
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
https://doi.org/10.7468/jksmeb.2023.30.2.139 ISSN(Online) 2287-6081
Volume 30, Number 2 (May 2023), Pages 139–154

GENERALIZED RELATIVE ORDER (α, β) ORIENTED SOME
GROWTH PROPERTIES OF COMPOSITE ENTIRE AND

MEROMORPHIC FUNCTIONS

Tanmay Biswas a, ∗ and Chinmay Biswas b

Abstract. In this paper we wish to prove some results relating to the growth rates
of composite entire and meromorphic functions with their corresponding left and
right factors on the basis of their generalized relative order (α, β) and generalized
relative lower order (α, β), where α and β are continuous non-negative functions
defined on (−∞, +∞).

1. Introduction

Let us consider that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s theory of meromorphic functions which are
available in [7, 8, 13]. We also use the standard notations and definitions of the
theory of entire functions which are available in [12] and therefore we do not explain
those in details. Let f be an entire function defined in the open complex plane C.

The maximum modulus function Mf (r) corresponding to f is defined on |z| = r as
Mf (r) = max

|z|=r |f(z)|. In this connection the following definition is relevant:

Definition 1.1 ([2]). A non-constant entire function f is said to have the Property
(A) if for any σ > 1 and for all sufficiently large r, [Mf (r)]2 ≤ Mf (rσ) holds.

For examples of functions with or without the Property (A), one may see [2].
When f is meromorphic, the Nevanlinna’s characteristic function Tf (r) (see [7,

p.4]) plays the same role as Mf (r), which is defined as

Tf (r) = Nf (r) + mf (r),
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wherever the function Nf (r, a)(Nf (r, a)) known as counting function of a-points
(distinct a-points) of meromorphic f is defined as follows:

Nf (r, a) =

r∫

0

nf (t, a)− nf (0, a)
t

dt + nf (0, a) log r

(
Nf (r, a) =

r∫

0

nf (t, a)− nf (0, a)
t

dt + nf (0, a) log r
)
,

in addition we represent by nf (r, a)(nf (r, a)) the number of a-points (distinct a-
points) of f in |z| ≤ r and an ∞ -point is a pole of f . In many occasions Nf (r,∞)
and Nf (r,∞) are symbolized by Nf (r) and Nf (r) respectively.

On the other hand, the function mf (r,∞) alternatively indicated by mf (r) known
as the proximity function of f is defined as:

mf (r) =
1
2π

2π∫

0

log+ |f(reiθ)|dθ, where

log+ x = max(log x, 0) for all x > 0.

Also we may employ m(r, 1
f−a) by mf (r, a).

For an entire function f, the Nevanlinna’s characteristic function Tf (r) of f is
defined as

Tf (r) = mf (r).

Moreover, if f is non-constant entire then Tf (r) is also strictly increasing and
continuous function of r. Therefore its inverse T−1

f : (Tf (0),∞) → (0,∞) exists and
is such that lim

s→∞T−1
f (s) = ∞.

Now let L be a class of continuous non-negative on (−∞, +∞) functions α such
that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞. For any α ∈ L,
we say that α ∈ L0

1, if α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞ and α ∈ L0
2,

if α(exp((1 + o(1))x)) = (1 + o(1))α(exp(x)) as x → +∞. Finally for any α ∈ L,
we also say that α ∈ L1, if α(cx) = (1 + o(1))α(x) as x0 ≤ x → +∞ for each
c ∈ (0, +∞) and α ∈ L2, if α(exp(cx)) = (1 + o(1))α(exp(x)) as x0 ≤ x → +∞
for each c ∈ (0, +∞). Clearly, L1 ⊂ L0

1, L2 ⊂ L0
2 and L2 ⊂ L1.Further we assume

that throughout the present paper α1, α2, α3, α4, β, β1, β2, β3 and β4 denote the
functions belonging to L1 unless otherwise specifically stated.
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The value

