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APPROXIMATE EULER-LAGRANGE-JENSEN TYPE

ADDITIVE MAPPING IN MULTI-BANACH SPACES:

A FIXED POINT APPROACH

Fridoun Moradlou

Abstract. Using the fixed point method, we prove the generalized Hyers-
Ulam-Rassias stability of the following functional equation in multi-
Banach spaces:

∑

1≤i<j≤n

f
( rixi + rjxj

k

)

=
n− 1

k

n
∑

i=1

rif(xi).

1. Introduction and preliminaries

A classical question in the theory of functional equations is the following:
“When is it true that a function, which approximately satisfies a functional
equation E must be close to an exact solution of E?” If the problem accepts a
solution, we say that the equation E is stable. Such a problem was formulated
by Ulam [43] in 1940 and solved in the next year for the Cauchy functional
equation by Hyers [19]. It gave rise the stability theory for functional equa-
tions. The result of Hyers was extended by Aoki [1] in 1950, by considering
the unbounded Cauchy differences. In 1978, Th. M. Rassias [39] proved that
the additive mapping T , obtained by Hyers or Aoki, is linear if, in addition, for
each x ∈ E the mapping f(tx) is continous in t ∈ R. Găvruta [18] generalized
the Rassias’ result. Following the techniques of the proof of the corollary of
Hyers [19] we observed that Hyers introduced (in 1941) the following Hyers
continuity condition: about the continuity of the mapping for each fixed, and
then he proved homogenouity of degree one and therefore the famous linear-
ity. This condition has been assumed further till now, through the complete
Hyers direct method, in order to prove linearity for generalized Hyers–Ulam
stability problem forms (see [23]). Beginning around the year 1980 the stabil-
ity problems of several functional equations and approximate homomorphisms
have been extensively investigated by a number of authors and there are many
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interesting results concerning this problem (see [3], [6], [12]–[14], [21]–[34], [38],
[40], [41]).

J. M. Rassias [37] following the spirit of the innovative approach of Hyers
[19], Aoki [1] and Th. M. Rassias [39] for the unbounded Cauchy difference
proved a similar stability theorem in which he replaced the factor ‖x‖p + ‖y‖p

by ‖x‖p · ‖y‖q for p, q ∈ R with p + q 6= 1 (see also [36] for a number of other
new results).

In 2003 Cădariu and Radu applied the fixed point method to the investi-
gation of the Jensen functional equation [4] (see also [5], [6], [20], [35]). They
could present a short and a simple proof (different of the “direct method ”, ini-
tiated by Hyers in 1941) for the generalized Hyers–Ulam stability of Jensen
functional equation [4], for Cauchy functional equation [6] and for quadratic
functional equation [5].

The following functional equation

(1.1) Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y),

is called a quadratic functional equation, and every solution of equation (1.1) is
said to be a quadratic mapping. F. Skof [42] proved the Hyers–Ulam stability
of the quadratic functional equation (1.1) for mappings f : E1 → E2, where
E1 is a normed space and E2 is a Banach space. In [7], S. Czerwik proved
the Hyers–Ulam stability of the quadratic functional equation (1.1). C. Borelli
and G. L. Forti [2] generalized the stability result of the quadratic functional
equation (1.1).

Recently, Dales and Polyakov [9] introduced the notion of multi-normed
spaces. This concept is somewhat similar to operator sequence spaces and
has some connections with operator spaces and Banach lattices. Dales and
Moslehian [8] investigated stability of Cauchy functional equation in multi-
Banach spaces (see also [28], [44]).

In this paper, for a fixed positive integer n ≥ 2, we introduce the following
additive functional equation of Euler–Lagrange–Jensen type:

∑

1≤i<j≤n

f
(rixi + rjxj

k

)

=
n− 1

k

n∑

i=1

rif(xi),(1.2)

where r1, . . . , rn ∈ R and k is a fixed non-zero integer. Every solution of the
functional equation (1.2) is said to be a generalized additive mapping of Euler–

Lagrange–Jensen type.

