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SEVERAL STABILITY PROBLEMS OF A QUADRATIC

FUNCTIONAL EQUATION

In Goo Cho and Hee Jeong Koh

Abstract. In this paper, we investigate the stability using shadowing
property in Abelian metric group and the generalized Hyers-Ulam-Rassias
stability in Banach spaces of a quadratic functional equation,

f(x1 + x2 + x3 + x4) + f(−x1 + x2 − x3 + x4)

+f(−x1 + x2 + x3) + f(−x2 + x3 + x4) + f(−x3 + x4 + x1)

+f(−x4 + x1 + x2) = 5
4∑

i=1

f(xi).

Also, we study the stability using the alternative fixed point theory of

the functional equation in Banach spaces.

1. Introduction

In 1940, the problem of stability of the above functional equations was orig-
inated by Ulam [15] as follows: Under what condition does there exist an
additive mapping near an approximately additive mapping?

The first partial solution to Ulam’s question was provided by D. H. Hyers [7].
Let X and Y are Banach spaces with norms ∥·∥ and ∥·∥ , respectively. Hyers
showed that if a function f : X → Y satisfies the following inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

for all ϵ ≥ 0 and for all x, y ∈ X, then the limit

a(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X and a : X → Y is the unique additive function such that

∥f(x)− a(x)∥ ≤ ϵ

for any x ∈ X. Moreover, if f(tx) is continuous in t for each fixed x ∈ X, then
a is linear.
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Hyers’ Theorem was generalized in various directions. In particular, thirty
seven years after Hyers’ Theorem, Th. M. Rassias provided a generalization of
Hyers’s result by allowing the Cauchy difference to be unbounded; see [10]. He
proved the following theorem: if a function f : X → Y satisfies the following
inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p)
for some θ ≥ 0, 0 ≤ p < 1, and for all x, y ∈ X, then there exists a unique
additive function such that

∥f(x)− a(x)∥ ≤ 2θ

2− 2p
∥x∥p

for all x ∈ X. Moreover, if f(tx) is continuous in t for each fixed x ∈ X, then
a is linear.

Th. M. Rassias result provided a generalization of Hyers Theorem, a fact
which rekindled interest in the study of stability of functional equations. Tak-
ing this fact into consideration the Hyers-Ulam stability is called Hyers-Ulam-
Rassias stability. In 1990, Th. M. Rassias during the 27th International Sym-
posium on Functional Equations asked the question whether an extension of
his theorem can be proved for all positive real numbers p that are greater or
equal to one. A year later in 1991, Gajda provided an affirmative solution to
Rassias’ question in the case the number p is greater than one; see [5].

During the last two decades several results for the Hyers-Ulam-Rassias stabil-
ity of functional equations have been proved by several mathematicians world-
wide in the study of several important functional equations of several variables.
Gǎvruta [6] following Rassias’s approach for the unbounded Cauchy difference
provided a further generalization.

The quadratic function f(x) = cx2(c ∈ R) satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y).(1.1)

Hence this question is called the quadratic functional equation, and every so-
lution of the quadratic equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.1)
was proved by Skof [12] for functions f : X → Y, where X is a normed space
and Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still
true if the relevant domain X is replaced by an Abelian group. In [3], Czerwik
proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.
Recently, Tabor proved the general stability result for functional equations in
the case when the target space is a metric group (with some local divisibility
condition); see [13].

Consider the following 3-dimension quadratic functional equation:

f(x+ y + z) + f(x− y) + f(y − z) + f(x− z) = 3f(x) + 3f(y) + 3f(z).

Recently, the 3-dimensional quadratic functional equation was investigated by
Bae and Jun [1]. Also, Najati and Park introduced new Euler-Lagrange type
of functional equation; see [9].
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In this paper, we will investigate the stability in metric group and the gen-
eralized Hyers-Ulam stability of a 4-dimensional quadratic functional equation
as follows:

f(x1 + x2 + x3 + x4) + f(−x1 + x2 − x3 + x4) + f(−x1 + x2 + x3)

+ f(−x2 + x3 + x4) + f(−x3 + x4 + x1) + f(−x4 + x1 + x2)

= 5
4∑
i=1

f(xi).