ρ(α,β)[f ] = lim sup
r→+∞

α(log Mf (r))
β(log r)

(α ∈ L, β ∈ L)

introduced by Sheremeta [10], is called a generalized order (α, β) of an entire func-
tion f . During the past decades, several authors made close investigations on the
properties of entire functions related to generalized order (α, β) in some different
direction. For the purpose of further applications, Biswas et al. [4] rewrite the def-
inition of the generalized order (α, β) of entire function in the following way after
giving a minor modification to the original definition (e.g. see, [10]) which consid-
erably extend the definition of ϕ-order of entire function introduced by Chyzhykov
et al. [5]:

Definition 1.2 ([4]). The generalized order (α, β) denoted by ρ(α,β) [f ] and gen-
eralized lower order (α, β) denoted by λ(α,β) [f ] of an entire function f are defined
as:

ρ(α,β) [f ] = lim sup
r→+∞

α(Mf (r))
β(r)

and λ(α,β) [f ] = lim inf
r→+∞

α(Mf (r))
β(r)

where α ∈ L1.

If f is a meromorphic function, then

ρ(α,β) [f ] = lim sup
r→+∞

α(exp(Tf (r)))
β(r)

and λ(α,β) [f ] = lim inf
r→+∞

α(exp(Tf (r)))
β(r)

, where α ∈ L2.

Using the inequality Tf (r) ≤ log Mf (r) ≤ 3Tf (2r) {cf. [7]}, for an entire function
f , one may easily verify that

ρ(α,β) [f ] = lim sup
r→+∞

α(Mf (r))
β(r)

= lim sup
r→+∞

α(exp(Tf (r)))
β(r)

and λ(α,β) [f ] = lim inf
r→+∞

α(Mf (r))
β(r)

= lim inf
r→+∞

α(exp(Tf (r)))
β(r)

,

when α ∈ L2.
Mainly the growth investigation of entire and meromorphic functions has usually

been done through their maximum moduli or Nevanlinna’s characteristic function
in comparison with those of exponential function. But if one is paying attention to
evaluate the growth rates of any entire and meromorphic function with respect to a
new entire function, the notions of relative growth indicators (see e.g. [1, 2, 9]) will
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come. Now in order to make some progress in the study of relative order, Biswas et
al. [4] introduce the definitions of generalized relative order (α, β) and generalized
relative lower order (α, β) of a meromorphic function with respect to another entire
function in the following way:

Definition 1.3 ([4]). Let α, β ∈ L1. The generalized relative order (α, β) and
generalized relative lower order (α, β) of a meromorphic function f with respect to
an entire function g denoted by ρ(α,β)[f ]g and λ(α,β)[f ]g respectively are defined as:

ρ(α,β)[f ]g = lim sup
r→+∞

α(T−1
g (Tf (r)))
β(r)

and λ(α,β)[f ]g = lim inf
r→+∞

α(T−1
g (Tf (r)))
β(r)

.

In this paper, we intend to establish some results relating to the growth properties
of composite entire and meromorphic functions on the basis of generalized relative
order (α, β) and generalized relative lower order (α, β).

2. Main Results

In this section first we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([3]). If f is a meromorphic function and g is an entire function then
for all sufficiently large values of r,

Tf◦g(r) 6 {1 + o(1)} Tg(r)
log Mg(r)

Tf (Mg(r)).

Lemma 2.2 ([6]). Let f be an entire function which satisfies the Property (A),
β > 0, δ > 1 and α > 2. Then

βTf (r) < Tf

(
αrδ

)
.

Now we present the main results of the paper.