We will adopt the idea of Cădariu and Radu [4], [6], [35], to prove the
generalized Hyers–Ulam–Rassias stability of additive functional equation of
Euler–Lagrange–Jensen type on multi-Banach spaces.
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2. Stability of Euler-Lagrange-Jensen type functional equation:

fixed point method

Assume that (E, ‖·‖) is a complex linear space, and letm ∈ N. We denote by
Em the linear space E⊕E⊕· · ·⊕E consisting of m-tuples (x1, . . . , xm), where
x1, . . . , xm ∈ E. The linear operations on Em are defined coordinatewise.
When we write (0, . . . , 0, xi, 0, . . . , 0) for an element in Em, we understand
that xi appears in the ith coordinate. The zero element of either E or Em is
denoted by 0. We denote by Nm the set {1, 2, . . . ,m} and by σm the group of
permutations on m symbols.

In this section, we recall the notion of a multi-normed space and some pre-
liminaries concerning multi-normed spaces from [9].

Definition 2.1 ([9]). Let (E, ‖ ·‖) be a complex normed space, and let m ∈ N.
A multi-norm of level m on {Es : s ∈ Nm} is a sequence

(‖ · ‖s) = (‖ · ‖s : s ∈ Nm)

such that ‖ · ‖s is a norm on Es for each s ∈ Nm, such that ‖x‖1 = ‖x‖ for
each x ∈ E, and such that the following Axioms (A1)-(A4) are satisfied for
each s ∈ Nm with s ≥ 2:

(A1) for each σ ∈ σs and x1, . . . , xs ∈ E, we have

‖(xσ(1), . . . , xσ(s))‖s = ‖(x1, . . . , xs)‖s;

(A2) for each α1, . . . , αs ∈ C and x1, . . . , xs ∈ Es, we have

‖α1x1, . . . , αsxs‖s ≤
(
max
i∈Ns

|αi|
)
‖x1, . . . , xs)‖s;

(A3) for each x1, . . . , xs ∈ E, we have

‖x1, . . . , xs−1, 0‖s = ‖x1, . . . , xs−1‖s−1;

(A4) for each x1, . . . , xs ∈ E, we have

‖x1, . . . , xs−1, xs−1‖s = ‖x1, . . . , xs−1‖s−1;

In this case, we say that ((Es, ‖ · ‖s) : s ∈ Nm) is a multi-normed space of level

m.

Definition 2.2 ([9]). A multi-norm on {Es : s ∈ N} is a sequence

(‖ · ‖s) = (‖ · ‖s : s ∈ N)

such that (‖ · ‖s : s ∈ Nm) is a multi-norm of level m for each m ∈ N. In this
case, we say that ((Es, ‖ · ‖s) : s ∈ N) is a multi-normed space.

Lemma 2.3 ([9]). Let ((Es, ‖ · ‖s) : s ∈ N) be a multi-normed space. The

following properties are immediate consequences of the axioms for multi-normed

spaces.

(i) for all x ∈ E and s ∈ N, we have

‖(x, . . . , x)‖s = ‖x‖.
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(ii) for all s ∈ N and all x1, . . . , xs ∈ E, we have

max
i∈Ns

‖xi‖ ≤ ‖(x1, . . . , xs)‖s ≤
s∑

i=1

‖xi‖ ≤ smax
i∈Ns

‖xi‖.

The following lemma is a consequence of (ii).

Lemma 2.4 ([9]). Suppose that (E, ‖ · ‖) is a Banach space. Then (Es, ‖ · ‖s)
is a Banach space for each s ∈ N.

Definition 2.5 ([9]). Let ((Es, ‖ · ‖s) : s ∈ N) be a multi-normed space for
which (E, ‖ · ‖) is a Banach space. Then ((Es, ‖ · ‖s) : s ∈ N) is called a
multi-Banach space.