Also, we study the stability using the alternative fixed point of the functional
equation in Banach spaces.

Lemma 1.1. Let X,Y be vector spaces. If a mapping f : X → Y satisfying

(1.2)

f(x1 + x2 + x3 + x4) + f(−x1 + x2 − x3 + x4) + f(−x1 + x2 + x3)

+ f(−x2 + x3 + x4) + f(−x3 + x4 + x1) + f(−x4 + x1 + x2)

= 5

4∑
i=1

f(xi)

for all x1, x2, x3, x4 ∈ X, then f has the following properties:

(1) f(0) = 0.
(2) f(x) = f(−x) for all x ∈ X.
(3) f is a quadratic mapping.

Proof. (1). Let x1 = x2 = x3 = x4 = 0. Then 6f(0) = 20f(0), that is, f(0) = 0.
(2). Let x1 = x, and x2 = x3 = x4 = 0. By (1), we have 3f(x) + 2f(−x) =
5f(x). Hence the desired result is obtained. (3). Let x1 = x, x2 = y, and
x3 = x4 = 0. Then 2f(x + y) + 2f(x − y) = 4f(x) + 4f(y). Thus f(x + y) +
f(x− y) = 2f(x) + 2f(y), as desired. □

2. Stability using shadowing property

In this section, we will investigate the stability of the given functional equa-
tion based on the ideas from dynamical systems. Before we proceed, we would
like to introduce some basic definitions concerning shadowing and key concepts
to establish the stability; see [13].

Let us fix some notations which will be used throughout this section. We
denote N the set of all nonnegative integers, X a complete normed space and
B(x, s) the closed ball centered at x with radius s and let ϕ be given.

Definition 2.1. Let δ ≥ 0. We say that a sequence (xk)k∈N is a δ-pseudoorbit
(for ϕ) if

d(xk+1, ϕ(xk)) ≤ δ for k ∈ N.
A 0-pseudoorbit is called an orbit.
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Definition 2.2. Let s,R > 0 be given. We say that ϕ : X → X is locally
(s,R)-invertible at x0 ∈ X if

∀y ∈ B(ϕ(x0), R),∃!x ∈ B(x0, s) : ϕ(x) = y.

If ϕ is locally (s,R)-invertible at each x ∈ X, then we say that ϕ is locally
(s,R)-invertible.

For a locally (s,R)-invertible function ϕ, we define a function ϕ−1
x0

:

B(ϕ(x0), R) → B(x0, s) in such a way that ϕ−1
x0

(y) denote the unique x from
the above definition which satisfies ϕ(x) = y. Moreover, we put

lipRϕ
−1 := sup

x0∈X
lip(ϕ−1

x0
),

where lip(ϕ−1
x0

) is the lipschitz constant of ϕ−1
x0

.

Theorem 2.3 ([14]). Let l ∈ (0, 1), R ∈ (0,∞) be fixed and let ϕ : X → X
be locally (lR,R)-invertible. We assume additionally that lipR(ϕ

−1) ≤ l. Let
δ ≤ (1 − l)R and let (xk)k∈N be an arbitrary δ-pseudoorbit. Then there exists
a unique y ∈ X such that

d(xk, ϕ
k(y)) ≤ lR for k ∈ N.

Moreover,

d(xk, ϕ
k(y)) ≤ lδ

1− l
for k ∈ N.

Let (X, ∗) be a semigroup. We denote kx to be x ∗ · · · ∗ x︸ ︷︷ ︸
k

, where x ∈ X

and k ∈ N. Then the function || · || : X → R is called a (semigroup) norm if it
satisfies the following properties:

(1) for all x ∈ X, ||x|| ≥ 0.
(2) for all x ∈ X, k ∈ N, ||kx|| = k||x||.
(3) for all x, y ∈ X, ||x||+ ||y|| ≥ ||x ∗ y|| and also the equality holds when

x = y, where ∗ is the binary operation on X.

Note (X, ∗, || · ||) is called a normed group if X is a group with an identity
e, and it additionally satisfies that ||x|| = 0 if and only if x = e.

We say that (X, ∗, || · ||) is a normed (semi)group if X is a (semi)group with
a norm || · ||. Now, given an Abelian group X and n ∈ Z, we define the mapping
[nX ] : X → X by the formula

[nX ](x) := nx for x ∈ X.