Theorem 2.3. Let f be a meromorphic function and g, h be any two entire functions
such that 0 < λ(α1,β1) [f ]h ≤ ρ(α1,β1) [f ]h < +∞, ρ(α2,β2) [g] < +∞ and h satisfies
the Property (A). Also let γ be a positive continuous on [0, +∞) function increasing
to +∞ and A ≥ 0 be any number, then
(i) If β1(α−1

2 (log r)) ≤ r and lim
r→+∞

log γ(r)
log r = +∞, then

lim
r→+∞

{
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))
= 0 and
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(ii) If either β1(r) = Bα2(r) where B is any positive constant and lim
r→+∞

log γ(r)
log r =

+∞ or β1(α−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α−1
2 (log r))

= +∞, then

lim
r→+∞

{
exp(α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))
= 0.

Proof. Let us suppose that ∆ > 2 and δ → 1+ in Lemma 2.2. Since T−1
h (r) is an

increasing function of r, it follows from Lemma 2.1, Lemma 2.2 and the inequality
Tg(r) ≤ log Mg(r) {cf. [9] } that for all sufficiently large values of r,

T−1
h (Tf◦g(β−1

2 (log r))) 6 T−1
h ({1 + o(1)}Tf (Mg(β−1

2 (log r))))

i.e., α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

) 6 α1(∆(T−1
h (Tf (Mg(β−1

2 (log r)))))δ)

i.e., α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

) 6 (1 + o(1))α1(T−1
h (Tf (Mg(β−1

2 (log r)))))

i.e., α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)

(2.1) 6 (1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(Mg(β−1
2 (log r))).

Further from the definition of λ(α1,β1) [f ]h, we get for all sufficiently large values
of r that

(2.2) α1(T−1
h (Tf (β−1

1 (γ(r))))) ≥ (λ(α1,β1) [f ]h − ε)γ(r).

Now the following cases may arise:
Case I. Let β1(α−1

2 (log r)) ≤ r. Now we get from (2.1) for all sufficiently large
values of r that

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)

(2.3) 6 (1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(α−1
2 (α2(Mg(β−1

2 (log r)))))

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)

(2.4) 6 (1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(α−1
2 (log r(ρ(α2,β2)[g]+ε))).

Case II. Let β1(r) = Bα2(r) where B is any positive constant. Then we have
from (2.1) that for all sufficiently large values of r,

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

) 6 (1 + o(1))B(ρ(α1,β1) [f ]h + ε)α2(Mg(β−1
2 (log r)))

i.e., α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)

6 (1 + o(1))B(ρ(α1,β1) [f ]h + ε)(ρ(α2,β2) [g] + ε) log r

(2.5) i.e., exp(α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)) 6 r(1+o(1))B(ρ(α1,β1)[f ]h+ε)(ρ(α2,β2)[g]+ε).
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Case III. Let β1(α−1
2 (r)) ∈ L1 and lim

r→+∞
log γ(r)

β1(α−1
2 (log r))

= +∞. Then we have

from (2.3) that for all sufficiently large values of r,

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

) 6 (1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(α−1
2 (log r))

i.e., exp(α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

))

(2.6) 6 exp((1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(α−1
2 (log r))).

Now when β1(α−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)

log r = +∞, we obtain from (2.2) and

(2.4) of Case I that for all sufficiently large values of r,
{
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))

6
(1 + o(1))(ρ(α1,β1) [f ]h + ε)1+A[β1(α−1

2 (log r(ρ(α2,β2)[g]+ε)))]1+A

(λ(α1,β1) [f ]h − ε)γ(r)

i.e., lim sup
r→+∞

{
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))
= 0,

This proves the first part of the theorem.
Again combining (2.2) and (2.5) of Case II, we get for all sufficiently large values

of r that
{
exp(α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))
6 r(1+o(1))B(ρ(α1,β1)[f ]h+ε)(ρ(α2,β2)[g]+ε)(1+A)

(λ(α1,β1) [f ]h − ε)γ(r)

Since lim
r→+∞

log γ(r)
log r = +∞,

r(1+o(1))B(ρ(α1,β1)[f ]h+ε)(ρ(α2,β2)[g]+ε)(1+A)

γ(r)
→ 0

as r → +∞. Thus it follows from above that

(2.7) lim
r→+∞

{
exp(α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))
= 0.

