) (K〈n〉(β) resp.), where α < 1 (β > 1 resp.), denote the set of analytic
functions f ∈ H(D) which are generalized convex of order α in D (generalized
β-starlike functions in D resp.). We recall that f ∈ K〈n〉(α) ( f ∈ K〈n〉(β)
resp.) if and only if f(0) = f ′(0) = · · · = f (n−1)(0) = f (n)(0) − 1 = 0 and
Re(P 〈n〉f (z)) > α (Re(P 〈n〉f (z)) < β resp.), where

P
〈n〉
f (z) =

zf (n+1)(z)
f (n)(z)

+ 1 (z ∈ D)
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and “Re” denotes the real part.
Let S∗n denote the class of univalent starlike functions in D with f(0) =

f ′(0) = · · · = f (n−1)(0) = f (n)(0)− 1 = 0, where f (n−1) is univalent.
We recall that K〈n〉(β) ⊂ S∗n for β = 3

2 (See [9]). It is well known that if
− 1

2 ≤ α < 1 and f ∈ K〈n〉(α), then f (n−1) is univalent (cf. [4]).
For f ∈ K〈n〉(α) (f ∈ K〈n〉(β) resp.), we denote by log f (n) the single-

valued branch of the logarithm of f (n) with log f (n)(0) = 0. Using the well
known Herglotz representation for analytic functions with positive real part
in D, we know that if f ∈ K〈n〉(α), then there exists a unique positive unit
measure µ on (−π, π] such that

zf (n+1)(z)
f (n)

+ 1 = (1− α)
∫ π

−π

1 + ze−it

1− ze−it
dµ(t) + α.

Hence

(1.1) log f (n)(z) = 2(1− α)
∫ π

−π

log
1

1− ze−it
dµ(t).

It follows that for each fixed z0 ∈ D the region of variability

V 〈n〉(z0, α) = {log f (n)(z0) : f ∈ K〈n〉(α)}
coincides with the set

(1.2) {−2(1− α) log(1− z) : |z| ≤ |z0|}.
Similarly, if f ∈ K〈n〉(β), then

zf (n+1)(z)
f (n)

+ 1 = β − (β − 1)
∫ π

−π

1 + ze−it

1− ze−it
dµ(t).

Hence

log f (n)(z) = 2(β − 1)
∫ π

−π

log(1− ze−it)dµ(t).

And so for each fixed z0 ∈ D, the region of variability

V 〈n〉(z0, β) = {log f (n)(z0) : f ∈ K〈n〉(β)}
coincides with the set

{2(β − 1) log(1− z) : |z| ≤ |z0|}.
Let B0 be the class of analytic functions ω in D such that |ω(z)| ≤ 1 in D

and ω(0) = 0. We see that if f ∈ K〈n〉(α), then

(1.3) ωf (z) =
P
〈n〉
f (z)− 1

P
〈n〉
f (z) + 1− 2α

∈ B0.
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If f ∈ K〈n〉(β), then

(1.4) ωf (z) =
P
〈n〉
f (z)− 1

P
〈n〉
f (z)− 2β + 1

∈ B0;

and conversely.
Schwarz Lemma implies that if f ∈ K〈n〉(α), then

|f (n+1)(0)| = |2(1− α)ω′f (0)| ≤ 2(1− α).

If f ∈ K〈n〉(β), then

|f (n+1)(0)| = |2(1− β)ω′f (0)| ≤ 2(β − 1).

For λ ∈ D = {z ∈ C : |z| ≤ 1} and z0 ∈ D, we introduce the following six
notations.

