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APPROXIMATE EULER-LAGRANGE-JENSEN TYPE
ADDITIVE MAPPING IN MULTI-BANACH SPACES:
A FIXED POINT APPROACH

FRIDOUN MORADLOU

ABSTRACT. Using the fixed point method, we prove the generalized Hyers-
Ulam-Rassias stability of the following functional equation in multi-
Banach spaces:

n
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1<i<j<n i=1

1. Introduction and preliminaries

A classical question in the theory of functional equations is the following:
“When is it true that a function, which approximately satisfies a functional
equation £ must be close to an exact solution of £7” If the problem accepts a
solution, we say that the equation &£ is stable. Such a problem was formulated
by Ulam [43] in 1940 and solved in the next year for the Cauchy functional
equation by Hyers [19]. Tt gave rise the stability theory for functional equa-
tions. The result of Hyers was extended by Aoki [1] in 1950, by considering
the unbounded Cauchy differences. In 1978, Th. M. Rassias [39] proved that
the additive mapping 7', obtained by Hyers or Aoki, is linear if, in addition, for
each z € F the mapping f(tz) is continous in ¢ € R. Gavruta [18] generalized
the Rassias’ result. Following the techniques of the proof of the corollary of
Hyers [19] we observed that Hyers introduced (in 1941) the following Hyers
continuity condition: about the continuity of the mapping for each fixed, and
then he proved homogenouity of degree one and therefore the famous linear-
ity. This condition has been assumed further till now, through the complete
Hyers direct method, in order to prove linearity for generalized Hyers—Ulam
stability problem forms (see [23]). Beginning around the year 1980 the stabil-
ity problems of several functional equations and approximate homomorphisms
have been extensively investigated by a number of authors and there are many
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interesting results concerning this problem (see [3], [6], [12]-[14], [21]-[34], [38],
40], [41]).

J. M. Rassias [37] following the spirit of the innovative approach of Hyers
[19], Aoki [1] and Th. M. Rassias [39] for the unbounded Cauchy difference
proved a similar stability theorem in which he replaced the factor ||z||? + ||y||?
by ||z||? - ||ly||? for p,q € R with p+ g # 1 (see also [36] for a number of other
new results).

In 2003 Cadariu and Radu applied the fixed point method to the investi-
gation of the Jensen functional equation [4] (see also [5], [6], [20], [35]). They
could present a short and a simple proof (different of the “direct method”, ini-
tiated by Hyers in 1941) for the generalized Hyers—Ulam stability of Jensen
functional equation [4], for Cauchy functional equation [6] and for quadratic
functional equation [5].

The following functional equation

(1.1) Qlz+y) +Qx —y) = 2Q(z) +2Q(y),

is called a quadratic functional equation, and every solution of equation (1.1) is
said to be a quadratic mapping. F. Skof [42] proved the Hyers—Ulam stability
of the quadratic functional equation (1.1) for mappings f : E3 — Ea, where
E; is a normed space and E» is a Banach space. In [7], S. Czerwik proved
the Hyers—Ulam stability of the quadratic functional equation (1.1). C. Borelli
and G. L. Forti [2] generalized the stability result of the quadratic functional
equation (1.1).

Recently, Dales and Polyakov [9] introduced the notion of multi-normed
spaces. This concept is somewhat similar to operator sequence spaces and
has some connections with operator spaces and Banach lattices. Dales and
Moslehian [8] investigated stability of Cauchy functional equation in multi-
Banach spaces (see also [28], [44]).

In this paper, for a fixed positive integer n > 2, we introduce the following
additive functional equation of Euler-Lagrange—Jensen type:

(1.2) Z f(TiZEiJ];TjSCj) _ n; 1 me(wi),
i=1

1<i<j<n

where r1,...,7, € R and k is a fixed non-zero integer. Every solution of the
functional equation (1.2) is said to be a generalized additive mapping of Euler—
Lagrange—Jensen type.

