JOURNAL OF THE

CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 33, No. 3, August 2020
http://dx.doi.org/10.14403/jcms.2020.33.3.319

ON STABILITY OF A GENERALIZED QUADRATIC
FUNCTIONAL EQUATION WITH n-VARIABLES AND
m-COMBINATIONS IN QUASI-S-NORMED SPACES
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ABSTRACT. In this paper, we establish a general solution of the
following functional equation

k=n—i;+1

() (5 )

where m,n,t, i € N such that 1 <t < m < n. Also, we study
Hyers-Ulam-Rassias stability for the generalized quadratic func-
tional equation with n-variables and m-combinations form in quasi-
B-normed spaces and then we investigate its application.

1. Introduction

The stability problem of functional equations concerning the stabil-
ity of group homomorphism was proposed by Ulam in 1940. In 1941,
Hyers [4] partially solved the stability of the linear functional equation
for the case when the groups are Banach spaces. Hyers’s theorem was
generalized by Aoki [2] for additive mapping and Rassias [10] for linear
mapping by considering unbounded Cauchy differences. During the last
two decades, a number of papers and research monographs have been
published on various generalizations and applications of the generalized
Hyers-Ulam stability to a number of functional equations and mappings
in various spaces(1, 2, 3, 8, 10, 12, 13].
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Let X and Y be vector spaces and let f : X — Y be a mapping. The
functional equation

(1.1) flx+y)+ flx—y)=2f(z) +2f(y)

is called the quadratic functional equation. Every solution of the equa-
tion (1.1) is said to be a quadratic mapping. The Hyers-Ulam stability
theorem for the quadratic functional equation was proved by Skof [14]
and Czerwik [3].

Before we present our results, we introduce some basic facts concern-
ing quasi-g-normed space. We fix a real number 8 with 0 < 8 < 1 and
let K be either R or C. Let X be a linear space over a field K. A quasi-
f-norm || - || is a real-valued function on X satisfying the following:

(1) |lz|| > 0 for all x € X and ||z|| = 0 if and only if x = 0;

(2) |Az|| = [MP - ||z for all A € K and z € X;

(3) there exists a constant K > 1 such that ||z + y|| < K(||z|| + ||y||) for
all z,y € X.

The pair (X, || - ||) is called a quasi-S-normed space if || - || is a quasi-
B-norm on X. In fact, a quasi-8-Banach space is a complete quasi-3-
normed space. A quasi-fS-norm is called a (f,p)-norm (0 < p < 1) if
o+ ylI? < [l )P + yll? for all 2,y € X

In this case, a quasi--Banach space is called a (3, p)-Banach space.
In this paper, we will introduce a generalized quadratic functional equa-
tion with n-variable. The purpose of this paper, we establish a solution
of

(1.2) k=1 t=1 k=1 k=n—iz+1

m n—i¢ n
:22 f(Zxk>—i—f Z Tp
t=1 k=1 k=n—i;+1
where m,n,t,iy € Nsuch that 1 <t <m <nand1<i <n. We

note that the order of i1, 49, -+ ,4,, does not have to be the order of the
positive integers and 41,43, - , 4, do not have to equal. Also, we study
Hyers-Ulam-Rassias stability for the generalized quadratic functional
equation with n-variables and m-combinations form in quasi-S-normed
spaces and its application.
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2. Main theorem

Throughout this section, X is a normed space and Y is a quasi-8-
Banach space. In this section, we will establish a general solution of
the equation (1.2) and then we will point out the Hyers-Ulam-Rassias
stability results controlled by approximately mappings for a quadratic
functional equation with n-variables and m-combinations form in quasi-
B-normed space.

THEOREM 2.1. A mapping f : X — Y satisfies the functional equa-
tion (1.2) if and only if the mapping f satisfies the functional equation

(1.1).
Proof. Let f be a solution of the functional equation (1.2). Setting
xg=x3="---=2an_1 =01in (1.2), then we get

m[f(z1+2n) + f(21 = 2n)] = 2m [f(21) + f(2n)]

for all z1,x, € X. Thus f satisfies (1.1).
Conversely, assume that the mapping f satisfies the functional equa-
tion (1.1). Then we have the following n — 1 equations ;

fler+ao+ - +x) + flor+ -+ 21 — )
=2[f(x1+ -+ xp1) + f(2n)],

flrar+aza+ -4 an)+ fler+ -+ Tpo— Tpo1 — Tp)
=2[f(z1+  + Tp2) + f@n-1 +x0)],

fler+xe+ -4 an)+ flwr —220— - — )

=2[f(z1) + f(z2 + -+ )]
for all z1,--- ,z, € X. Summing up m of the above n — 1 equations, we

obtain the equation (1.2). This completes the proof of the theorem. [J

Now, we investigate the generalized Hyers-Ulam-Rassias stability prob-
lem for the functional equation (1.2). Define

n m n—i; n
Df(x1, -+ ,xy) :=mf (Zxk>+§:f Z:):k— Z Tk
k=1 t=1 k=1 k=n—iz+1

5 f@“mk)” A

t=1 k=1 k=n—i;+1



322 Heejeong Koh and Yonghoon Lee

for all z1,--- ,z, € X.