K〈n〉(α, λ) = {f ∈ K〈n〉(α) : f (n+1)(0) = 2(1− α)λ},

K〈n〉(β, λ) = {f ∈ K〈n〉(β) : f (n+1)(0) = 2(1− β)λ},
V 〈n〉(z0, α, λ) = {log f (n)(z0) : f ∈ K〈n〉(α, λ)},
V 〈n〉(z0, β, λ) = {log f (n)(z0) : f ∈ K〈n〉(β, λ)}

and
zα = {P 〈n〉f (z) : Re(P 〈n〉f (z)) > α, where α < 1},

zβ = {P 〈n〉f (z) : Re(P 〈n〉f (z)) < β, where β > 1}.
Herglotz formula shows that the extreme points of zα and zβ are precisely

the functions

f(z) = (1− α)
eiθ + z

eiθ − z
+ α

and

f(z) = β − (β − 1)
eiθ + z

eiθ − z
,

respectively.
Recently, the regions of variability for convex functions, functions of bounded

derivative, and spirallike functions etc have been discussed by Ponnusamy, Va-
sudevarao, and Yanagihara. See [10, 11, 14] for the details.

The main aim of this paper is to determine the sets V 〈n〉(z0, α), V 〈n〉(z0, α,
λ), V 〈n〉(z0, β), V 〈n〉(z0, β, λ) and the extreme points of the families of analytic
functions which satisfy f(D) ⊂ V 〈n〉(z0, α) or f(D) ⊂ V 〈n〉(z0, β), respectively.
Our main results are Theorems 2.2, 2.4, 2.6, 2.7, 2.8 and 2.9, where Theorems
2.2 and 2.4 are generalizations of the corresponding results in [10, 14]. They
will be proved in Section 3.
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2. Basic properties and main results

For our presentation, we need some more preparation. Let S∗ = S∗1 , i.e.,
the class of analytic functions f in D with f(0) = f ′(0)− 1 = 0 which map D
conformally onto a starlike domain (with respect to the origin). Each function
f ∈ S∗ is called starlike (univalent) in D and the function f ∈ S∗ is charac-
terized by the analytic condition Re(zf ′(z)/f(z)) > 0 in D (cf. [2, 3]). For a
positive integer p, let (S∗)p = {f = fp

0 : f0 ∈ S∗}. Now we recall the following
result which is from [3].

Lemma 2.1. Let f be an analytic function in D with f(z) = zp + · · · . If for
any z ∈ D, Re(1 + zf ′′(z)

f ′(z) ) > 0, then f ∈ (S∗)p.

We shall introduce some basic properties of V 〈n〉(z0, α), V 〈n〉(z0, α, λ), V 〈n〉

(z0, β) and V 〈n〉(z0, β, λ). Since the two sets V 〈n〉(z0, α), V 〈n〉(z0, α, λ) and the
two sets V 〈n〉(z0, β), V 〈n〉(z0, β, λ) have the similar corresponding properties,
in the following, we only list down some basic properties of V 〈n〉(z0, α) and
V 〈n〉(z0, α, λ).

(I) V 〈n〉(z0, α, λ) ⊂ V 〈n〉(z0, α).

(II) The sets V 〈n〉(z0, α) and V 〈n〉(z0, α, λ) are compact.
This statement follows from (1.2) and the fact that both K〈n〉(α) and K〈n〉

(α, λ) are closed in H(D).

(III) The sets V 〈n〉(z0, α) and V 〈n〉(z0, α, λ) are convex.
Indeed, if f0, f1 ∈ K〈n〉(α) and 0 ≤ t ≤ 1, then the function

ft(z) =
∫ z

0

∫ ζn

0

∫ ζn−1

0

· · ·
∫ ζ2

0

exp{ (1− t) log f
(n)
0 (ζ1)

+ t log f
(n)
1 (ζ1)}dζ1dζ2 · · · dζn−1dζn

belongs to K〈n〉(α). Since log f
(n)
t (z0) = (1− t) log f

(n)
0 (z0)+ t log f

(n)
1 (z0), the

convexity of V 〈n〉(z0, α) follows.
Similar reasoning shows that V 〈n〉(z0, α, λ) is also convex.

(IV) If |λ| = 1 or z0 = 0, then V 〈n〉(z0, α, λ) consists of only one point which
is

−2(1− α) log(1− λz0).