Further combining (2.2) and (2.6) of Case III it follows that for all sufficiently
large values of r,

{
exp(α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))

6
[
exp((1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(α−1

2 (log r)))
]1+A

(λ(α1,β1) [f ]h − ε)γ(r)
.
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Since lim
r→+∞

log γ(r)

β1(α−1
2 (log r))

= +∞,

[
exp((1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(α−1

2 (log r)))
]1+A

γ(r)
→ 0

as r → +∞. Thus from above we obtain that

(2.8) lim
r→+∞

{
exp(α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))
}1+A

α1(T−1
h (Tf (β−1

1 (γ(r)))))
= 0.

Hence the second part of the theorem follows from (2.7) and (2.8).
Thus the theorem follows. ¤

Remark 2.4. Theorem 2.3 improves and extends Theorem 3 of [11].

Remark 2.5. In Theorem 2.3 if we take the condition ρ(α1,β1) [f ]h > 0 instead
of 0 < λ(α1,β1) [f ]h ≤ ρ(α1,β1) [f ]h < +∞, the theorem remains true with “ limit
inferior” in place of “limit”.

Theorem 2.6. Let f be a meromorphic function and g, h, k be any three entire
functions such that ρ(α1,β1) [f ]h < +∞, λ(α2,β2) [g]k > 0, ρ(α2,β2) [g] < +∞ and h

satisfies the Property (A). Also let γ be a positive continuous on [0, +∞) function
increasing to +∞ and A ≥ 0 be any number.
(i) If β1(α−1

2 (log r)) ≤ r and lim
r→+∞

log γ(r)
log r = +∞, then

lim
r→+∞

{
α1(exp(Tf◦g(β−1

2 (log r))))
}1+A

α2(exp(Tg(β−1
2 (γ(r)))))

= 0.

(ii) If either β1(r) = Bα2(r) where B is any positive constant and lim
r→+∞

log γ(r)
log r = +∞

or β1(α−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α−1
2 (log r))

= +∞, then

lim
r→+∞

{
exp(α1(exp(Tf◦g(β−1

2 (log r)))))
}1+A

α2(exp(Tg(β−1
2 (γ(r)))))

= 0.

The proof of Theorem 2.6 would run parallel to that of Theorem 2.3. We omit
the details.

Remark 2.7. In Theorem 2.6, if we take the condition ρ(α2,β2) [g]k > 0 instead of
λ(α2,β2) [g]k > 0, the theorem remains true with “limit inferior” instead of “limit”.

Theorem 2.8. Let f be a meromorphic function and g, h, k,l, m be five entire
functions such that λ(α3,β3) [l]m > 0, λ(α4,β4) [k] > 0, ρ(α1,β1) [f ]h < ∞, ρ(α2,β2) [g] <
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λ(α4,β4) [k] and h, m both satisfy the Property (A). Also let C and D be any two
positive constants.
(i) Any one of the following four conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r))) and β3(r) = D exp(α4(r));
(b) β1(r) = C(exp(α2(r))) and β3(r) > exp(α4(r));
(c) exp(α2(r)) > β1(r) and β3(r) = D exp(α4(r));
(d) exp(α2(r)) > β1(r) and β3(r) > exp(α4(r)), then

lim
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
= ∞.

(ii) Any one of the following two conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r))) and α4(β−1

3 (r)) ∈ L1;
(b) β3(r) > exp(α4(r)) and α4(β−1

3 (r)) ∈ L1, then

lim
r→+∞

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)
= ∞.

(iii) Any one of the following two conditions are assumed to be satisfied:
(a) β3(r) = D exp(α4(r)) and α2(β−1

1 (r)) ∈ L1;
(b) β3(r) > exp(α4(r)) and α2(β−1

1 (r)) ∈ L1, then

lim
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
exp(α2(β−1

1 (α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

))))
= ∞.