Now, we recall two important examples of multi-norms for arbitrary space
(E, ‖ · ‖). For other examples we refer to readers to [9].

Example 2.6. Let (E, ‖ · ‖) be a normed space. For m ∈ N, define ‖ · ‖m on
Em by

‖(x1, . . . , xm)‖m = max
i∈Nm

‖xi‖ (x1, . . . , xm ∈ E).

It is immediate that ((Es, ‖·‖s) : s ∈ N) is a multi-normed space. The sequence
(‖ · ‖m : m ∈ N) is called minimum multi-norm. The terminology ‘minimum’
is justified by Lemma 2.3.

Example 2.7. Let (E, ‖ · ‖) be a normed space and let {(‖ · ‖αm : m ∈ N) :
α ∈ A} be the (non-empty) family of all multi-norms on {Es : s ∈ N}. For
s ∈ N, define

|||(x1, . . . , xs)|||s = sup
α∈A

‖(x1, . . . , xs)‖
α
s (x1, . . . , xs ∈ E).

Then (||| · |||m : m ∈ N) is a multi-norm on {Es : s ∈ N}, which is called
maximum multi-norm.

We recall two fundamental results in fixed point theory.

Theorem 2.8 ([4]). Let (X, d) be a complete metric space and let J : X → X
be strictly contractive, i.e.,

d(Jx, Jy) ≤ Lf(x, y), ∀x, y ∈ X

for some Lipschitz constant L < 1. Then

(1) the mapping J has a unique fixed point x∗ = Jx∗;
(2) the fixed point x∗ is globally attractive, i.e.,

lim
n→∞

Jnx = x∗

for any starting point x ∈ X ;
(3) one has the following estimation inequalities:

d(Jnx, x∗) ≤ Lnd(x, x∗),
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d(Jnx, x∗) ≤
1

1− L
d(Jnx, Jn+1x),

d(x, x∗) ≤
1

1− L
d(x, Jx)

for all nonnegative integers n and all x ∈ X.

Definition 2.9. Let X be a set. A function d : X × X → [0,∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 2.10 ([10]). Let (X, d) be a complete generalized metric space and

let J : X → X be a strictly contractive mapping with Lipschitz constant L < 1.
Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

Throughout this paper, n will be a positive integer such that n ≥ 2, k will be
a fixed non-zero integer and r1, . . . , rn will be real numbers such that ri, rj 6= 0
for fixed 1 ≤ i < j ≤ n.

Lemma 2.11. Let X and Y be linear spaces and suppose that r1, . . . , rn are

real numbers with
∑n

i=1 ri 6=
nk
2 . Assume that a mapping L : X → Y satisfies

the functional equation (1.2) for all x1, . . . , xn ∈ X . Then the mapping L is

Cauchy additive. Moreover, L(
rjx

k
) =

rj
k
L(x) for all x ∈ X and all 1 ≤ j ≤ n.

Proof. Since
∑n

i=1 ri 6=
nk
2 , putting x1 = · · · = xn = 0 in (1.2), we get L(0) = 0.

Letting xm = 0 in (1.2) for all 1 ≤ m ≤ n with m 6= i, j, we get

L(
rixi + rjxj

k
) + (n− 2)L(

rixi

k
) + (n− 2)L(

rjxj

k
)(2.1)

=
n− 1

k

(
riL(xi) + rjL(xj)

)

for all xi, xj ∈ X . Letting xj = 0 in (2.1), we have

(2.2) L(
rixi

k
) =

ri
k
L(xi)

for all xi ∈ X . Similarly, by putting xi = 0 in (2.1), we get

(2.3) L(
rjxj

k
) =

rj
k
L(xj)
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for all xj ∈ X . It follows from (2.1), (2.2) and (2.3) that

L(
rixi + rjxj

k
) + (n− 2)L(

rixi

k
) + (n− 2)L(

rjxj

k
)(2.4)