If |λ| < 1 and z0 6= 0, then

(2.1) −2(1− α) log(1− λz0)

is an interior point of the set V 〈n〉(z0, α, λ).
Indeed, if |λ| = |ω′f (0)| = 1, then it follows from Schwarz Lemma that

ωf (z) = λz, which implies that P
〈n〉
f (z) = 1+(1−2α)λz

1−λz and log f (n)(z) = −2(1−
α) log(1− λz). This also trivially holds for the case z0 = 0.
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For λ ∈ D and a ∈ D , let δ(z, λ) = z+λ
1+λz

and
(2.2)

F〈n〉,a,λ(z)

=
∫ z

0

{∫ ζn+1

0

∫ ζn

0

· · ·
∫ ζ3

0

exp

{∫ ζ2

0

2(1− α)δ(aζ1, λ)
1− δ(aζ1, λ)ζ1

dζ1

}
dζ2 · · · dζn

}
dζn+1

for z ∈ D.
Then, obviously,

F〈n〉,a,λ ∈ K〈n〉(α, λ)

and

(2.3) ωF〈n〉,a,λ
(z) = zδ(az, λ).

(V) The mapping D 3 a 7→ log F
(n)
〈n〉,a,λ(z0) is a non-constant analytic func-

tion of a for any fixed z0 ∈ D\{0} and λ ∈ D.

Let

h(z) =
1

(1− α)(1− |λ|2)
∂

∂a
{log F

(n)
〈n〉,a,λ(z)}a=0

= 2
∫ z

0

ζ

(1− λζ)2
dζ = z2 + · · · .

Then it is easy to see that zh′′(z)
h′(z) +1 = 2

1−zλ and Re{ zh′′(z)
h′(z) +1} > 0 for z ∈ D.

By Lemma 2.1, there exists a function h0 ∈ S∗ with h = h2
0. The univalence

of h0 and h0(0) = 0 imply that h(z0) 6= 0 for z0 ∈ D\{0}. Consequently, the
mapping D 3 a 7→ log F

(n)
〈n〉,a,λ(z0) is a non-constant analytic function of a.

Property (V ) is proved.
It follows from Property (V) that the mapping in (V) is an open mapping.

Hence V 〈n〉(z0, α, λ) contains the open set {log F
(n)
〈n〉,a,λ(z0) : |a| < 1}. In par-

ticular,
log F

(n)
〈n〉,0,λ(z0) = −2(1− α) log(1− z0λ)

is an interior point of the set {log F
(n)
〈n〉,a,λ(z0) : a ∈ D} ⊂ V 〈n〉(z0, α, λ). Up to

now, we finish the proof of Property (IV).
Finally, since V 〈n〉(z0, α, λ) is a compact convex subset of C and has nonem-

pty interior, we see that the boundary ∂V 〈n〉(z0, α, λ) of V 〈n〉(z0, α, λ) is a
Jordan curve and V 〈n〉(z0, α, λ) is the union of ∂V 〈n〉(z0, α, λ) and its inner
domain.

(VI) V 〈n〉(z0e
iθ, α, λ) = V 〈n〉(z0, α, eiθλ) for θ ∈ R.

This is a consequence of the fact that e−inθf(eiθz) ∈ K〈n〉(α, λeiθ) if and
only if f ∈ K〈n〉(α, λ).

The following are our main results.
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Theorem 2.2. For 0 ≤ λ < 1 and z0 ∈ D\{0}, the boundary ∂V 〈n〉(z0, α, λ)
is the Jordan curve given by

(−π, π] 3 θ 7→ log F
(n)

〈n〉,eiθ,λ
(z0) =

∫ z0

0

2(1− α)δ(eiθζ, λ)
1− δ(eiθζ, λ)ζ

dζ.

If log f (n)(z0) = log F
(n)

〈n〉,eiθ,λ
(z0) for some f ∈ K〈n〉(α, λ) and θ ∈ (−π, π],

then f = F〈n〉,eiθ,λ.

Remark 2.3. When α = 0, Theorem 2.2 coincides with Theorem 1.1 in [14],
and when α = − 1

2 , Theorem 2.2 coincides with Theorem 2.8 in [10].