(iv) If α2(β−1
1 (r)) ∈ L1 and α4(β−1

3 (r)) ∈ L1, then

lim
r→+∞

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

exp(α2(β−1
1 (α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))))
= ∞.

Proof. Case I. Let β1(r) = C(exp(α2(r))). Then we have from (2.1) that for all
sufficiently large values of r,

(2.9) α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

) 6 C(1 + o(1))(ρ(α1,β1) [f ]h + ε)r(ρ(α2,β2)[g]+ε).

Case II. Let exp(α2(r)) > β1(r). Then we have from (2.1) that for all sufficiently
large values of r,

(2.10) α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

) < (1 + o(1))(ρ(α1,β1) [f ]h + ε)r(ρ(α2,β2)[g]+ε).

Case III. Let α2(β−1
1 (r)) ∈ L1. Then we get from(2.1) that for all sufficiently

large values of r,

(2.11) exp(α2(β−1
1 (α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)))) 6 r(1+o(1))(ρ(α2,β2)[g]+ε).
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Now suppose that Λ > 2 and δ → 1+ in Lemma 2.2. Since T−1
m (r) is an increasing

function of r, it follows from Lemma 2.1, Lemma 2.2 and the inequality Tf (r) ≤
log Mf (r) ≤ 3Tf (2r) {cf. [7]} for an entire function f that for all sufficiently large
values of r,

α3(T−1
m (3Tl◦k(β−1

4 (log r)))) ≥ α3

(
T−1

m

(
Tl

(1
8
Mk

(β−1
4 (log r)

4

))))

i.e., α3(Λ(T−1
m (Tl◦k(β−1

4 (log r)))δ)) ≥ α3

(
T−1

m

(
Tl

(1
8
Mk

(β−1
4 (log r)

4

))))

i.e., α3(∆(T−1
m (Tl◦k(β−1

4 (log r)))δ)) ≥ α3

(
T−1

m

(
Tl

(1
8
Mk

(β−1
4 (log r)

4

))))

i.e., α3(T−1
m (Tl◦k(β−1

4 (log r))))

≥ (1 + o(1))
(
α3

(
T−1

m

(
Tl

(1
8
Mk

(β−1
4 (log r)

4

)))))

i.e., α3(T−1
m (Tl◦k(β−1

4 (log r))))

(2.12) ≥ (1 + o(1))(λ(α3,β3) [l]m − ε)β3

(
Mk

(β−1
4 (log r)

4

))
.

Case IV. Let β3(r) = D exp(α4(r)) Then from (2.12) it follows that for all
sufficiently large values of r,

α3(T−1
m (Tl◦k(β−1

4 (log r))))

(2.13) ≥ D(1 + o(1))(λ(α3,β3) [l]m − ε)r(1+o(1))(λ(α4,β4)[k]−ε).

Case V. Let β3(r) > exp(α4(r)). Now from (2.12) it follows that for all suffi-
ciently large values of r,

α3(T−1
m (Tl◦k(β−1

4 (log r))))

(2.14) > (1 + o(1))(λ(α3,β3) [l]m − ε)r(1+o(1))(λ(α4,β4)[k]−ε).

Case VI. Let α4(β−1
3 (r)) ∈ L1. Then from (2.12) we obtain that for all suffi-

ciently large values of r,

(2.15) exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r))))))) > r(1+o(1))(λ(α4,β4)[k]−ε).

Since ρ(α2,β2) [g] < λ(α4,β4) [k] we can choose ε(> 0) in such a way that

(2.16) ρ(α2,β2) [g] + ε < λ(α4,β4) [k]− ε.
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Now combining (2.9) of Case I and (2.13) of Case IV it follows that for all suffi-
ciently large values of r,

α3(T−1
m (Tl◦k(β−1

4 (log r))))
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
≥ D(1 + o(1))(λ(α3,β3) [l]m − ε)r(1+o(1))(λ(α4,β4)[k]−ε)

C(1 + o(1))(ρ(α1,β1) [f ]h + ε)r(ρ(α2,β2)[g]+ε)
.