= (n− 1)
(
L(

rixi

k
) + L(

rjxj

k
)
)

for all xi, xj ∈ X . Replacing xi and xj by kx/ri and ky/rj in (2.4), respectively,
we get

L(x+ y) + (n− 2)L(x) + (n− 2)L(y) = (n− 1)
(
L(x) + L(y)

)

for all x, y ∈ X . Therefore, L is additive. Moreover, let x ∈ X and 1 ≤ j ≤ n.
Setting xj = x and xi = 0 for all 1 ≤ i ≤ n with i 6= j in (1.2), we get that
L(

rjx

k
) =

rj
k
L(x). �

Using the same proof as Lemma 2.11, we have an alternative result of Lemma
2.11 when

∑n
i=1 ri =

nk
2 .

Lemma 2.12. Let X and Y be linear spaces. Assume that a mapping L : X →
Y with L(0) = 0 satisfies the functional equation (1.2) for all x1, . . . , xn ∈ X .
Then the mapping L is Cauchy additive. Moreover, L(

rjx

k
) =

rj
k
L(x) for all

x ∈ X and all 1 ≤ j ≤ n.

We will use the following lemma in the proof of the next theorems.

Lemma 2.13 ([27]). Let X and Y be vector spaces and let f : X → Y be an

additive mapping such that f(µx) = µf(x) for all x ∈ X and all µ ∈ T1 :=
{λ ∈ C : |λ| = 1 }. Then the mapping f : X → Y is C-linear.

Let X and Y be vector spaces. For a given mapping f : X → Y , we define

Dµ,r1,...,rnf(x1, . . . , xn) =
∑

1≤i<j≤n

f

(
µrixi + µrjxj

k

)

−

(
n− 1

k

) n∑

i=1

µrif(xi)

for all µ ∈ T1 and all x1, . . . , xn ∈ X .
Now, we prove the generalized Hyers–Ulam–Rassias stability of Euler-Lagr-

ange-Jensen type additive mapping on multi-Banach spaces for the functional
equation Dµ,r1,...,rnf(x1, . . . , xn) = 0.

Theorem 2.14. Let E be a linear space and let {(F l, ‖ · ‖l) : l ∈ N} be

a multi-Banach space. Suppose that s ∈ N and f : E → F is a mapping

satisfying f(0) = 0 for which there exists a control function ϕ : Ens → [0,∞)
such that

(2.5) ‖Dµ,r1,...,rnf(X
(1)), . . . , Dµ,r1,...,rnf(X

(s))‖s ≤ ϕ(X(1), . . . , X(s))

for all µ ∈ T1 and all X(1) = (x
(1)
1 , . . . , x

(1)
n ), . . . , X(s) = (x

(s)
1 , . . . , x

(s)
n ) ∈ En.

If there exists a Lipschitz constant L < 1 such that

ϕ
(

X(1), . . . , X(s)
)

≤ 2Lϕ
(X(1)

2
, . . . ,

X(s)

2

)
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for all X(1), . . . , X(s) ∈ En, then there exists a unique linear mapping T : E →
F such that

(2.6)

‖f(x1)− T (x1), . . . , f(xs)− T (xs)‖s

≤
1

2− 2L

[

ϕ

(

Xi,j

(kx1

ri
,
kx1

rj

)

, Xi,j

(kx2

ri
,
kx2

rj

)

, . . . , Xi,j

(kxs

ri
,
kxs

rj

))

+ ϕ

(

Xi,j

(kx1

ri
, 0
)

, Xi,j

(kx2

ri
, 0
)

, . . . , Xi,j

(kxs

ri
, 0
))

+ ϕ

(

Xi,j

(

0,
kx1

rj

)

, Xi,j

(

0,
kx2

rj

)

, . . . , Xi,j

(

0,
kxs

rj

))
]

for all x1, . . . , xs ∈ E, where

Xi,j(x, y) = (0, . . . , 0, x
︸︷︷︸

i th

, 0, . . . , 0, y
︸︷︷︸

j th

, 0, . . . , 0)

for all x, y ∈ E.

