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GENERALIZED HYERS-ULAM STABILITY OF CUBIC
TYPE FUNCTIONAL EQUATIONS IN NORMED
SPACES

GwaNGg Hur Kiv* AND HWAN-YONG SHIN**

ABSTRACT. In this paper, we solve the Hyers-Ulam stability prob-
lem for the following cubic type functional equation

flre + sy) + f(re — sy)

=rs’fl@+y) +rs’fz—y)+2r(r* - 5°) f(2)
in quasi-Banach space and non-Archimedean space, where r # +1,0
and s are real numbers.

1. Introduction

In [26], S.M. Ulam proposed the stability problem for functional equa-~
tions concerning the stability of group homomorphisms. A functional
equation is called stable if any approximate solution to the functional
equation is near a true solution of that functional equation. In [11], D.H.
Hyers considered the case of approximate additive mappings with the
Cauchy difference controlled by a positive constant in Banach spaces.
D.G. Bourgin [4] and T. Aoki [2] treated this problem for approxi-
mate additive mappings controlled by unbounded function. In [21], Th.
M. Rassias provided a generalization of Hyers’ theorem for linear map-
pings which allows the Cauchy difference to be unbounded. In 1994, P.
Gavruta [8] generalized these theorems for approximate additive map-
pings controlled by the unbounded Cauchy difference with regular con-
ditions. During the last three decades a number of papers and research
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monographs have been published on various generalizations and applica-
tions of the Hyers—Ulam stability and generalized Hyers—Ulam stability
to a number of functional equations and mappings [1, 5, 7, 13, 20].

A stability problem of Ulam for the quadratic functional equation

(1.1) fle+y)+ flz—y) =2f(z) +2f(y)

was first proved by F. Skof for mapping f : E1 — FE», where Ej is a
normed space and Es is a Banach space [24]. In the paper [6], S. Czer-
wik proved the Hyers—Ulam—Rassias stability of the quadratic functional
equation (1.1).

Let both E; and Es real vector spaces. K. Jun and H. Kim [12]
proved that a mapping f : E1 — F» satisfies the functional equation

(1.2) f(2x +y) + f(2x —y) = 2f(x +y) + 2f(z — y) + 12f(x)

if and only if there exists a mapping B : F1 X E1 x Fy — Fy such that
f(z) = B(x.z.x) for all z € Ey, where B, defined by

1

Bla,y,2) = o [fwty+2)+f—y-2)
—flet+y—z)— fla—y+2)]

for all z,y, z € Fy, is symmetric for each fixed one variable and additive

for each fixed two variables. It is easy to see that the functional equation
(1.2) is equivalent to a cubic functional equation

C2x+y)+C(x—y)+3C(y) =3C(x+y) + 6C(z)

and every solution of the cubic functional equation is said to be a cubic
mapping [19]. A. Najati [17] investigated the following generalized cubic
functional equation:

(1.3) f(kz +y) + f(kz —y)
=kf(z+y)+kf(z—y)+2k> k) f(z)

for a positive integers k > 2.
Now, we introduce the following more generalized functional equation

(1.4) flra + sy) + f(rz — sy)
= rsQf(x + y) + TSQf(.Z' — y) + QT(TZ - SQ)f(x)

where r # —1,0,1 and s € R. It is easy to see that the function f(z) =
cx? is a solution of the above functional equation. And if one take r = 2
and s = 1 in (1.4), then the functional equation is (1.2). Also if one
take r > 2 an integer and s = 1 in (1.4), then the functional equation is
(1.3).
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In this paper, we establish the stability problem for the functional
equation (1.4) for real number r # —1,0, 1 and s in quasi normed spaces
and non-Archimedean spaces.

2. The Hyers—Ulam Stability in quasi-Banach spaces

In this section, we investigate the generalized Hyers—Ulam stability
problem for the functional equation (1.4) in quasi-Banach space. First,
we introduce some basic information concerning quasi-Banach spaces
which are referred in [3] and [23]. Let X be a linear space. A quasi-
norm is a real-valued function on X satisfying the following:

(i) ||z]] > 0 for all z € X, and ||z|| = 0 if and only if x = 0;
(i) [[Az|| = |A|||z|| for any scalar A and all z € X;
(iii) There is a constant M > 1 such that ||z +y| < M (||z|| + ||y||) for
all x,y € X.