So from (2.16) and above we obtain that

(2.17) lim inf
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
= ∞.

Further combining (2.9) of Case I and (2.14) of Case V it follows that for all
sufficiently large values of r,

α3(T−1
m (Tl◦k(β−1

4 (log r))))
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
>

(1 + o(1))(λ(α3,β3) [l]m − ε)r(1+o(1))(λ(α4,β4)[k]−ε)

C(1 + o(1))(ρ(α1,β1) [f ]h + ε)r(ρ(α2,β2)[g]+ε)
.

Hence from (2.16) and above we get that

(2.18) lim inf
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
= ∞.

Similarly combining (2.10) of Case II and (2.13) of Case IV, we obtain that

(2.19) lim inf
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
)) = ∞.

Likewise combining (2.10) of Case II and (2.14) of Case V it follows that

(2.20) lim inf
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

)
= ∞.

Hence the first part of the theorem follows from (2.17), (2.18), (2.19) and (2.20).
Again combining (2.9) of Case I and (2.15) of Case VI we obtain that for all

sufficiently large values of r,

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)

≥ r(1+o(1))(λ(α4,β4)[k]−ε)

C(1 + o(1))(ρ(α1,β1) [f ]h + ε)r(ρ(α2,β2)[g]+ε)
.

So from (2.16) and above we obtain that

(2.21) lim
r→+∞

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)
= ∞.
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Now in view of (2.10) of Case II and (2.15) of Case VI we get that for all suffi-
ciently large values of r,

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)

>
r(1+o(1))(λ(α4,β4)[k]−ε)

(1 + o(1))(ρ(α1,β1) [f ]h + ε)r(ρ(α2,β2)[g]+ε)
.

So from (2.16) and above we obtain that

(2.22) lim inf
r→+∞

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

)
= ∞,

Therefore the second part of the theorem follows from (2.21) and (2.22).
Further combining (2.11) of Case III and (2.13) of Case IV it follows that for all

sufficiently large values of r,

α3(T−1
m (Tl◦k(β−1

4 (log r))))
exp(α2(β−1

1 (α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

))))
≥

(2.23)
D(1 + o(1))(λ(α3,β3) [l]m − ε)r(1+o(1))(λ(α4,β4)[k]−ε)

r(1+o(1))(ρ(α2,β2)[g]+ε)
.

Now in view of (2.16) we obtain from (2.23) that

(2.24) lim
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
exp(α2(β−1

1 (α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

))))
= ∞.

Similarly combining (2.11) of Case III and (2.14) of Case V we get that

(2.25) lim
r→+∞

α3(T−1
m (Tl◦k(β−1

4 (log r))))
exp(α2(β−1

1 (α1(T−1
h

(
Tf◦g

(
β−1

2 (log r)
))

))))
= ∞.

Hence the third part of the theorem follows from (2.24) and (2.25).
Again combining (2.11) of Case III and (2.15) of Case VI we obtain that for all

sufficiently large values of r,

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

exp(α2(β−1
1 (α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))))
≥ r(1+o(1))(λ(α4,β4)[k]−ε)

r(1+o(1))(ρ(α2,β2)[g]+ε)
.

Now in view of (2.16) we obtain from above that

lim
r→+∞

exp(α4(β−1
3 (α3(T−1

m (Tl◦k(β−1
4 (log r)))))))

exp(α2(β−1
1 (α1(T−1

h

(
Tf◦g

(
β−1

2 (log r)
))

))))
= ∞.