Also, we are going to need the following result. In recent years, Lee et al.
showed the next lemma by using Theorem 2.3.

Lemma 2.4 ([8]). Let l ∈ (0, 1), R ∈ (0,∞), δ ∈ (0, (1 − l)R), ε > 0,m ∈
N, n ∈ Z. Let G be a commutative semigroup and X a complete Abelian metric
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group. We assume that the mapping [nX ] is locally (lR,R)-invertible and that
lipR([nX ]−1) ≤ l. Let f : G→ X satisfy the following two inequalities∣∣∣∣∣∣ N∑

i=1

aif(bi1x1 + · · ·+ binxn)
∣∣∣∣∣∣ ≤ ε for x1, . . . , xn ∈ G,

||f(mx)− nf(x)|| ≤ δ for x ∈ G,

where all ai are endomorphisms in X and bij are endomorphisms in G. We
assume additionally that there exists K ∈ {1, . . . , N} such that

(2.1)

K∑
i=1

lip(ai)δ ≤ (1− l)R, ε+

N∑
i=K+1

lip(ai)
lδ

1− l
≤ lR.

Then there exists a unique mapping F : G→ X such that

F (mx) = nF (x) for x ∈ G,

and

||f(x)− F (x)|| ≤ lδ

1− l
for x ∈ G.

Moreover, F satisfies

N∑
i=1

aiF (bi1x1 + · · ·+ binxn) = 0 for x1, . . . , xn ∈ G.

Now, we are ready to prove our functional equation as follows: for the given
mapping f : X → Y, we define

(2.2)

Df(x1, x2, x3, x4) := f(x1 + x2 + x3 + x4) + f(−x1 + x2 − x3 + x4)

+ f(−x1 + x2 + x3) + f(−x2 + x3 + x4)

+ f(−x3 + x4 + x1) + f(−x4 + x1 + x2)

− 5

4∑
i=1

f(xi)

for all x1, x2, x3, x4 ∈ X.

Theorem 2.5. Let R > 0, let G be an Abelian group, and let X be a complete
normed Abelian group. Let ε ≤ 7R

152 be arbitrary and let f : G → X be a
mapping such that

(2.3) ||Df(x1, . . . , x4)|| ≤ ε

for all x1, . . . , x4, x ∈ G. Then there exists a unique mapping F : G→ X such
that

F (4x) = 16F (x),
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(2.4)

F (x1 + x2 + x3 + x4) + F (−x1 + x2 − x3 + x4) + F (−x1 + x2 + x3)

+ F (−x2 + x3 + x4) + F (−x3 + x4 + x1) + F (−x4 + x1 + x2)

= 5
4∑
i=1

F (xi),

||F (x)− f(x)|| ≤ 1

14
ε

for all x1, . . . , x4, x ∈ G.

Proof. By letting x1 = · · · = x4 = 0 in the equation (2.3), we have

||14f(0)|| ≤ ε,

that is, ||f(0)|| ≤ ε
14 . Now, by putting x1 = · · · = x4 = x in (2.3),

||f(4x) + f(0)− 16f(x)|| ≤ ε.

Since ||f(0)|| ≤ ε
14 , we have ||f(4x) − 16f(x)|| ≤ 15

14ε for all x ∈ G. To apply
Lemma 2.4 for the function f, we may let

l =
1

16
, δ =

15

14
ε,

a1 = · · · = a6 = idX , a7 = · · · = a11 = −5idX ,

K = 6, and N = 11.

Then we have

(2.5) δ ≤ (1− l)R,
K∑
i=1

lip(ai)δ ≤ (1− l)R, ε+
N∑

i=K+1

lip(ai)
lδ

1− l
≤ lR.

Hence all conditions of Lemma 2.4 are satisfied, and thus we conclude that
there exists a unique mapping F : G→ X such that

F (4x) = 16F (x),

F (x1 + x2 + x3 + x4) + F (−x1 + x2 − x3 + x4) + F (−x1 + x2 + x3)

+ F (−x2 + x3 + x4) + F (−x3 + x4 + x1) + F (−x4 + x1 + x2)

= 5
4∑
i=1

F (xi),

and also we have

||F (x)− f(x)|| ≤ lδ

1− l
=

1

14
ε for all x1, . . . , x4, x ∈ G.