We will adopt the idea of Cadariu and Radu [4], [6], [35], to prove the
generalized Hyers—Ulam—Rassias stability of additive functional equation of
Euler-Lagrange—Jensen type on multi-Banach spaces.
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2. Stability of Euler-Lagrange-Jensen type functional equation:
fixed point method

Assume that (E, ||-||) is a complex linear space, and let m € N. We denote by
E™ the linear space E® E® - -- @ F consisting of m-tuples (z1, ..., z,,), where
T1,...,Tym € E. The linear operations on E™ are defined coordinatewise.
When we write (0,...,0,z;,0,...,0) for an element in E™, we understand
that x; appears in the i*" coordinate. The zero element of either E or E™ is
denoted by 0. We denote by N,, the set {1,2,...,m} and by o, the group of
permutations on m symbols.

In this section, we recall the notion of a multi-normed space and some pre-
liminaries concerning multi-normed spaces from [9].

Definition 2.1 ([9]). Let (E, ||-]|) be a complex normed space, and let m € N.
A multi-norm of level m on {E* : s € N,,,} is a sequence
(- Mls) = (- lls = s € Non)

such that || - ||s is a norm on E*® for each s € N, such that ||z||; = |z| for
each ¢ € E, and such that the following Axioms (A1)-(A4) are satisfied for
each s € N,,, with s > 2:

(A1) for each o € 05 and x1,...,2s € E, we have
[(@o(1), - Zos))lls = (@1, @) |3

(A2) for each aq,...,a5 € C and z1,...,25 € E¥, we have

oz, ..., aszslls < (grel%flail)llwh---,xs)lls;
(A3) for each z1,...,2zs € E, we have
||1'17 cee 750571;0”5 = Hxla R ;zslesfl;

(A4) for each z1,...,25 € E, we have

Hxla ceey Ts—1, 1'571”5 = ||1'17 s wrslesfl;
In this case, we say that ((E*,||-||s) : s € Ny,) is a multi-normed space of level
m.

Definition 2.2 ([9]). A multi-norm on {E” : s € N} is a sequence

(-1ls) = (- lls : s €N)
such that (|| - ||s : s € N,,) is a multi-norm of level m for each m € N. In this

case, we say that ((E%,] - ||s) : s € N) is a multi-normed space.

Lemma 2.3 ([9]). Let ((E%, | - |ls) : s € N) be a multi-normed space. The
following properties are immediate consequences of the axioms for multi-normed
spaces.

(i) for all x € E and s € N, we have

(@, .., 2)]ls = ll=]]-
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(ii) for all s € N and all z1,...,x5 € E, we have

S
max [lzif| < [|(z1, ..., za)lls < ; levil| < 5 max [l ].

The following lemma is a consequence of (ii).

Lemma 2.4 ([9]). Suppose that (E,| - ||) is a Banach space. Then (E*,|| - ||s)
is a Banach space for each s € N.

Definition 2.5 ([9]). Let ((E®, |- ||s) : s € N) be a multi-normed space for
which (E,|| - ||) is a Banach space. Then ((E%,| - ||s) : s € N) is called a
multi-Banach space.

Now, we recall two important examples of multi-norms for arbitrary space
(E,|| - ). For other examples we refer to readers to [9].

Example 2.6. Let (E,| - ||) be a normed space. For m € N, define || - ||,, on
E™ by

(1, wm)l[m = max[lz]| - (z1,... 2 € E).
1€N,,
It is immediate that ((E?,]|-||s) : s € N) is a multi-normed space. The sequence

(I “ [l : m € N) is called minimum multi-norm. The terminology ‘minimum’
is justified by Lemma 2.3.

Example 2.7. Let (£, -||) be a normed space and let {(|| - ||&, : m € N) :
a € A} be the (non-empty) family of all multi-norms on {E*® : s € N}. For
s € N, define

(21,5 zo)llls = sup (21, ...,z )T (21,25 € E).
acA
Then (||| - ||lm : m € N) is a multi-norm on {E*® : s € N}, which is called

mazimum multi-norm.
We recall two fundamental results in fixed point theory.

