Browse > Article
http://dx.doi.org/10.4134/CKMS.2010.25.4.557

REGIONS OF VARIABILITY FOR GENERALIZED α-CONVEX AND β-STARLIKE FUNCTIONS, AND THEIR EXTREME POINTS  

Chen, Shaolin (DEPARTMENT OF MATHEMATICS HUNAN NORMAL UNIVERSITY)
Huang, Aiwu (DEPARTMENT OF MATHEMATICS HUNAN UNIVERSITY OF CHINESE MEDICINE)
Publication Information
Communications of the Korean Mathematical Society / v.25, no.4, 2010 , pp. 557-569 More about this Journal
Abstract
Suppose that n is a positive integer. For any real number $\alpha$($\beta$ resp.) with $\alpha$ < 1 ($\beta$ > 1 resp.), let $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) be the class of analytic functions in the unit disk $\mathbb{D}$ with f(0) = f'(0) = $\cdots$ = $f^{(n-1)}(0)$ = $f^{(n)}(0)-1\;=\;0$, Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) > $\alpha$ (Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) < $\beta$ resp.) in $\mathbb{D}$, and for any ${\lambda}\;{\in}\;\bar{\mathbb{D}}$, let $K^{(n)}({\alpha},\;{\lambda})$ $K^{(n)}({\beta},\;{\lambda})$ resp.) denote a subclass of $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) whose elements satisfy some condition about derivatives. For any fixed $z_0\;{\in}\;\mathbb{D}$, we shall determine the two regions of variability $V^{(n)}(z_0,\;{\alpha})$, ($V^{(n)}(z_0,\;{\beta})$ resp.) and $V^{(n)}(z_0,\;{\alpha},\;{\lambda})$ ($V^{(n)}(z_0,\;{\beta},\;{\lambda})$ resp.). Also we shall determine the extreme points of the families of analytic functions which satisfy $f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\alpha})$ ($f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\beta})$ resp.) when f ranges over the classes $K^{(n)}(\alpha)$ ($K^{(n)(\beta)$ resp.) and $K^{(n)}({\alpha},\;{\lambda})$ ($K^{(n)}({\beta},\;{\lambda})$ resp.), respectively.
Keywords
Schwarz lemma; analytic function; univalent function; starlike function; generalized $\alpha$-convex domain; $\beta$-starlike function; region of variability; extreme point;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 X. Wang, M. Huang, and Y. Chu, Bounded and convex domains in Rn, Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 3, 481–484.
2 H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J. 28 (2005), no. 2, 452–462.
3 Y. Abu-Muhanna and T. H. MacGregor, Extreme points of families of analytic functions subordinate to convex mappings, Math. Z. 176 (1981), no. 4, 511–519.   DOI
4 P. L. Duren, Univalent Function, Grundlehren der mathematicchen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Spring-Verlag, 1983.
5 A. W. Goodman, Univalent Functions, Vols. I and II, Mariner Publishing Co., Tampa, Florida, 1983.
6 D. J. Hallenbeck, Extreme points of classes of functions defined by subordination, Proc. Amer. Math. Soc. 46 (1974), 59–64.
7 D. J. Hallenbeck and A. E. Livingston, Applications of extreme point theory to classes of multivalent functions, Trans. Amer. Math. Soc. 221 (1976), no. 2, 339–359.
8 Ch. Pommerenke, Boundary Behaviour of Conform Maps, Springer-Verlag, Berlin, 1992.
9 S. Ponnusamy, Foundations of Functional Analysis, Alpha Science International Ltd., Pangbourne, 2002.
10 S. Ponnusamy and H. Silverman, Complex Variables with Applications, Birkhauser, Boston, 2006.
11 S. Ponnusamy and V. Singh, Univalence of certain integral transforms, Glas. Mat. Ser. III 31(51) (1996), no. 2, 253–261.
12 S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007), no. 2, 1323–1334.   DOI   ScienceOn
13 S. Ponnusamy, A. Vasudevarao, and H. Yanagihara, Region of variability of univalent functions f(z) for which zf'(z) is spirallike, Houston J. Math. 34 (2008), no. 4, 1037–1048.
14 J. Vaisala, Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101–118.   DOI