□

Theorem 2.6. Let R > 0, let G be an Abelian group, let X be a complete
normed Abelian group, and let f : G→ X be a mapping. Suppose that [14X ] is
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locally
(
R
14 , R

)
-invertible and [2X ] is locally

(
R
2 , R

)
-invertible. If f satisfies the

following equation

(2.6)

f(x1 + x2 + x3 + x4) + f(−x1 + x2 − x3 + x4) + f(−x1 + x2 + x3)

+ f(−x2 + x3 + x4) + f(−x3 + x4 + x1) + f(−x4 + x1 + x2)

= 5

4∑
i=1

f(xi)

for all x1, . . . , x4 ∈ G, then f is a quadratic even mapping.

Proof. By letting x1 = · · · = x4 = 0 in the equation (2.6), we have

14f(0) = 0.

By the uniqueness of the local division by 14, we get f(0) = 0. Also, setting
x1 = x, xk = 0 (k = 2, . . . , 4) and by the uniqueness of the local division by 2,
we have f(x) = f(−x) for all x ∈ G, that is, f is even. By the uniqueness of
the local division by 2 and letting x1 = x, x2 = y, x3 = x4 = 0, we have

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G, that is, f is a quadratic mapping, as desired. □
The direct application of Theorems 2.5 and 2.6 yields the following corollary.

Corollary 2.7. Let R > 0, let G be an Abelian group, and let X be a complete
normed Abelian group. Let ε ≤ 7R

152 be arbitrary and let f : G→ X be a function

satisfying equation (2.3). Suppose that [14X ] is locally
(
R
14 , R

)
-invertible and

[2X ] is locally
(
R
2 , R

)
-invertible. Then there exists a quadratic even mapping

F : G→ X such that

||F (x)− f(x)|| ≤ 1

14
ε.

3. Hyers-Ulam-Rassias stability

Throughout in this section, let X be a normed vector space with norm ∥·∥
and Y be a Banach space with norm ∥·∥ .

Theorem 3.1. Let f : X → Y be an even mapping satisfying f(0) = 0 for
which there exists a function ϕ : X4 → [0,∞) such that

ϕ̃(x1, x2, x3, x4) :=
∞∑
j=0

4−jϕ(2jx1, 2
jx2, 2

jx3, 2
jx4) <∞,

(3.1) ∥Df(x1, x2, x3, x4)∥ ≤ ϕ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then there exists a unique 4-dimensional quadratic
mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 1

8
ϕ̃(x, x, 0, 0)(3.2)

for all x ∈ X.
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Proof. Letting x1 = x2 = x and x3 = x4 = 0 in the equation (3.2), we have

∥2f(2x)− 8f(x)∥ ≤ ϕ(x, x, 0, 0)

for all x ∈ X. Then we write∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

8
ϕ(x, x, 0, 0)(3.3)

for all x ∈ X.
Then∥∥∥∥∥
(
1

4

)d
f
(
2dx

)
−
(
1

4

)d+1

f
(
2d+1x

)∥∥∥∥∥ =

(
1

4

)d ∥∥∥∥f (2dx)− 1

4
f
(
2d+1x

)∥∥∥∥
≤ 1

8

(
1

4

)d
ϕ
(
2dx, 2dx, 0, 0

)
for all x ∈ X and all positive integer d. Hence we have

(3.4)

∥∥∥∥∥
(
1

4

)s
f (2sx)−

(
1

4

)d
f(2dx)

∥∥∥∥∥ ≤ 1

8

d−1∑
j=s

(
1

4

)j
ϕ(2jx, 2jx, 0, 0)

for all x ∈ X and all positive integers s, d with s < d.
Hence we may conclude that the sequence {

(
1
4

)s
f (2sx)} is a Cauchy se-

quence. Since Y is complete, the sequence {
(
1
4

)s
f (2sx)} converges in Y for

all x ∈ X. Thus we may define a mapping Q : X → Y via

Q(x) = lim
s→∞

(
1

4

)s
f (2sx)

for all x ∈ X. Then

∥DQ(x1, x2, x3, x4)∥ = lim
s→∞

(
1

4

)s
∥Df (2sx1, 2sx2, 2sx3, 2sx4)∥

≤ lim
s→∞

(
1

4

)s
ϕ (2sx1, 2

sx2, 2
sx3, 2

sx4)

= 0

for all x1, . . . , x4 ∈ X. Lemma 1.1 induces that Q is a quadratic mapping. Also,
by letting s = 0, and d→ ∞ in the equation (3.4), we have the equation (3.2).