Theorem 2.8 ([4]). Let (X,d) be a complete metric space and let J : X — X
be strictly contractive, i.e.,

d(Jz, Jy) < Lf(x,y), Ve,y e X

for some Lipschitz constant L < 1. Then
(1) the mapping J has a unique fized point x* = Ja*;
(2) the fized point x* is globally attractive, i.e.,

lim J"z = z*
n— o0

for any starting point x € X
(3) one has the following estimation inequalities:

d(J"z,x*) < L"d(xz,x"),
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d(J"z,z*) < ——=d(J"z,J" 1 2),

* < -
d(z,x") < 17Ld(x,Jx)

for all nonnegative integers n and all x € X.

Definition 2.9. Let X be a set. A function d : X x X — [0,00] is called a
generalized metric on X if d satisfies

(1) d(z,y) = 0 if and only if z = y;

(2) d(z,y) = d(y, ) for all x,y € X;

(3) d(z, z) < d(z,y) + d(y, z) for all z,y,z € X.

Theorem 2.10 ([10]). Let (X,d) be a complete generalized metric space and
let J: X — X be a strictly contractive mapping with Lipschitz constant L < 1.
Then for each given element x € X, either

d(J"z, J" M r) = 0o

for all nonnegative integers n or there exists a positive integer ng such that
(1) d(J"z, J"Hz) < o0, Vn > ng;
(2) the sequence {J™x} converges to a fixed point y* of J;
(3) y* is the umque fized point of J in the setY = {y € X | d(J™z,y) < oo};
(4) d(y,y*) < =g dly, Jy) for ally €Y.

Throughout this paper, n will be a positive integer such that n > 2, k will be
a fixed non-zero integer and 71, ..., r, will be real numbers such that r;,r; # 0
for fixed 1 <i<j<n.

Lemma 2.11. Let X and Y be linear spaces and suppose that r1,...,r, are
real numbers with 2?21 r; # %k Assume that a mapping L : X — Y satisfies
the functional equation (1.2) for all x1,...,2, € X. Then the mapping L is
Cauchy additive. Moreover, L(%=) = L L(z) for all x € X and all 1 < j < n.

Proof. Since Y 7" | r; "7, putting zq1 = --- = 2, = 0in (1.2), we get L(0) = 0.
Letting 2, = 0 in (1.2) for all 1 < m < n with m # 4, j, we get
7T + 75T 73T T
(2.) LT (90 4 (- 2y
n—1

= (TiL(xi) + er(xj))

for all z;, z; € X. Letting x; = 0 in (2.1), we have

&y T

(2:2) L( A ) = EL(%')

for all z; € X. Similarly, by putting x; = 0 in (2.1), we get
TiT; T

(23) L) = B e,
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for all z; € X. It follows from (2.1), (2.2) and (2.3) that

T + 1T

k
;X5 T;T;
=(n— 1)(L(T) + L(%))
for all x;, z; € X. Replacing x; and z; by kx/r; and ky/r; in (2.4), respectively,
we get

;i

(2.4) L )+ (n—2)L("

L(z +y) + (n = 2)L(z) + (n = 2)L(y) = (n — 1)(L(z) + L(y))
for all z,y € X. Therefore, L is additive. Moreover, let x € X and 1 < j < n.
Setting x; = x and x; = 0 for all 1 < i < n with i # j in (1.2), we get that

L(57) = FL(x). O

Using the same proof as Lemma 2.11, we have an alternative result of Lemma

2.11 when >0 | r; = 2E.

Lemma 2.12. Let X and Y be linear spaces. Assume that a mapping L : X —
Y with L(0) = 0 satisfies the functional equation (1.2) for all z1,...,z, € X.
Then the mapping L is Cauchy additive. Moreover, L(%) = %L(m) for all
re X and all1 < j <n.

We will use the following lemma in the proof of the next theorems.

Lemma 2.13 ([27]). Let X and Y be vector spaces and let f : X — Y be an
additive mapping such that f(ux) = pf(z) for all x € X and all p € T :=
{AeC: |\ =1}. Then the mapping f : X — Y is C-linear.

Let X and Y be vector spaces. For a given mapping f : X — Y, we define

Do fon ) = 3 f(””“””,;””zj) - (”k1> S i (x:)

1<i<j<n i=1

for all p € T and all zy,...,z, € X.