This proves the fourth part of the theorem.
Thus the theorem follows. ¤
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Theorem 2.9. Let f be a meromorphic function and g, h be any two entire functions
such that 0 < λ(α1,β1) [f ]h ≤ ρ(α1,β1) [f ]h < +∞, ρ(α2,β2) [g] < +∞ and h satisfies
the Property (A). If α2(β−1

1 (r)) ∈ L1, then

lim sup
r→+∞

α2(β−1
1 (α1(T−1

h (Tf◦g(r)))))
α1(T−1

h (Tf (β−1
1 (β2(r)))))

≤ ρ(α2,β2) [g]
λ(α1,β1) [f ]h

.

Proof. In view of (2.2) it follows that for all sufficiently large values of r,

(2.26) α1(T−1
h (Tf (β−1

1 (β2(r))))) ≥ (λ(α1,β1) [f ]h − ε)β2(r).

Again in view of (2.1), we get that for all sufficiently large values of r,

α1(T−1
h (Tf◦g(r))) 6 (1 + o(1))(ρ(α1,β1) [f ]h + ε)β1(Mg(r)).

Since α2(β−1
1 (r)) ∈ L1, we obtain from above that for all sufficiently large values of

r,

α2(β−1
1 (α1(T−1

h (Tf◦g(r))))) ≤ (1 + o(1))α2(Mg(r))

i.e., α2(β−1
1 (α1(T−1

h (Tf◦g(r))))) ≤ (1 + o(1))(ρ(α2,β2) [g] + ε)β2(r).

Now combining (2.26) and above we get that

lim sup
r→+∞

α2(β−1
1 (α1(T−1

h (Tf◦g(r)))))
α1(T−1

h (Tf (β−1
1 (β2(r)))))

≤ ρ(α2,β2) [g]
λ(α1,β1) [f ]h

.

Hence the theorem follows. ¤

Theorem 2.10. Let f be a meromorphic function and g, h be any two entire func-
tions such that 0 < λ(α1,β1) [f ]h ≤ ρ(α1,β1) [f ]h < +∞, λ(α2,β2) [g] < +∞ and h

satisfies the Property (A). If α2(β−1
1 (r)) ∈ L1, then

lim inf
r→+∞

α2(β−1
1 (α1(T−1

h (Tf◦g(r)))))
α1(T−1

h (Tf (β−1
1 (β2(r)))))

≤ λ(α2,β2) [g]
λ(α1,β1) [f ]h

.

The proof of Theorem 2.10 would run parallel to that of Theorem 2.9. We omit
the details.

Theorem 2.11. Let f be meromorphic function and g, h, k be any three entire
functions such that ρ(α1,β1) [f ◦ g]h < ∞ and λ(α3,β3) [g]k > 0. Then

lim
r→∞

{
α1(T−1

h (Tf◦g(β−1
1 (log r))))

}2

α3(T−1
k (Tg(β−1

3 (log r)))) · α3(T−1
k (Tg(β−1

3 (r))))
= 0.
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Proof. For arbitrary positive ε we have that for all sufficiently large values of r,

(2.27) α1(T−1
h (Tf◦g(β−1

1 (log r)))) ≤ (ρ(α1,β1) [f ◦ g]h + ε) log r.

Again for all sufficiently large values of r we get

(2.28) α3(T−1
k (Tg(β−1

3 (log r)))) ≥ (λ(α3,β3) [g]k − ε) log r.

Similarly for all sufficiently large values of r we have

(2.29) α3(T−1
k (Tg(β−1

3 (r)))) ≥ (λ(α3,β3) [g]k − ε)r.

From (2.27) and (2.28) we have that for all sufficiently large values of r,

α1(T−1
h (Tf◦g(β−1

1 (log r))))
α3(T−1

k (Tg(β−1
3 (log r))))

≤ (ρ(α1,β1) [f ◦ g]h + ε) log r

(λ(α3,β3) [g]k − ε) log r
.

As ε(> 0) is arbitrary we obtain from above that

(2.30) lim sup
r→+∞

α1(T−1
h (Tf◦g(β−1

1 (log r))))
α3(T−1

k (Tg(β−1
3 (log r))))

≤ ρ(α1,β1) [f ◦ g]h
λ(α3,β3) [g]k

.