Now, let Q′ : X → Y be another quadratic mapping satisfying the equation
(3.2). Then for all x ∈ X

∥Q(x)−Q′(x)∥ =

(
1

4

)s
∥Q (2sx)−Q′ (2sx)∥

≤
(
1

4

)s
(∥Q (2sx)− f (2sx)∥+ ∥Q′ (2sx)− f (2sx)∥)

≤ 2 · 4−s

8
· ϕ̃(2sx, 2sx, 0, 0) → 0
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as s→ ∞. Thus we may conclude that such a quadratic mapping Q is unique.
□

Theorem 3.2. Let f : X → Y be an even mapping satisfying f(0) = 0 for
which there exists a function ϕ : X4 → [0,∞) such that

ϕ̃(x1, x2, x3, x4) :=
∞∑
j=1

4jϕ(2−jx1, 2
−jx2, 2

−jx3, 2
−jx4) <∞,

∥Df(x1, x2, x3, x4)∥ ≤ ϕ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then there exists a unique 4-dimensional quadratic
mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 1

2
ϕ̃(x, x, 0, 0)

for all x ∈ X.

Proof. In the proof of Theorem 3.1, if x is inductively replaced by 1
2x, then we

have ∥∥f(x)− 4rf(2−rx)
∥∥ ≤ 1

2

r∑
j=1

4jϕ(2−jx, 2−jx, 0, 0)

for all x ∈ X. The remains follow from Therorem 3.1. □

Corollary 3.3. Let p ̸= 2 and θ be positive real numbers, and let f : X → Y
be an even mapping satisfying f(0) = 0 and

∥Df(x1, x2, x3, x4)∥ ≤ θ
4∑
i=1

∥xi∥p

for all x1, x2, x3, x4 ∈ X. Then there exists a unique 4-dimensional quadratic
mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ θ

|4− 2p|
∥x∥p

for all x ∈ X.

Proof. Let

ϕ(x1, x2, x3, x4) = θ

4∑
i=1

∥xi∥p .

Let p < 2. Applying to Theorem 3.1, we have the desired result. Now, let
p > 2, similar to the previous case applying to Theorem 3.2. □

Theorem 3.4. Let f : X → Y be an even mapping satisfying f(0) = 0 for
which there exists a function ϕ : X4 → [0,∞) such that

(3.5) ϕ̃(x1, x2, x3, x4) :=
∞∑
j=0

4−2jϕ(4jx1, 4
jx2, 4

jx3, 4
jx4) <∞,
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(3.6) ∥Df(x1, x2, x3, x4)∥ ≤ ϕ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then there exists a unique 4-dimensional quadratic
mapping Q : X → Y such that

(3.7) ∥f(x)−Q(x)∥ ≤ 1

16
ϕ̃(x, x, x, x)

for all x ∈ X.

Proof. Letting x1 = x2 = x3 = x4 = x in the equation (3.6), since f(0) = 0,
we have

∥f(4x)− 16f(x)∥ < ϕ(x, x, x, x)

for all x ∈ X. Hence we have

(3.8)

∥∥∥∥f(x)− 1

16
f(4x)

∥∥∥∥ ≤ 1

16
ϕ(x, x, x, x)

for all x ∈ X. Then∥∥∥∥∥
(
1

4

)2d

f
(
4dx

)
−
(
1

4

)2(d+1)

f
(
4d+1x

)∥∥∥∥∥ =

(
1

4

)2d ∥∥∥∥f (4dx)− 1

16
f
(
4d+1x

)∥∥∥∥
≤ 1

16

(
1

4

)2d

ϕ
(
4dx, 4dx, 4dx, 4dx

)
for all x ∈ X and all positive integer d. Hence we have

(3.9)

∥∥∥∥∥
(
1

4

)s
f (4sx)−

(
1

4

)d
f
(
4dx

)∥∥∥∥∥ ≤ 1

16

d−1∑
j=s

(
1

4

)2j

ϕ
(
4jx, 4jx, 4jx, 4jx

)
for all x ∈ X and all positive integers s, d with s < d.