Now, we prove the generalized Hyers—Ulam—Rassias stability of Euler-Lagr-
ange-Jensen type additive mapping on multi-Banach spaces for the functional
equation Dy, p ..r, f(z1,...,2,) = 0.

Theorem 2.14. Let E be a linear space and let {(F\| - ;) : 1 € N} be
a multi-Banach space. Suppose that s € N and f : E — F is a mapping
satisfying f(0) = 0 for which there exists a control function ¢ : E™ — [0, 00)
such that

25) Do FXD)s o D FX 5 < (XD X))

.....

for all p € T and all XV = (acgl), . ,:1:5,1)), X6 = (xgs), . ,xsf)) c E™.
If there exists a Lipschitz constant L < 1 such that

(1) (s)
go(X(l),...,X(S))§2Lga(X2 ,...,X2 )
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for all X ... X) € E™ then there exists a unique linear mapping T : E —
F such that

Hf(l'l) - T(xl)’ ER) f(xs) - T(xs)”s

@(Xi,j(kil’kr—il)’ (k:xg k$2) (kx57k25)>
( .

(26) kxl ka T4
+o | Xi " ;O),Xi,j( - ,0),... X ( ’0)
k k k s
oo (005 50 (07 0 022) |
rj
for all z1,...,x5 € E, where
X (z,y)=1(0,...,0, = ,0,...,0, y ,0,...,0)
ith th

forallx,y € E.
Proof. For convenience, set

Sﬁi,j(xlv'rQa .o azs>

=0 (Xi,j(kr—?, kT—il)’Xi’j(kZ2’kr_?)’-“’Xi’j(kiS’ kgs))
w(Xi,j(’fr_?,o),xi,j(kf,o),...,Xi,j(’ji;,o))
+¢< (0 @)X](o%)xj(okri)) ,

Tj J J

where 21,...,2, € E and 1 < i < j < n. Consider the set X := {g : £ —
F, ¢(0) = 0} and introduce the generalized metric on X:

d(g,h) =inf{C € Ry |[lg(z1) = h(z1), ..., g(xs) — h(zs)|s
SCgaiyj(xl,:cg,...,xs), VSCl,ZL'Q,...,ZESGE}.
It is easy to show that (X, d) is complete. Now we consider the linear mapping
J : X — X such that Jg(z) := 1g(2z) for all z € E. For any g,h € X, we have
d(g,h) < C
= ||g(.fC1> - h’(x1>a s ag(xs) - h(1'5>H5 < Csai,j(xlvx?a s 51'5>
(x1,22,...,25 € E)

1 1
HQ 2z1)f§h(2z1) . 59(2w) = 5h(2a,)

N Hgg@xl)—%h@xl),...,%g(2x8)—%h(2x8)

= d(Jg,Jh) < LC.

1
< 50901',]'(21'17 272, .., 2x)

<LCy; j(x1,%2,...,Ts)
S
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Therefore, we see that
d(Jg,Jh) < Ld(g,h),  Vg,heX.

This means J is a strictly contractive self-mapping of X', with the Lipschitz
constant L.

Letting 4 = 1 and for each 1 <r <n with r #4,j and each 1 <m < s, let
"™ = a,, xgm) = ym and 2™ =0 in (2.5), we get

AT & 0= DA + (- 2

_ n; 1 (rif(l'l) +ij(y1))’f(W) + (n _ Q)f(%)
(2.7) + (n — 2)f(%) - n; 1 (rif(z2) +1if(y2))s- .-, f(Mijys)

TiTs

riYs n—1
=)+ (0 =2 f(Z7) = ——(raf (@) + 75/ (95))

+(n=2)f(

S
< @(Xi,j(xlayl), Xij(x2,92),- - ;Xi,j(-rsays))

for all x1,y1,T2,Y2,...,Zs,ys € E. Letting y1 = ya =+ =y, = 0 in (2.7), we

have

TiZT1

(= D)(f(7) = TF@), (0= D(F(2) = T (@)

(28) (n—DF(E) - T f(a)
k& .
< @(Xi,j(iﬁl, 0), Xi,j(2,0), ..., Xij(zs, 0))
for all 1, 29,...,zs € E. Similarly, letting 1 = 29 =--- =25 = 0 in (2.7), we
get

(n = D) = T F). (= D) = @)

TiTs

T) - %f(ys)) .