The pair (X, || - ||) is called a quasi-normed space if || - || is a quasi-
norm on X. The smallest possible M is called the modulus of concavity
of the quasi-norm || - ||. A quasi-Banach space is a complete quasi-
normed space. A quasi-norm || - || is called a g-norm(0 < ¢ < 1) if
|z + y||? < ||lz||? + ||ly||? for all z,y € X. In this case, a quasi-Banach
space is called a ¢g-Banach space. Let X be a quasi-Banach space. Given
a ¢g-norm, the formula d(x,y) := ||z —y||? gives us a translation invariant
metric on X. By Aoki-Rolewicz Theorem [23] (see also [3]), each quasi-
norm is equivalent to some ¢-norm. Since it is much easier to work
with g-norms than quasi-norms, here and subsequently, we restrict our
attention mainly to g-norms. Moreover, generalized stability theorems
of functional equations in quasi-Banach spaces have been investigated
by a lot of authors [14, 18, 25].

Now we introduce an abbreviation D, ,f for a given mapping f :
X — Y as follows:

Dy of(x,y) = f(ra+sy)+ f(re—sy)
—rs’flx+y) —rs’f(x —y) —2r(r* = s*) f(2)

for all z,y € X, where r # —1,0,1 and s are fixed real numbers.

From now on, let X be a normed linear space with quasi-norm || - ||
and Y be a ¢g-Banach space with g-norm || - ||. In this part, by using an
direct method, we prove the stability theorem of the equation (1.4).
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THEOREM 2.1. Let ¢ : X2 — [0,00) be a function such that
(2.1) ZO |T‘W(ﬁ(rﬂm,o)q < oo, lim
j:

for all x,y € X. Suppose that a mapping f : X — Y satisfies the
inequality

(2.2) 1 Drsf (2, y)|| < o(,y)

for all x,y € X. Then there exists a unique mapping C : X — Y
satisfying (1.4) such that

23 I£(@) - C@)l < g [ 2 ACBO )

for all x € X.

Proof. Replacing (z,y) by (x,0) in (2.2), we have
(2.4) I7(rz) @) < 56(2,0)

for all € X. Replacing by r*z in (2.4) and then dividing both sides
by r3*+3, we get
1, 4 1 k1 1 ¢(rkz,0)
|3 F0) — g F ) < o PO
for all x € X and all integers £ > 0. Then for any integers m, k with
m > k > 0, we obtain

1 1 PN
s [ ) = )|

(2.5)

<> H r3j+3f(rj+1x) 3 f(rjx)Hq
j=k
1 & o(riz,0)9
- 2q|r‘3q ]gk ]r,a|3jq
f(rka)

for all x € X. Thus the sequence { = };O ) is Cauchy by (2.1).
r _

Since Y is complete, this sequence converges for all 2 € X. So one can
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define a mapping C': X — Y by

f(rt)

(2.6) lim =7

k—o0

It follows from (2.1) and (2.6) that

=C(z) (zeX).

. 1
HDhsC(xay)H = kh_{lolo Tgk”DT,sf(rk%Tky)H
(e, rhy)
< Jim S <0

for all x,y € X. Hence, the mapping C' satisfies (1.4). Putting k := 0
and letting m go to infinity in (2.5), we see that (2.3) holds. For the
uniqueness of C, assume that there exists a mapping C' : X — Y
satisfying (1.4) and (2.3). Then, we find that

lim —
Fvoo [ [k

HC(m) _ c’(x)Hq Hf(rkx) _ C’(rkx)Hq

1 1 ;
< 1 Z P(riTF ez, 0)

o
im .
T koo 20p3y3ke L |34

J:
1 l'i1¢(k0>q0
= —— lim ——o(rz,0)! =
249|739 k—oo 4 k |7|3kq
j:

for all x € X, which proves the uniqueness. O

THEOREM 2.2. Let ¢ : X% — [0,00) be a function such that
D lr¥ie(r Iz, 00t < oo, lim [r[¥p(r Iz, ry) =0
i=0 I
for all x,y,z € X. Suppose that f : X — Y is a mapping satisfying the

inequality

| Drsf(z,y)|l < é(z,y)

for all x,y € X. Then there exists a unique mapping C : X — Y
satisfying (1.4) such that