THEOREM 2.2. Let ¢ : X™ — [0, 00] be a function such that

- *© K\ . .
(2.1) Y(z1, - x,) = Zl <45> P (2]_1:n1, e ,27_1.%) < 00
]:
forallzy, -+ ,zn, € X and K > 1. If f : X — Y is a mapping satisfying
f(0) =0 such that

(2‘2) ”Df(mlv ’xn)” < ¢($1,'-- ,l‘n)

for all x1,--- ,x, € X, then there exists a unique generalized quadratic
mapping Q : X — Y satisfying the equation (1.2) such that

1 ~
(23) 15) = Q) < —53(2,0,-++,0,2)
for all x € X.
Proof. Letting 1 =z, =z and 29 = 23 = -+ = x,—1 = 0 in (2.2)

and dividing by (4m)?, we have

1

for all 2 € X. Replacing by 2z in (2.4) and then dividing by 4%, we
get

1 1 1

for all z € X. Adding (2.4) and the above inequality, we have

@) - e

1 1
<K (Ww(x’()’... ,0,) + Ww(m,o,... ,0,296)>

for all x € X. Continuing in this way, one can obtain that

1 (K .. :
S WZ <45> ¢<2j71w707 e 7072]71'%)
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for alll € N and all z € X. Now, for k € N, dividing the inequality (2.5)
by 47 and then substituting = by 2¥z, we see that

1 1
|70~ @)
l i+k
1 K\’" o o
S WZ (4[3) ¢(2]+k 11’,0,' o 7072]+k 11")
j=1

for all x € X. Taking | — oo and k — oo in the previous inequality,
by (2.1) we conclude that {i f(2'z)} is a Cauchy sequence in Y for all
x € X. Because of the completeness of Y, we can define a mapping
Q:X =Y by

1
Q(z) := lim —lf(2lx)
l—oo 4
for all z € X. By (2.2) and (2.3), we obtain that

1
IDQ1, -+ @)l = lim || D', 2'a)
=00 4!
1
< lim T¢(2lev 72lxn) =0
l—00

for all z1, -+ ,z, € X. Hence the mapping @ : X — Y satisfies (1.2).
Taking [ — oo in (2.5), we get the inequality (2.3). To prove the unique-
ness of the generalized quadratic mapping (), we assume that there exists
another quadratic mapping Q' : X — Y satisfying (2.3). We have

Q) - Q@) < K (H@fj@ B f(ijm . Hf(ijx) Q)

41

2K ~
< Ww(le,O,--- ,0,2l33)—>0asl—>oo

for all x € X. Therefore ) is unique.
O

COROLLARY 2.3. Let 6,p be real numbers such that 6§ > 0 and 0 <
p < 28 —logy K. Suppose that a mapping f : X — Y satisfies

IDf(xr, - an)ll < O[] + -+ [lan]”)

for all x1,--- ,x, € X. Then there exists a unique generalized quadratic
mapping Q : X — Y satisfying (2.1) such that
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17@) Q@) < —g i el

(48 — 2PK)
for all x € X.

Proof. Taking ¢(x1,--- ,xp) = 0(||x1||P + - - - + [|z»||”) and applying
Theorem 2.2, one can obtain the result. ]

COROLLARY 2.4. Let 6 be real number such that § > 0. Suppose
that a mapping f : X — Y satisfies

for all x1,--- ,x, € X. Then there exists a unique generalized quadratic
mapping Q : X — Y satisfying (2.1) such that
0

7@ - Q@) < 55
for all x € X.

Proof. Taking ¢(z1,- -+ ,x,) := 0 and applying Theorem 2.2, one can
obtain the result. O

3. Application

Let X be a normed linear space and Rg be a non-negative real number.
We define H : Ry"™ — R4 and ¢ : Rg — R4 such that

wo(A) >0, for all A >0,

48
2 R
vo(2) < K

©0(2A) < ¢o(2)po(A), for all A >0,
H()\tl, s ,)\tn) < (po()\)H(tl, s ,tn), for all t1, -+ ,t, € Rg, A > 0.

We take in our theorem

Y@, an) = H(l|zll, - [J2al])
Then
(2w, 2 ) = HE Tz, 277 )
< @@ H(|z1l, -, lzal)

< (po2)Y " H(llzall, -, llall),



(1]
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and because 4%4,00(2) < 1 we have

~ >0 J .
Bar a3 (55 ) (o)™ Hllaal o))
j=1
el )

and the inequality (2.4) becomes
1 ~
7571}(1:7 Oa T ,O,ZL')

< K
= i@ = o (2)K)

1f(z) = Q)] <

m

or

K
I£(@) = Q@ < T 5ir — o @m)

o (|l=l)) H(1,0,---,0,1).
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