Proof. For convenience, set

ϕi,j(x1, x2, . . . , xs)

= ϕ

(

Xi,j

(kx1

ri
,
kx1

rj

)

, Xi,j

(kx2

ri
,
kx2

rj

)

, . . . , Xi,j

(kxs

ri
,
kxs

rj

))

+ ϕ

(

Xi,j

(kx1

ri
, 0
)

, Xi,j

(kx2

ri
, 0
)

, . . . , Xi,j

(kxs

ri
, 0
))

+ ϕ

(

Xi,j

(

0,
kx1

rj

)

, Xi,j

(

0,
kx2

rj

)

, . . . , Xi,j

(

0,
kxs

rj

))

,

where x1, . . . , xs ∈ E and 1 ≤ i < j ≤ n. Consider the set X := {g : E →
F, g(0) = 0} and introduce the generalized metric on X :

d(g, h) = inf{C ∈ R+ : ‖g(x1)− h(x1), . . . , g(xs)− h(xs)‖s

≤ Cϕi,j(x1, x2, . . . , xs), ∀x1, x2, . . . , xs ∈ E}.

It is easy to show that (X , d) is complete. Now we consider the linear mapping
J : X → X such that Jg(x) := 1

2g(2x) for all x ∈ E. For any g, h ∈ X , we have

d(g, h) < C

⇒ ‖g(x1)− h(x1), . . . , g(xs)− h(xs)‖s ≤ Cϕi,j(x1, x2, . . . , xs)

(x1, x2, . . . , xs ∈ E)

⇒
∥
∥
∥
1

2
g(2x1)−

1

2
h(2x1), . . . ,

1

2
g(2xs)−

1

2
h(2xs)

∥
∥
∥
s
≤

1

2
Cϕi,j(2x1, 2x2, . . . , 2xs)

⇒
∥
∥
∥
1

2
g(2x1)−

1

2
h(2x1), . . . ,

1

2
g(2xs)−

1

2
h(2xs)

∥
∥
∥
s
≤LCϕi,j(x1, x2, . . . , xs)

⇒ d(Jg, Jh) ≤ LC.
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Therefore, we see that

d(Jg, Jh) ≤ Ld(g, h), ∀g, h ∈ X .

This means J is a strictly contractive self-mapping of X , with the Lipschitz
constant L.

Letting µ = 1 and for each 1 ≤ r ≤ n with r 6= i, j and each 1 ≤ m ≤ s, let

x
(m)
i = xm, x

(m)
j = ym and x

(m)
r = 0 in (2.5), we get

(2.7)

∥
∥
∥
∥
f(

rix1 + rjy1
k

) + (n− 2)f(
rix1

k
) + (n− 2)f(

rjy1
k

)

−
n− 1

k

(
rif(x1) + rjf(y1)

)
, f(

rix2 + rjy2
k

) + (n− 2)f(
rix2

k
)

+ (n− 2)f(
rjy2
k

)−
n− 1

k

(
rif(x2) + rjf(y2)

)
, . . . , f(

rixs + rjys
k

)

+ (n− 2)f(
rixs

k
) + (n− 2)f(

rjys
k

)−
n− 1

k

(
rif(xs) + rjf(ys)

)
∥
∥
∥
∥
s

≤ ϕ
(

Xi,j(x1, y1), Xi,j(x2, y2), . . . , Xi,j(xs, ys)
)

for all x1, y1, x2, y2, . . . , xs, ys ∈ E. Letting y1 = y2 = · · · = ys = 0 in (2.7), we
have

(2.8)

∥
∥
∥
∥
(n− 1)

(
f(

rix1

k
)−

ri
k
f(x1)

)
, (n− 1)

(
f(

rix2

k
)−

ri
k
f(x2)

)
, . . . ,

(n− 1)f(
rixs

k
)−

ri
k
f(xs)