Hence we may conclude that the sequence {
(
1
4

)2s
f (4sx)} is a Cauchy se-

quence. Since Y is complete, the sequence {
(
1
4

)2s
f (4sx)} converges in Y for

all x ∈ X. Thus we may define a mapping Q : X → Y via

Q(x) = lim
s→∞

(
1

4

)2s

f(4sx)

for all x ∈ X. Then

||DQ(x1, x2, x3, x4)|| = lim
s→∞

(
1

4

)2s

||Df (4sx1, 4sx2, 4sx3, 4sx4) ||

≤ lim
s→∞

(
1

4

)2s

ϕ (4sx1, 4
sx2, 4

sx3, 4
sx4)

= 0

for all x1, . . . , x4 ∈ X. Lemma 1.1 induces that Q is a quadratic mapping. Also,
by letting s = 0, and d→ ∞ in the equation (3.9), we have the equation (3.7).
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Now, let Q′ : X → Y be another quadratic mapping satisfying the equation
(3.7). Then for all x ∈ X

∥Q(x)−Q′(x)∥ =

(
1

4

)2s

∥Q (4sx)−Q′ (4sx)∥

≤
(
1

4

)2s

(∥Q (4sx)− f (4sx)∥+ ∥Q′ (4sx)− f (4sx)∥)

≤ 2 · 4−2s

16
· ϕ̃ (4sx, 4sx, 4sx, 4sx) → 0

as s→ ∞. Thus we may conclude that such a quadratic mapping Q is unique.
□

Theorem 3.5. Let f : X → Y be an even mapping satisfying f(0) = 0 for
which there exists a function ϕ : X4 → [0,∞) such that

ϕ̃(x1, x2, x3, x4) :=

∞∑
j=1

42jϕ(4−jx1, 4
−jx2, 4

−jx3, 4
−jx4) <∞,

∥Df(x1, x2, x3, x4)∥ ≤ ϕ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then there exists a unique 4-dimensional quadratic
mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ ϕ̃(x, x, x, x)

for all x ∈ X.

Proof. In the proof of Theorem 3.4, if x is inductively replaced by 1
4x, then we

have ∥∥f(x)− 42rf(4−rx)
∥∥ ≤

r−1∑
j=1

42jϕ(4−jx, 4−jx, 4−jx, 4−jx)

for all x ∈ X. Similar to Theorem 3.4, the proof follows. □

Corollary 3.6. Let p ̸= 2 and θ be positive real numbers, and let f : X → Y
be an even mapping satisfying f(0) = 0 and

∥Df(x1, x2, x3, x4)∥ ≤ θ
4∑
i=1

∥xi∥p

for all x1, x2, x3, x4 ∈ X. Then there exists a unique 4-dimensional quadratic
mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 4θ

|16− 4p|
∥x∥p

for all x ∈ X.
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Proof. Let

ϕ(x1, x2, x3, x4) = θ

4∑
i=1

∥xi∥p .

It is easy to check that when p < 2, apply to Theorem 3.4 or when p > 2, apply
to Theorem 3.5 □

4. Stability using alternative fixed point

In this section, we will investigate the stability of the given 4-dimensional
quadratic functional equation (2.2) using the alternative fixed point. Before
proceeding the proof, we will state theorem, the alternative of fixed point.

Theorem 4.1 (The alternative of fixed point [4], [11]). Suppose that we are
given a complete generalized metric space (Ω, d) and a strictly contractive map-
ping T : Ω → Ω with Lipschitz constant L. Then for each given x ∈ Ω, either

d(Tnx, Tn+1x) = ∞ for all n ≥ 0,

or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) <∞ for all n ≥ n0;
(2) The sequence (Tnx) is convergent to a fixed point y∗ of T ;
(3) y∗ is the unique fixed point of T in the set

△ = {y ∈ Ω | d(Tn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ △.