1
2|r|®

Q=

[ 1Pz, o)1

=1

[f(x) = Ca)]| <

for all x € X.
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Proof. We observe that one can obtain the following inequality
m
3k g T 3(m+l) T 1 3G+1)q 4 (o —(i+1)
| f(r*k) — o f(m)”q < Wz’; |r[* T (r= VT Ve, 0)9
]:
for all x € X and all integers k, m with m > k > 0 by use of (2.2). Thus,
we see that the proof may be verified by applying similar argument to
that of Theorem 2.1. O

In case r = 2 and s = 1, as a special case of Theorems 2.1 and 2.2 we
have the Hyers-Ulam stability results for the cubic functional equation
(1.2)(see [12]).

COROLLARY 2.3. Let € > 0. Suppose that a mapping f : X — Y
satisfies the inequality

[ Drsf(z,y)ll < e

for all x,y € X. Then there exists a unique mapping C : X — Y
satisfying (1.4) such that

€
z)—C2)|] < ————
I12) = C@I < Jorr
for all z € X.
COROLLARY 2.4. Let «,ai1,a2 be positive real numbers such that

either a; > 3 or a; < 3 simultaneously for all i € {1,2}. Suppose that a
mapping f : X — Y satisfies the inequality

IDrsf@ )l < a(lzl™ +lyl™)

for all x,y € X. Then there exists a unique mapping C : X — Y
satisfying (1.4) such that

- afjz]| ._
If(@) = Cl@ll < o Ry (i=1,2)

for all x € X.

3. The Hyers—Ulam Stability in non-Archimedean spaces

Hensel [10] has introduced a normed space which does not have the
non-Archimedean spaces property. During the last three decades, the
theory of non-Archimedean spaces has gain the interest of physicists for
their research in problems coming from quantum physics, p-adic strings
and superstrings [15].
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A waluation is a function | - | from a field K to [0, 00) such that 0 is
the unique element having the 0 valuation, |ab| = |a|-|b| and the triangle
inequality holds, i.e.,

la 4+ b| < |a| + |b],Va,b € K.

A field K is called a valued field if K equips with a valuation. The usual
absolute values of R and C are examples of valuations. Alternatively, if
the triangle inequality is replaced by the weakly triangle inequality

la + b] < max{|al, |b|},Va,b €K,

then the valuation |- | is called a non-Archimedean valuation, and the
field is called a non-Archimedean field. Clearly |1| = | — 1| = 1 and
|n| <1 for all n € N. A trivial example of a non-Archimedean valuation
is the function | - | taking everything except for 0 into 1 and |0] = 0.

DEFINITION 3.1. Let X be a vector space over a field K with a non-
Archimedean valuation | - |. A function || - | : X — [0, 00) is said to be
a non-Archimedean norm on X if it satisfies the following conditions

(i) ||z]| = 0 if and only if z = 0;

(i) [Jaz| = lalllz] (a € K);
(iii) ||z +yll < max{|lz|,[ly[} (z,y € X).

In this case (X,|| - ||) is called a non-Archimedean normed space.
Because of the fact

[k — 2m| < max{{zj1 —ajll :m <j<k—-1} (k>m),

a sequence {zp,} is Cauchy in the non-Archimedean normed space if
and only if {z;,4+1 — @} converges to zero with respect to the non-
Archimedean norm. By a complete non-Archimedean space we mean
one in which every Cauchy sequence is convergent.

EXAMPLE 3.2. Let p be a prime number. For any nonzero rational

a
number x, there exists a unique integer n, € Z such that x = gp”l‘,

where a and b are integers not divisible by p. Then |z|, := p™"* de-
fines a non-Archimedean norm on rational Q. The completion of Q
with respect to the metric d(z,y) = | — ylp is denoted by Q, which is
called the p-adic number field. In fact, Q, is the set of all formal series
r=3 03, ayp®, where |ay| < p—1 are integers. The addition and mul-
tiplication between any two elements of Q, are defined naturally. The
norm |75 arp¥| = p~™ is a non-Archimedean norm on Q, and it
makes Q, a locally compact field (see [9, 22]).
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Let X be a vector space and Y be a non-Archimedean Banach space.
In the following, we now prove the generalized Hyers—Ulam stability of
quadratic functional equation (1.4) over the non-Archimedean space. As
corollaries, we obtain especially stability result over the p-adic field Q.
To avoid trivial case, we assume |r| < 1.