)
∥
∥
∥
∥
s

≤ ϕ
(

Xi,j(x1, 0), Xi,j(x2, 0), . . . , Xi,j(xs, 0)
)

for all x1, x2, . . . , xs ∈ E. Similarly, letting x1 = x2 = · · · = xs = 0 in (2.7), we
get

(2.9)

∥
∥
∥
∥
(n− 1)

(
f(

riy1
k

)−
ri
k
f(y1)

)
, (n− 1)

(
f(

riy2
k

)−
ri
k
f(y2)

)
, . . . ,

(n− 1)f(
rixs

k
)−

ri
k
f(ys)

)
∥
∥
∥
∥
s

≤ ϕ
(

Xi,j(0, y1), Xi,j(0, y2), . . . , Xi,j(0, ys)
)

for all y1, y2, . . . , ys ∈ E. It follows from (2.7), (2.8) and (2.9) that
∥
∥
∥
∥
f(

rix1 + rjy1
k

)− f(
rix1

k
)− f(

rjy1
k

),

f(
rix2 + rjy2

k
)− f(

rix2

k
)− f(

rjy2
k

), . . . ,(2.10)

f(
rixs + rjys

k
)− f(

rixs

k
)− f(

rjys
k

)

∥
∥
∥
∥
s
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≤ ϕ
(

Xi,j(x1, y1), Xi,j(x2, y2), . . . , Xi,j(xs, ys)
)

+ ϕ
(

Xi,j(x1, 0), Xi,j(x2, 0), . . . , Xi,j(xs, 0)
)

+ ϕ
(

Xi,j(0, y1), Xi,j(0, y2), . . . , Xi,j(0, ys)
)

for all x1, y1, x2, y2, . . . , xs, ys ∈ E. Replacing xm and ym by kxm/ri and
kxm/rj , for all 1 ≤ m ≤ s in (2.10), respectively, we get

(2.11)

∥
∥
∥f(2x1)− 2f(x1), f(2x2)− 2f(x2), . . . , f(2xs)− 2f(xs)

∥
∥
∥
s

≤ ϕi,j(x1, x2, . . . , xs)

for all x1, x2, . . . , xs ∈ E. So
∥
∥
∥
1

2
f(2x1)− f(x1),

1

2
f(2x2)− f(x2), . . . ,

1

2
f(2xs)− f(xs)

∥
∥
∥
s

≤
1

2
ϕi,j(x1, x2, . . . , xs)

for all x1, x2, . . . , xs ∈ E. Hence d(f, Jf) ≤ 1
2 .

By Theorem 2.10, there exists a mapping T : E → F such that
(1) T is a fixed point of J , i.e.,

T (x) =
1

2
T (2x)(2.12)

for all x ∈ E. The mapping T is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}.

This implies that T is a unique mapping satisfying (2.12) such that there exists
C ∈ (0,∞) satisfying

‖T (x1)− f(x1), . . . , T (xs)− f(xs)‖s ≤ Cϕi,j(x1, x2, . . . , xs)

for all x1, x2, . . . , xs ∈ E.
(2) d(Jmf, T ) → 0 as m → ∞. This implies the equality

lim
m→∞

1

2m
f (2mx) = T (x)(2.13)

for all x ∈ E.
(3) d(f, T ) ≤ 1

1−L
d(f, Jf), which implies the inequality

d(f, T ) ≤
1

2− 2L
.

This implies that the inequality (2.6) holds.
Letting µ = 1 and replacing X(1) = · · · = X(s) = (x1, x2, . . . , xn) := X in

(2.5), by using the properties of norm in multi-normed spaces and (2.13), we
have

‖D1,r1,...,rnT (x1, . . . , xn), . . . , D1,r1,...,rnT (x1, . . . , xn)‖s
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= lim
m→∞

1

2m
‖D1,r1,...,rnf(2

mx1, . . . , 2
mxn), . . . , D1,r1,...,rnf(2

mx1, . . . , 2
mxn)‖s

= lim
m→∞

1

2m
‖D1,r1,...,rnf(2

mx1, . . . , 2
mxn)‖s

≤ lim
m→∞

1

2m
ϕ(2mX, . . . , 2mX)

≤ lim
m→∞

Lmϕ(X, . . . , X) = 0

for all x1, x2, . . . , xn ∈ E. So

∑

1≤i<j≤n

T

(
rixi + rjxj

k

)

=

(
n− 1

k

) n∑

i=1

riT (xi).