< (p(Xi,j (Oa yl)’ Xi,j (0’ 92), s aXi,j (Oa yS))

for all y1,y2,...,ys € E. It follows from (2.7), (2.8) and (2.9) that

TiT2 + Y2 TiT2

(2.10) JERR) () — F(E R

(2.9) (n—1)f(

i1 + T5Y1 TiT1 TiY1

pUEEL I (T g,

riTs + e TiTs

FRRTHE) — (T — p(H2)

S
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< @(Xi,j(zl, Y1), Xij(x2,92), - .-, Xij (s, ys))
+ @(Xi,j(-rla 0), Xi,j(.’L'g, 0), . ,Xi7j($s, 0))

+ @(Xi,j(oa Y1), Xi,5(0,92),. .. aXi,j(ans))

for all z1,y1,%2,y2,...,%s,ys € E. Replacing z,, and y, by kx,,/r; and
kZy,/rj, for all 1 < m < s in (2.10), respectively, we get
.

| £221) = 2f(@0), £(222) = 2f (@2).. .. f(20) = 2f ()

(2.11)
S @i,j(xl,xg,...,xs)
for all z1,x9,...,2s € E. So
1 1 1
|57 @) = f@1). 3 £(222) = flaa).... 3 (220) = f(a)||
1
S 5501',]'(1'151'25"'7:05)

for all x1,x9,...,25 € E. Hence d(f, Jf) < %
By Theorem 2.10, there exists a mapping 7' : £ — F such that
(1) T is a fixed point of J, i.e.,

(2.12) T(z) = %T(2z)

for all x € E. The mapping T is a unique fixed point of J in the set
Y={geX:d(f, g) <o}
This implies that T is a unique mapping satisfying (2.12) such that there exists
C € (0, 00) satisfying
1T (z1) = f21), ..., T(ws) = flzs)lls < Copij(a1, 32, ., 5)
for all x1,x3,...,x2s € E.

(2) d(J™f,T) — 0 as m — co. This implies the equality

(2.13) Tim 2im F(2mz) = T(x)

for all x € E.
(3) d(f,T) < s25d(f,J f), which implies the inequality

d(f,T) < .
(11) < 5o
This implies that the inequality (2.6) holds.
Letting = 1 and replacing XV = ... = X©) = (21, 25,...,2,) := X in

(2.5), by using the properties of norm in multi-normed spaces and (2.13), we
have

e T(X1y T )y ey D1y e D@1, oo 20|

.....
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. 1
= lim —||Diyy,...;n S, ..., 2M2n), ..y D1y e, F(27 21,0, 2™ ||s
m—oo 2M

) 1
= T oDy f7 20, 2|

m—oo 2M

1
< I — mx .., 2m
< Jlim SZe(2MX .., 27X)
< lim L™p(X,...,X)=0
m—r 00
for all z1,x2,...,2, € E. So
rix; +rjry\  (n—1 -
> T< ' >( . >Zrimi).
1<i<j<n =1

By Lemma 2.11, the mapping T : E — F is Cauchy additive, i.e., T'(z +y) =
T(x)+T(y) for all z,y € E.
Now, we show that the mapping 7' : E — F is C-linear. Letting X(1) =
. =X®) =X =1(0,...,0,_x ,0,...,0) in (2.5) and using the properties of
ith
norm in multi-normed spaces, we have
||D,U<J"1 »»»»» TnT(Ov"'aov, £ ,507'-'50)”5
ith

:HDMH ,,,,, TnT(X(l))7' -vDuml ,,,,, TnT(X(S))”s
B B prizy  (n—1)ur
= |(n -7 (55) (@),
B prizy  (n—1)ur;
(-7 (B5) - @),
I uri2™x (n—1)uri . om
~ lm |<n1>f( : ) T gy
uri2™zx n—ur; . om
(0= 1)1 Do),
k k
i2 — 1)pr;
= Jim sl (A2 ) - D gny)|
< lim —p(2™X,...,2"X)
m—0o0
< lim L"p(X,...,X)=0
m—00

forall z € E and all € T'. So

(52) < e

for all z € E and all u € T'. Since

;T

k

) = T (x)