Theorem 2.4. For 0 ≤ λ < 1 and z0 ∈ D\{0}, the boundary ∂V 〈n〉(z0, β, λ)
is the Jordan curve given by

(−π, π] 3 θ 7→ log G
(n)

〈n〉,eiθ,λ
(z0) =

∫ z0

0

2(β − 1)δ(eiθζ, λ)
δ(eiθζ, λ)ζ − 1

dζ,

where
G〈n〉,a,λ(z)

=
∫ z

0

{∫ ζn+1

0

∫ ζn

0

· · ·
∫ ζ3

0

exp

{∫ ζ2

0

2(β − 1)δ(aζ1, λ)
δ(aζ1, λ)ζ1 − 1

dζ1

}
dζ2 · · · dζn

}
dζn+1

for z ∈ D.

If log f (n)(z0) = log G
(n)

〈n〉,eiθ,λ
(z0) for some f ∈ K〈n〉(β, λ) and θ ∈ (−π, π],

then f = G〈n〉,eiθ,λ.

Remark 2.5. When β = 3
2 , Theorem 2.4 coincides with Theorem 2.6 in [10].

As in [12], a proper domain G of C is called a uniform domain provided
there exists a constant c (> 0) such that each pair of points z1, z2 ∈ D can be
joined by a rectifiable arc γ ⊂ D for which

l(γ) ≤ c|z1 − z2|
and

min
j=1,2

l(γ[zj , z]) ≤ c dist(z, ∂D)

for all z ∈ γ. Here l(γ) denotes the Euclidean length of γ, γ(zj , z) the part of γ
between zj and z, and dist(z, ∂D) the Euclidean distance from z to ∂D which
is the boundary of D.

The following two results easily follow from Properties (II), (III) as above
and the well known fact that any bounded and convex proper domain of C is
uniform (cf. [13]).

Theorem 2.6. For z0 ∈ D\{0}, the domains

V 〈n〉(z0, α)\∂V 〈n〉(z0, α)
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and
V 〈n〉(z0, α, λ)\∂V 〈n〉(z0, α, λ)

are uniform.

Theorem 2.7. For z0 ∈ D\{0}, the domains

V 〈n〉(z0, β)\∂V 〈n〉(z0, β)

and
V 〈n〉(z0, β, λ)\∂V 〈n〉(z0, β, λ)

are uniform.

Theorem 2.8. Let z∗α denote the set of analytic functions in D so that f(D) ⊂
V 〈n〉(z0, α) and f(0) = 0. Then a function f in D is an extreme point of z∗α if
and only if f ∈ z∗α and

∫ 2π

0
log λ(θ)dθ = −∞, where λ(θ) denotes the distance

between f(eiθ)(= limr→1 f(reiθ)) and ∂V 〈n〉(z0, α).

Theorem 2.9. Let z∗β denote the set of analytic functions in D so that f(D) ⊂
V 〈n〉(z0, β) and f(0) = 0. Then a function f in D is an extreme point of z∗β if

and only if f ∈ z∗β and
∫ 2π

0
log λ(θ)dθ = −∞, where λ(θ) denotes the distance

between f(eiθ)(= limr→1 f(reiθ)) and ∂V 〈n〉(z0, β).

As a simple application of Theorems 2.8 and 2.9, we see that if

fα(z) = 2(1− α) log
1

1− z|z0|e−iθ

and
fβ(z) = 2(β − 1) log(1− z|z0|e−iθ),

then fα(z) and fβ(z) are extreme points of z∗α and z∗β , respectively.

3. Proofs of the main results

It is enough to prove Theorems 2.2 and 2.8 since the proofs of Theorems 2.3
and 2.9 are similar.

We start with the following proposition which plays a key role in the proof
of Theorem 2.2.

Proposition 3.1. For any f ∈ K〈n〉(α, λ), we know that for any z ∈ D,

(3.1)
∣∣∣∣
f (n+1)(z)
f (n)(z)

− c(z, λ)
∣∣∣∣ ≤ r(z, λ) (z ∈ D),

where

c(z, λ) =
2(1− α){λ(1− |z|2) + z(|z|2 − λ2)}

(1− |z|2)(1− λ(z + z) + |z|2)
and

r(z, λ) =
2(1− α)(1− λ2)|z|

(1− |z|2)(1− λ(z + z) + |z|2) .
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For each z ∈ D\{0}, the equality sign in (3.1) holds if and only if f =
F〈n〉,eiθ,λ for some θ ∈ R.