By Lemma 2.11, the mapping T : E → F is Cauchy additive, i.e., T (x+ y) =
T (x) + T (y) for all x, y ∈ E.

Now, we show that the mapping T : E → F is C-linear. Letting X(1) =
· · · = X(s) = X = (0, . . . , 0, x

︸︷︷︸

i th

, 0, . . . , 0) in (2.5) and using the properties of

norm in multi-normed spaces, we have

‖Dµ,r1,...,rnT (0, . . . , 0, x
︸︷︷︸

i th

, 0, . . . , 0)‖s

= ‖Dµ,r1,...,rnT (X
(1)), . . . , Dµ,r1,...,rnT (X

(s))‖s

= ‖(n− 1)T
(µrix

k

)

−
(n− 1)µri

k
T (x), . . . ,

(n− 1)T
(µrix

k

)

−
(n− 1)µri

k
T (x)‖s

= lim
m→∞

1

2m
‖(n− 1)f

(
µri2

mx

k

)

−
(n− 1)µri

k
f(2mx), . . . ,

(n− 1)f

(
µri2

mx

k

)

−
(n− 1)µri

k
f(2mx)‖s

= lim
m→∞

1

2m
‖(n− 1)f

(
µri2

mx

k

)

−
(n− 1)µri

k
T (2mx)‖

≤ lim
m→∞

1

2m
ϕ(2mX, . . . , 2mX)

≤ lim
m→∞

Lmϕ(X, . . . , X) = 0

for all x ∈ E and all µ ∈ T1. So

T
(µrix

k

)

=
µri
k

T (x)

for all x ∈ E and all µ ∈ T1. Since

T (
rix

k
) =

ri
k
T (x)
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for all x ∈ E and all ri 6= 0. Therefore by Lemma 2.13, the mapping T is
C-linear. �

Corollary 2.15. Let E be a linear space and let {(F l, ‖ · ‖l) : l ∈ N} be a

multi-Banach space. Suppose that s ∈ N and 0 < p < 1 and f : E → F is a

mapping with f(0) = 0 satisfying

‖Dµ,r1,...,rnf(X
(1)), . . . , Dµ,r1,...,rnf(X

(s))‖s ≤ ǫ
s∑

m=1

n∑

t=1

‖x
(m)
t ‖p

for all µ ∈ T1 and all X(1), . . . , X(s) ∈ En. Then there exists a unique linear

mapping T : E → F such that

‖f(x1)− T (x1), . . . , f(xs)− T (xs)‖s ≤
ǫkp

1− 2p−1

(

1

rpi
+

1

rpj

)
s∑

m=1

‖xm‖p

for all x1, . . . , xs ∈ E.

Proof. The proof follows from Theorem 2.14 by taking

ϕ(X(1), . . . , X(s)) = ǫ

s∑

m=1

n∑

t=1

‖x
(m)
t ‖p

for all X(1), . . . , X(s) ∈ En. We can choose L = 1
21−p to get the desired

result. �

Theorem 2.16. Let E be a linear space and let {(F l, ‖ · ‖l) : l ∈ N} be

a multi-Banach space. Suppose that s ∈ N and f : E → F is a mapping

satisfying f(0) = 0 for which there exists a control function ϕ : Ens → [0,∞)
satisfying (2.5) for all µ ∈ T1 and all X(1), . . . , X(s) ∈ En. If there exists a

Lipschitz constant L < 1 such that

ϕ
(

X(1), . . . , X(s)
)