T( .
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for all x € E and all r; # 0. Therefore by Lemma 2.13, the mapping T is
C-linear. 0

Corollary 2.15. Let E be a linear space and let {(F',||-|};) : 1 € N} be a
multi-Banach space. Suppose that s € N and 0 <p<land f: E — F isa
mapping with f(0) = 0 satisfying

IDprr o FXD) o Dy F(XE)] < e Z Z ||$§M)||p

m=1 t=1
for all p € T and all XV, ..., X € E™. Then there exists a unique linear
mapping T : E — F such that

kP 1 1)
[£@) =T, @) = Tl < 755 (— + —) > lawl?
T J m=1

forallzy,...,xs € E.

Proof. The proof follows from Theorem 2.14 by taking

p(XW LX) = 33 2™

m=1 t=1

for all X ... X®) ¢ E"  We can choose L = 21%17 to get the desired
result. O

Theorem 2.16. Let E be a linear space and let {(F\| - ;) : 1 € N} be
a multi-Banach space. Suppose that s € N and f : E — F is a mapping
satisfying f(0) = 0 for which there exists a control function ¢ : E™ — [0, 00)
satisfying (2.5) for all p € T' and all XV, ..., X&) ¢ E™. If there exists a
Lipschitz constant L < 1 such that

1
<p(X<1>,...,X<S>) < §L¢(2X(1),...,2X(S))
for all X ... X) € E™ then there exists a unique linear mapping T : E —

F such that
(2.14)

@ (Xi,j(k:xl ) @)aXiJ(kaa @)a v aXi,j(k:Esa kxs))
T Tj T 7’]' T 7’]'

kxlao)aXi,j(@aO)a' .- aXi,j(kxsaO))
T T T
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forallxy,... x5, € E, where
X, (xz,y)=1(0,...,0, = ,0,...,0, y ,0,...,0)
ith jth

forallx,y € E.

Proof. Similar to the proof of Theorem 2.14, we consider the linear mapping
J: X — X such that Jg(z) := 2g(iz) for all z € E. We can conclude that J
is a strictly contractive self-mapping of X', with the Lipschitz constant L.

It follows from (2.11) that

Hf(:m) - 2f(%z1)7f(xz) - 2f(%:c2), oo flas) — 2f(%zs)
L
< _@i,j(xl,xg, .- ';zs)

S

for all z1,xa,...,zs € E. Hence d(f,Jf) < %
By Theorem 2.10, there exists a mapping 7' : £ — F such that
(1) T is a fixed point of J, i.e.,

(2.15) T(x) =2T(%)
for all x € E. The mapping T is a unique fixed point of J in the set
Y ={geX:d(fg) <oo}.

This implies that T is a unique mapping satisfying (2.15) such that there exists
C € (0, 00) satisfying

Hf(l'l) - T(‘Tl)a ceey f(xs) - T(-TS)HS < C‘pid(xl’x% s ,QCS)
for all z1,x2,...,25s € E.

(2) d(J™f,T) — 0 as m — co. This implies the equality
. m TN
a2 (Qm) =T()

for all x € F.
(3) d(f,T) < £27d(f,J f), which implies the inequality
L
a(f,T) < .
This implies that the inequality (2.14) holds.
The rest of the proof is similar to the proof of Theorem 2.14. O

Corollary 2.17. Let E be a linear space and let {(F',| - |l;) : 1 € N} be a
multi-Banach space. Suppose that s € N andp > 1 and f: E — F is a
mapping with f(0) = 0 satisfying

1Dy FXD), o Dy o FX N < SN ™7

m=1 t=1
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for all p € T and all XV, ..., X € E™. Then there exists a unique linear
mapping T : E — F such that

ekP 1)
1) =T, o o) = Tals < ooy {7+ 57 ) 2 loml?
2 m=1

forall x,...,xs € E.
Proof. The proof follows from Theorem 2.16 by taking

p(XW LX) = 33 2™

m=1t=1
for all X ... X®) ¢ E"  We can choose L = QP%I to get the desired
result. (I
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