Again from (2.27) and (2.29) we get that for all sufficiently large values of r,

α1(T−1
h (Tf◦g(β−1

1 (log r))))
α3(T−1

k (Tg(β−1
3 (r))))

≤ (ρ(α1,β1) [f ◦ g]h + ε) log r

(λ(α3,β3) [g]k − ε)r
.

Since ε(> 0) is arbitrary it follows from above that

(2.31) lim
r→+∞

α1(T−1
h (Tf◦g(β−1

1 (log r))))
α3(T−1

k (Tg(β−1
3 (r))))

= 0.

Thus the theorem follows from (2.30) and (2.31). ¤

Theorem 2.12. Let f be meromorphic function and g, h be any two entire functions
such that ρ(α1,β1) [f ]h < ∞ and λ(α3,β3) [f ◦ g]h = ∞. Then

lim
r→+∞

α3(T−1
h (Tf◦g(r)))

α1(T−1
h (Tf (β−1

1 (β3(r)))))
= ∞.

Proof. Let us suppose that the conclusion of the theorem does not hold. Then we
can find a constant ∆ > 0 such that for a sequence of values of r tending to infinity

(2.32) α3(T−1
h (Tf◦g(r))) ≤ ∆ · α1(T−1

h (Tf (β−1
1 (β3(r))))).

Again from the definition of ρ(α1,β1) [f ]h, it follows that for all sufficiently large values
of r,

(2.33) α1(T−1
h (Tf (β−1

1 (β3(r))))) ≤ (ρ(α1,β1) [f ]h + ε)β3(r).
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Thus from (2.32) and (2.33), we have that for a sequence of values of r tending to
infinity,

α3(T−1
h (Tf◦g(r))) ≤ ∆(ρ(α1,β1) [f ]h + ε)β3(r)

i.e.,
α3(T−1

h (Tf◦g(r)))
β3(r)

≤ ∆(ρ(α1,β1) [f ]h + ε)β3(r)
β3(r)

i.e., lim inf
r+∞

α3(T−1
h (Tf◦g(r)))
β3(r)

= λ(α3,β3) [f ◦ g]h < ∞.

This is a contradiction.
Thus the theorem follows. ¤

Remark 2.13. Theorem 2.12 is also valid with “limit superior” instead of “limit”
if λ(α3,β3) [f ◦ g]h = ∞ is replaced by ρ(α3,β3) [f ◦ g]h = ∞ and the other conditions
remain the same.

Analogously one may also state the following theorem without its proof as it may
be carried out in the line of Theorem 2.12.

Theorem 2.14. Let f be meromorphic function and g, h be any two entire functions
such that ρ(α1,β1) [g]h < ∞ and ρ(α3,β3) [f ◦ g]h = ∞. Then

lim sup
r→+∞

α3(T−1
h (Tf◦g(r)))

α1(T−1
h (Tg(β−1

1 (β3(r)))))
= ∞.

Remark 2.15. Theorem 2.14 is also valid with “limit” instead of “limit superior”
if ρ(α3,β3) [f ◦ g]h = ∞ is replaced by λ(α3,β3) [f ◦ g]h = ∞ and the other conditions
remain the same.

3. Conclusion

Throughout this paper, we have generalized some results using the concept of
generalized relative order (α, β) of entire and meromorphic functions.The technique
used to define generalized relative order (α, β) is newly developed idea and this
concept is very much significant. Defining new idea of relative order of growths in the
complex plane, we have discussed some growth properties of entire and meromorphic
functions.This technique may also be applied in the study of growth of solutions of
complex differential equations with entire or meromorphic coefficients. These works
will be very much helpful for the future researchers.



GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS 153

Acknowledgment

The authors are very much grateful to the reviewers for their valuable suggestions
to bring the paper in its present form.

References
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