THEOREM 3.3. Let ¢ : X2 — [0, 00) (7,/} : X2 =0, oo)) be a function
such that
NCIGER))
1 lim ———
(3.1) PRl ET
(s [, 9y) = 0,resp)
j—00
for all x,y € X and the limit
{aﬁ(rjx, 0)

P

=0

(3.2) ®(x) = lim max

k—o0

(W(az) = klln;omax{|r]3j1/}(r_jm,0) 1<y < k},resp)

exists for each x € X. Suppose that a mapping f : X — Y satisfies the
inequality

(3-3) 1D f (2, y)ll < ¢(x, y)
(I1Drsf (.9 < ¥(a. ). vesp)

for all x,y € X. Then there exists a mapping C : X — Y satisfying
(1.4) such that

:0§j<k}

(3.4) 1£(x) - C@)] < M@(af:)

1
— < —— U
(I7) = C@l < ) resp).
for all x € X. Moreover, if

{qb(rjx,())

Y :m§j<k+m}20

(3.5) lim klim max

( lim lim max{|r|3j¢(r_jx,0) m<j< k+m} = 0,’1"68]9),

m—o0 k—o00

for all x € X, then the mapping C' is unique.
Proof. Replacing (z,y) by (z,0) in (3.3), we have

(3.6) 1£(rz) — ()| s,; (2,0)
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for all z € X. Replacing by r*z in (3.6) and then dividing both sides
by |r[3*+3, we get

@ el ) = e < s

forall z € X. It follows from (3.7) and (3.1) that the sequence {%}lﬁl

is Cauchy in the non-Archimedean Banach space Y. Since Y is complete,
k
we may define a mapping C' : X — Y as C(z) := limg_ f(:%x) for all

x € X. Using induction, one can show that

frka) 1 $(riz,0)
B8 175 @l < G ma{ T 0< ) <k

for all k € N and all z € X. By taking k to approach infinity in (3.8)

and using (3.2), one obtains (3.4). Replacing =, y and z by 3z 3%y

and 3%z, respectively, in (3.3), we get
Dy sf(rFz,rby)  o(rka, rhy)
(39 Pty < K

for all z,y € X. Taking the limit as k — oo, we conclude that C' satisfies
(1.4). Moreover, to prove the uniqueness, we assume that there exists a
mapping C' : X — Y satisfying (1.4) and (3.4), (3.5). Then we figure
out

|C(2) — C'(2)||
— lim ——|C(™e) — ()|

m—o0 |r|3m

[C(r™a) — for™z)| |If(r™z) = C' (™)

< ml,Enoo maz{ |r[3m ) r[3m }
o 1 ¢(r'z,0) ,
< _ —_— < =
< W%gloo klingo - Mgma:r{ BE m<j<m+k}=0
for all x € X. This completes the proof. O

COROLLARY 3.4. Let X be a non-Archimedean normed space, t # 3
and 0 be positive numbers. Suppose that a mapping f : X — Y satisfies
the inequality

IDrsf ()l < O(ll=]" + llyl")  (2,y € X).
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Then there exists a unique mapping C' : X — Y satisfying (1.4) such
that

0
2l |r[*

WHJ«“W if r|>1,t<3 or |r|<1,t>3

|zt if |r|>1,t>3 or |r|<1,t<3
1f(z) = Clz)|| <

forallxz € X.

COROLLARY 3.5. Let t # 3 and 6 be positive numbers. Suppose that
a mapping f : Q, — Q, with satisfies the inequality

|Dpsf(z,y)lp < Q(MZ + ‘?/|§;) (z,y € Qp).
Then there exists a unique mapping C : Q, — Q, satisfying (1.4) such
that

p'-
——z||t if |r|>1,t>3 or |r|<1,t<3

[f(z) = C(2)p <

-0
P Phzllt if |r|>1,6<3 or |r|<1,t>3

for all x € Q).
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