Now, let ϕ : Xn → [0,∞) be a function such that

lim
m→∞

ϕ(λmi x1, . . . , λ
m
i xn)

λ2mi
= 0

for all x1, . . . , xn ∈ X, where λi = 2 if i = 0 and λi =
1
2 if i = 1.

Theorem 4.2. Suppose that an even mapping f : X → Y satisfies the func-
tional inequality

(4.1) ∥Df(x1, . . . , x4)∥ ≤ ϕ(x1, . . . , x4)

for all x1, . . . , x4 ∈ X and f(0) = 0. If there exists L = L(i) < 1 such that the
function

(4.2) x 7→ ψ(x) = ϕ(x, x, 0, 0)

has the property

(4.3) ψ(x) ≤ L · λ2i · ψ
(
x

λi

)
for all x ∈ X, then there exists a unique quadratic mapping Q : X → Y such
that the inequality

(4.4) ∥f(x)−Q(x)∥ ≤ L1−i

1− L
ψ(x)
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holds for all x ∈ X.

Proof. Consider the set

Ω = {g | g : X → Y, g(0) = 0}

and introduce the generalized metric on Ω,

d(g, h) = dψ(g, h) = inf{K ∈ (0,∞)| ∥g(x)− h(x)∥ ≤ Kψ(x), x ∈ X}.

It is easy to show that (Ω, d) is complete. Now we define a function T : Ω → Ω
by

Tg(x) =
1

λ2i
g(λix)

for all x ∈ X. Note that for all g, h ∈ Ω,

d(g, h) < K ⇒ ∥g(x)− h(x)∥ ≤ Kψ(x) for all x ∈ X,

⇒
∥∥∥∥ 1

λ2i
g(λix)−

1

λ2i
h(λix)

∥∥∥∥ ≤ 1

λ2i
Kψ(λix) for all x ∈ X,

⇒
∥∥∥∥ 1

λ2i
g(λix)−

1

λ2i
h(λix)

∥∥∥∥ ≤ LKψ(x) for all x ∈ X,

⇒ d(Tg, Th) ≤ LK.

Hence we have that

d(Tg, Th) ≤ Ld(g, h)

for all g, h ∈ Ω, that is, T is a strictly self-mapping of Ω with the Lipschitz
constant L. By setting x1 = x2 = x and x3 = x4 = 0, we have the equation
(3.3) as in the proof of Theorem 3.1 and we use the equation (4.3) with the
case where i = 0, which is reduced to

(4.5)

∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ψ(2x) ≤ Lψ(x)

for all x ∈ X, that is, d(f, Tf) ≤ L = L1 < ∞. Now, replacing x by 1
2x in the

equation (4.5), multiplying 4, and using the equation (4.3) with the case where
i = 1, we have that ∥∥∥f(x)− 22f

(x
2

)∥∥∥ ≤ ψ(x)

for all x ∈ X, that is, d(f, Tf) ≤ 1 = L0 < ∞. In both cases we can apply
the fixed point alternative and since limr→∞ d(T rf,Q) = 0, there exists a fixed
point Q of T in Ω such that

(4.6) Q(x) = lim
n→∞

f(λrix)

λ2ri
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for all x ∈ X. Letting xj = λrixj for j = 1, . . . , 4 in the equation (4.1) and
dividing by λ2ri ,

∥DQ(x, . . . , xn)∥ = lim
r→∞

∥Df(λrix1, . . . , λrix4)∥
λ2ri x1

≤ lim
r→∞

∥ϕ(λrix1, . . . , λrix4)∥
λ2ri x1

= 0

for all x1, . . . , x4 ∈ X; that is, it satisfies the equation (1.2). By Lemma 1.1,
the Q is quadratic. Also, the fixed point alternative guarantees that such a Q
is the unique mapping such that

∥f(x)−Q(x)∥ ≤ Kψ(x)

for all x ∈ X and some K > 0. Again using the fixed point alternative, we have

d(f,Q) ≤ 1

1− L
d(f, Tf).

Hence we may conclude that

d(f,Q) ≤ L1−i

1− L
,

which implies the equation (4.4). □
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