≤
1

2
Lϕ
(

2X(1), . . . , 2X(s)
)

for all X(1), . . . , X(s) ∈ En, then there exists a unique linear mapping T : E →
F such that

(2.14)
‖f(x1)− T (x1), . . . , f(xs)− T (xs)‖s

≤
L

2− 2L

[

ϕ

(

Xi,j

(kx1

ri
,
kx1

rj

)

, Xi,j

(kx2

ri
,
kx2

rj

)

, . . . , Xi,j

(kxs

ri
,
kxs

rj

))

+ ϕ

(

Xi,j

(kx1

ri
, 0
)

, Xi,j

(kx2

ri
, 0
)

, . . . , Xi,j

(kxs

ri
, 0
))

+ ϕ

(

Xi,j

(

0,
kx1

rj

)

, Xi,j

(

0,
kx2

rj

)

, . . . , Xi,j

(

0,
kxs

rj

))
]
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for all x1, . . . , xs ∈ E, where

Xi,j(x, y) = (0, . . . , 0, x
︸︷︷︸

i th

, 0, . . . , 0, y
︸︷︷︸

j th

, 0, . . . , 0)

for all x, y ∈ E.

Proof. Similar to the proof of Theorem 2.14, we consider the linear mapping
J : X → X such that Jg(x) := 2g

(
1
2x
)
for all x ∈ E. We can conclude that J

is a strictly contractive self-mapping of X , with the Lipschitz constant L.
It follows from (2.11) that

∥
∥
∥f(x1)− 2f(

1

2
x1), f(x2)− 2f(

1

2
x2), . . . , f(xs)− 2f(

1

2
xs)
∥
∥
∥
s

≤
L

2
ϕi,j(x1, x2, . . . , xs)

for all x1, x2, . . . , xs ∈ E. Hence d(f, Jf) ≤ L
2 .

By Theorem 2.10, there exists a mapping T : E → F such that
(1) T is a fixed point of J , i.e.,

T (x) = 2T (
x

2
)(2.15)

for all x ∈ E. The mapping T is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}.

This implies that T is a unique mapping satisfying (2.15) such that there exists
C ∈ (0,∞) satisfying

‖f(x1)− T (x1), . . . , f(xs)− T (xs)‖s ≤ Cϕi,j(x1, x2, . . . , xs)

for all x1, x2, . . . , xs ∈ E.
(2) d(Jmf, T ) → 0 as m → ∞. This implies the equality

lim
m→∞

2mf
( x

2m

)

= T (x)

for all x ∈ E.
(3) d(f, T ) ≤ 1

1−L
d(f, Jf), which implies the inequality

d(f, T ) ≤
L

2− 2L
.

This implies that the inequality (2.14) holds.
The rest of the proof is similar to the proof of Theorem 2.14. �

Corollary 2.17. Let E be a linear space and let {(F l, ‖ · ‖l) : l ∈ N} be a

multi-Banach space. Suppose that s ∈ N and p > 1 and f : E → F is a

mapping with f(0) = 0 satisfying

‖Dµ,r1,...,rnf(X
(1)), . . . , Dµ,r1,...,rnf(X

(s))‖s ≤ ǫ

s∑

m=1

n∑

t=1

‖x
(m)
t ‖p
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for all µ ∈ T1 and all X(1), . . . , X(s) ∈ En. Then there exists a unique linear

mapping T : E → F such that

‖f(x1)− T (x1), . . . , f(xs)− T (xs)‖s ≤
ǫkp

2p−1 − 1

(

1

rpi
+

1

rpj

)
s∑

m=1

‖xm‖p

for all x1, . . . , xs ∈ E.

Proof. The proof follows from Theorem 2.16 by taking

ϕ(X(1), . . . , X(s)) = ǫ

s∑

m=1

n∑

t=1

‖x
(m)
t ‖p

for all X(1), . . . , X(s) ∈ En. We can choose L = 1
2p−1 to get the desired

result. �
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