Proof. For any f ∈ K〈n〉(α, λ), let ωf ∈ B0 be as in (1.3). Then ω′f (0) = λ. It
follows from Schwarz Lemma (see for example [2] or [6, 7, 8]) that

(3.2)

∣∣∣∣∣
ωf (z)

z − λ

1− λωf (z)
z

∣∣∣∣∣ ≤ |z|.

From (1.3), the inequality (3.2) is equivalent to

(3.3)

∣∣∣∣∣∣

f(n+1)(z)
f(n)(z)

−A(z, λ)
f(n+1)(z)
f(n)(z)

+ B(z, λ)

∣∣∣∣∣∣
≤ |z||T (z, λ)|,

where

(3.4) A(z, λ) =
2(1− α)λ

1− λz
, B(z, λ) =

2(1− α)
z − λ

and T (z, λ) =
z − λ

1− zλ
.

We can see that the inequality (3.3) is equivalent to

(3.5)

∣∣∣∣
f (n+1)(z)
f (n)(z)

− [A(z, λ) + |z|2|T (z, λ)|2B(z, λ)]
1− |z|2|T (z, λ)|2

∣∣∣∣

≤ |z||T (z, λ)||A(z, λ) + B(z, λ)|
1− |z|2|T (z, λ)|2 .

It follows from (3.4) that

1− |z|2|T (z, λ)|2 =
(1− |z|2)(1 + |z|2 − 2λRe(z))

|1− λz|2 ,

A(z, λ) + B(z, λ) =
2(1− λ2)(1− α)
(1− λz)(z − λ)

and

A(z, λ) + |z|2|T (z, λ)|2B(z, λ) =
2(1− α){λ(1− |z|2) + z(|z|2 − λ2)}

|1− λz|2 .

Then we see that

A(z, λ) + |z|2|T (z, λ)|2B(z, λ)
1− |z|2|T (z, λ)|2 = c(z, λ)

and

|z||T (z, λ)||A(z, λ) + B(z, λ)|
1− |z|2|T (z, λ)|2 = r(z, λ).

By (3.5), the inequality (3.1) follows.
It is easy to see that the equality sign occurs for any z ∈ D\{0} in (3.1) if

f = F〈n〉,eiθ,λ for some θ ∈ R. Conversely, if the equality sign in (3.1) occurs
for some z ∈ D\{0}, then the equality sign must hold in (3.2). Then Schwarz
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Lemma shows that there exists θ ∈ R such that ωf (z) = zδ(eiθz, λ) for all
z ∈ D. This implies that f = F〈n〉,eiθ,λ. ¤

Corollary 3.2. Let γ : t 7−→ z(t) (0 ≤ t ≤ 1) be a C1-curve in D with z(0) = 0
and z(1) = z0. Then we have

V 〈n〉(z0, α, λ) ⊂ D(C(λ, γ), R(λ, γ)) , {w ∈ C : |w − C(λ, γ)| ≤ R(λ, γ)},
where C(λ, γ) =

∫ 1

0
c(z(t), λ)z′(t)dt and R(λ, γ) =

∫ 1

0
r(z(t), λ)|z′(t)|dt.

Proof. For any f ∈ K〈n〉(α, λ), it follows from Proposition 3.1 that

| log f (n)(z0)− C(λ, γ)| =
∣∣∣∣
∫ 1

0

{
f (n+1)(z(t))
f (n)(z(t))

− c(z(t), λ)
}

z′(t)dt

∣∣∣∣

≤
∫ 1

0

∣∣∣∣
f (n+1)(z(t))
f (n)(z(t))

− c(z(t), λ)
∣∣∣∣ |z′(t)|dt

≤
∫ 1

0

r(z(t), λ)|z′(t)|dt = R(λ, γ).

The proof is complete. ¤
We recall the following result from [10], which is useful for the proof of

Proposition 3.4.

