• Title/Summary/Keyword: generalized Ulam-Hyers stability

Search Result 164, Processing Time 0.017 seconds

GENERALIZED HYERS-ULAM STABILITY OF CUBIC TYPE FUNCTIONAL EQUATIONS IN NORMED SPACES

  • KIM, GWANG HUI;SHIN, HWAN-YONG
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.397-408
    • /
    • 2015
  • In this paper, we solve the Hyers-Ulam stability problem for the following cubic type functional equation $$f(rx+sy)+f(rx-sy)=rs^2f(x+y)+rs^2f(x-y)+2r(r^2-s^2)f(x)$$in quasi-Banach space and non-Archimedean space, where $r={\neq}{\pm}1,0$ and s are real numbers.

APPROXIMATE EULER-LAGRANGE-JENSEN TYPE ADDITIVE MAPPING IN MULTI-BANACH SPACES: A FIXED POINT APPROACH

  • Moradlou, Fridoun
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.319-333
    • /
    • 2013
  • Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces: $${\sum_{1{\leq}i_<j{\leq}n}}\;f(\frac{r_ix_i+r_jx_j}{k})=\frac{n-1}{k}{\sum_{i=1}^n}r_if(x_i)$$.

GENERALIZED ULAM-HYERS STABILITY OF C*-TERNARY ALGEBRA 3-HOMOMORPHISMS FOR A FUNCTIONAL EQUATION

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.147-162
    • /
    • 2011
  • In this paper, we investigate the Ulam-Hyers stability of $C^{\star}$-ternary algebra 3-homomorphisms for the functional equation $$f(x_1+x_2,y_1+y_2,z_1+z_2)=\;\displaystyle\sum_{1{\leq}i,j,k{\leq}2}\;f(x_i,y_j,z_k)$$ in $C^{\star}$-ternary algebras.

GENERALIZED FORMS OF SWIATAK'S FUNCTIONAL EQUATIONS WITH INVOLUTION

  • Wang, Zhihua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.779-787
    • /
    • 2019
  • In this paper, we study two functional equations with two unknown functions from an Abelian group into a commutative ring without zero divisors. The two equations are generalizations of Swiatak's functional equations with an involution. We determine the general solutions of the two functional equations and the properties of the general solutions of the two functional equations under three different hypotheses, respectively. For one of the functional equations, we establish the Hyers-Ulam stability in the case that the unknown functions are complex valued.

APPROXIMATION OF ALMOST EULER-LAGRANGE QUADRATIC MAPPINGS BY QUADRATIC MAPPINGS

  • John Michael Rassias;Hark-Mahn Kim;Eunyoung Son
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.87-97
    • /
    • 2024
  • For any fixed integers k, l with kl(l - 1) ≠ 0, we establish the generalized Hyers-Ulam stability of an Euler-Lagrange quadratic functional equation f(kx + ly) + f(kx - ly) + 2(l - 1)[k2f(x) - lf(y)] = l[f(kx + y) + f(kx - y)] in normed spaces and in non-Archimedean spaces, respectively.

ON THE QUADRATIC MAPPING IN GENERALIZED QUASI-BANACH SPACES

  • Park, Choonkil;Jun, Kil-Woung;Lu, Gang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.263-274
    • /
    • 2006
  • In this paper, we prove the Hyers-Ulam-Rassias stability of the quadratic mapping in generalized quasi-Banach spaces, and of the quadratic mapping in generalized p-Banach spaces.

  • PDF

ON STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH n-VARIABLES AND m-COMBINATIONS IN QUASI-𝛽-NORMED SPACES

  • Koh, Heejeong;Lee, Yonghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.319-326
    • /
    • 2020
  • In this paper, we establish a general solution of the following functional equation $$mf\({\sum\limits_{k=1}^{n}}x_k\)+{\sum\limits_{t=1}^{m}}f\({\sum\limits_{k=1}^{n-i_t}}x_k-{\sum\limits_{k=n-i_t+1}^{n}}x_k\)=2{\sum\limits_{t=1}^{m}}\(f\({\sum\limits_{k=1}^{n-i_t}}x_k\)+f\({\sum\limits_{k=n-i_t+1}^{n}}x_k\)\)$$ where m, n, t, it ∈ ℕ such that 1 ≤ t ≤ m < n. Also, we study Hyers-Ulam-Rassias stability for the generalized quadratic functional equation with n-variables and m-combinations form in quasi-𝛽-normed spaces and then we investigate its application.

SEVERAL STABILITY PROBLEMS OF A QUADRATIC FUNCTIONAL EQUATION

  • Cho, In-Goo;Koh, Hee-Jeong
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.99-113
    • /
    • 2011
  • In this paper, we investigate the stability using shadowing property in Abelian metric group and the generalized Hyers-Ulam-Rassias stability in Banach spaces of a quadratic functional equation, $f(x_1+x_2+x_3+x_4)+f(-x_1+x_2-x_3+x_4)+f(-x_1+x_2+x_3)+f(-x_2+x_3+x_4)+f(-x_3+x_4+x_1)+f(-x_4+x_1+x_2)=5{\sum\limits_{i=1}^4}f(x_i)$. Also, we study the stability using the alternative fixed point theory of the functional equation in Banach spaces.

GENERALIZED HYERES{ULAM STABILITY OF A QUADRATIC FUNCTIONAL EQUATION WITH INVOLUTION IN QUASI-${\beta}$-NORMED SPACES

  • Janfada, Mohammad;Sadeghi, Ghadir
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1421-1433
    • /
    • 2011
  • In this paper, using a fixed point approach, the generalized Hyeres-Ulam stability of the following quadratic functional equation $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=3(f(x)+f(y)+f(z))$ will be studied, where f is a function from abelian group G into a quasi-${\beta}$-normed space and ${\sigma}$ is an involution on the group G. Next, we consider its pexiderized equation of the form $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=g(x)+g(y)+g(z)$ and its generalized Hyeres-Ulam stability.

THE GENERAL SOLUTION AND APPROXIMATIONS OF A DECIC TYPE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES

  • Arunkumar, Mohan;Bodaghi, Abasalt;Rassias, John Michael;Sathya, Elumalai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.287-328
    • /
    • 2016
  • In the current work, we define and find the general solution of the decic functional equation g(x + 5y) - 10g(x + 4y) + 45g(x + 3y) - 120g(x + 2y) + 210g(x + y) - 252g(x) + 210g(x - y) - 120g(x - 2y) + 45g(x - 3y) - 10g(x - 4y) + g(x - 5y) = 10!g(y) where 10! = 3628800. We also investigate and establish the generalized Ulam-Hyers stability of this functional equation in Banach spaces, generalized 2-normed spaces and random normed spaces by using direct and fixed point methods.