Lemma 3.3. For θ ∈ R and λ ∈ [0, 1], the function

G(z) =
∫ z

0

eiθζ

{1 + λ(eiθ − 1)ζ − eiθζ2}2 dζ (z ∈ D)

has a double zero at the origin and no zeros elsewhere in D.
Furthermore, there exists a starlike univalent function G0 in D such that

G = 2−1eiθG2
0 and G0(0) = G′0(0)− 1 = 0.

Proposition 3.4. Let z0 ∈ D\{0}. Then for any θ ∈ (−π, π], we have
log F

(n)

〈n〉,eiθ,λ
(z0) ∈ ∂V 〈n〉(z0, α, λ).

Furthermore, if log f (n)(z0) = log F
(n)

〈n〉,eiθ,λ
(z0) for some f ∈ K〈n〉(α, λ) and

θ ∈ (−π, π], then f = F〈n〉,eiθ,λ.

Proof. From (2.2), we have

F
(n+1)
〈n〉,a,λ(z)

F
(n)
〈n〉,a,λ(z)

=
2(1− α)δ(az, λ)

1− δ(az, λ)

=
2(1− α)(λ + az)

1 + λ(a− 1)z − az2
.

It follows from (3.4) that

F
(n+1)
〈n〉,a,λ(z)

F
(n)
〈n〉,a,λ(z)

−A(z, λ) =
(1− λ2)az2(1− α)

(1− zλ)(1 + λ(a− 1)z − az2)
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and

F
(n+1)
〈n〉,a,λ(z)

F
(n)
〈n〉,a,λ(z)

+ B(z, λ) =
2(1− λ2)(1− α)

(z − λ)(1 + λ(a− 1)z − az2)
.

Hence we obtain that

F
(n+1)
〈n〉,a,λ(z)

F
(n)
〈n〉,a,λ(z)

− c(z, λ) =
F

(n+1)
〈n〉,a,λ(z)

F
(n)
〈n〉,a,λ(z)

− A(z, λ) + |z|2|T (z, λ)|2B(z, λ)
1− |z|2|T (z, λ)|2

=
1

1− |z|2|T (z, λ)|2






F

(n+1)
〈n〉,a,λ(z)

F
(n)
〈n〉,a,λ(z)

−A(z, λ)




− |z|2|T (z, λ)|2

F

(n+1)
〈n〉,a,λ(z)

F
(n)
〈n〉,a,λ(z)

+ B(z, λ)








=
2(1− α)(1− λ2){az(1− λz)− |z|2(z − λ)}

(1− |z|2){1− 2λRe(z) + |z|2}{1 + λ(a− 1)z − az2} .

Substituting a by eiθ in the above equalities we see that

F
(n+1)

〈n〉,eiθ,λ
(z)

F
(n)

〈n〉,eiθ,λ
(z)

− c(z, λ)

= r(z, λ)
|1 + λ(eiθ − 1)z − eiθz2|2

|z|
eiθz

[1 + λ(eiθ − 1)z − eiθz2]2
.

It follows from Lemma 3.3 that

(3.6)
F

(n+1)

〈n〉,eiθ,λ
(z)

F
(n)

〈n〉,eiθ,λ
(z)

− c(z, λ) = r(z, λ)
G′(z)
|G′(z)| .

Since the function G0 is starlike, we see that for any z0 ∈ D\{0}, the linear
segment joining 0 and G0(z0) entirely lies in G0(D). Now we define γ0 as
follows.

(3.7) γ0 : t 7−→ z(t) = G−1
0 (tG0(z0)) (0 ≤ t ≤ 1).

Since

G(z(t)) = 2−1eiθG0(z(t))2 = 2−1eiθ(tG0(z0))2 = t2G(z0),

we have

(3.8) G′(z(t))z′(t) = 2tG(z0) (t ∈ [0, 1]).
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By (3.6) and (3.8), we have that
(3.9)

log F
(n)

〈n〉,eiθ,λ
(z0)− C(λ, γ0) =

∫ 1

0





F
(n+1)

〈n〉,eiθ,λ
(z(t))

F
(n)

〈n〉,eiθ,λ
(z(t))

− c(z(t), λ)



 z′(t)dt

=
∫ 1

0

r(z(t), λ)
G′(z(t))z′(t)
|G′(z(t))z′(t)| |z

′(t)|dt

=
G(z0)
|G(z0)|

∫ 1

0

r(z(t), λ)|z′(t)|dt

=
G(z0)
|G(z0)|R(λ, γ0).

It yields that

log F
(n)

〈n〉,eiθ,λ
(z0) ∈ ∂D(C(λ, γ0), R(λ, γ0)).

Also from Corollary 3.2, we know that

log F
(n)

〈n〉,eiθ,λ
(z0) ∈ V 〈n〉(z0, α, λ) ⊂ D(C(λ, γ0), R(λ, γ0)).

Hence we can conclude that

log F
(n)

〈n〉,eiθ,λ
(z0) ∈ ∂V 〈n〉(z0, α, λ).

Assume that there is some f ∈ K〈n〉(α, λ) and θ ∈ (−π, π] such that

(3.10) log f (n)(z0) = log F
(n)

〈n〉,eiθ,λ
(z0).

Let

h(t) =
G(z0)
|G(z0)|

{
f (n+1)(z(t))
f (n)(z(t))

− c(z(t), λ)
}

z′(t),

where z(t) ∈ γ0 which is given by (3.7). Then h(t) is a continuous function in
[0, 1] and (3.6) yields that

|h(t)| ≤ r(z(t), λ)|z′(t)|.
Furthermore, (3.9) and (3.10) yield that

∫ 1

0

Re(h(t))dt =
∫ 1

0

Re

{
G(z0)
|G(z0)|

[
f (n+1)(z(t))
f (n)(z(t))

− c(z(t), λ)
]

z′(t)

}
dt

= Re

{
G(z0)
|G(z0)| {log f (n)(z0)− C(λ, γ0)}

}

= Re

{
G(z0)
|G(z0)| {log F

(n)

〈n〉,eiθ,λ
(z0)− C(λ, γ0)}

}

=
∫ 1

0

r(z(t), λ)|z′(t)|dt.
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Thus we have h(t) = r(z(t), λ)|z′(t)| for all t ∈ [0, 1]. It follows from (3.6) and
(3.8) that for any z ∈ γ0,

f (n+1)(z)
f (n)(z)

=
F

(n+1)

〈n〉,eiθ,λ
(z)

F
(n)

〈n〉,eiθ,λ
(z)

.

Hence for any z ∈ D,

f (n+1)(z)
f (n)(z)

=
F

(n+1)

〈n〉,eiθ,λ
(z)

F
(n)

〈n〉,eiθ,λ
(z)

.

This implies that f = F〈n〉,eiθ,λ in D. ¤

Proof of Theorem 2.2. At first, we prove that the closed curve

(−π, π] 3 θ 7→ log F
(n)

〈n〉,eiθ,λ
(z0)

is simple.
Suppose not. Then there are θ1, θ2 ∈ (−π, π] with θ1 6= θ2 such that

log F
(n)

〈n〉,eiθ1 ,λ
(z0) = log F

(n)

〈n〉,eiθ2 ,λ
(z0).

By Proposition 3.4, we have log F
(n)

〈n〉,eiθ1 ,λ
= log F

(n)

〈n〉,eiθ2 ,λ
. It follows from

(2.3) that θ1 = θ2. This contradiction shows that the curve must be simple.
Since V 〈n〉(z0, α, λ) is a compact convex subset of C and has nonempty

interior, we see that the boundary ∂V 〈n〉(z0, α, λ) is a simple closed curve. It
follows from Proposition 3.4 that the curve (−π, π] 3 θ 7→ log F

(n)

〈n〉,eiθ,λ
(z0) is

a subcurve of ∂V 〈n〉(z0, α, λ).
The fact that a simple closed curve cannot contain any simple closed curve

other than itself yields that ∂V 〈n〉(z0, α, λ) is given by

(−π, π] 3 θ 7→ log F
(n)

〈n〉,eiθ,λ
(z0). ¤

The proof of Theorem 2.8. From (1.2), we know that V 〈n〉(z0, α) is a bounded
convex domain and has smooth boundary with positive curvature. Hence,
Theorem 2.8 follows from Theorem 3 in [1]. ¤
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