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GENERALIZED HYERS–ULAM STABILITY OF CUBIC
TYPE FUNCTIONAL EQUATIONS IN NORMED

SPACES

Gwang Hui Kim* and Hwan-Yong Shin**

Abstract. In this paper, we solve the Hyers-Ulam stability prob-
lem for the following cubic type functional equation

f(rx + sy) + f(rx− sy)

= rs2f(x + y) + rs2f(x− y) + 2r(r2 − s2)f(x)

in quasi-Banach space and non-Archimedean space, where r 6= ±1, 0
and s are real numbers.

1. Introduction

In [26], S.M. Ulam proposed the stability problem for functional equa-
tions concerning the stability of group homomorphisms. A functional
equation is called stable if any approximate solution to the functional
equation is near a true solution of that functional equation. In [11], D.H.
Hyers considered the case of approximate additive mappings with the
Cauchy difference controlled by a positive constant in Banach spaces.
D.G. Bourgin [4] and T. Aoki [2] treated this problem for approxi-
mate additive mappings controlled by unbounded function. In [21], Th.
M. Rassias provided a generalization of Hyers’ theorem for linear map-
pings which allows the Cauchy difference to be unbounded. In 1994, P.
Gǎvruta [8] generalized these theorems for approximate additive map-
pings controlled by the unbounded Cauchy difference with regular con-
ditions. During the last three decades a number of papers and research
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monographs have been published on various generalizations and applica-
tions of the Hyers–Ulam stability and generalized Hyers–Ulam stability
to a number of functional equations and mappings [1, 5, 7, 13, 20].

A stability problem of Ulam for the quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)(1.1)

was first proved by F. Skof for mapping f : E1 → E2, where E1 is a
normed space and E2 is a Banach space [24]. In the paper [6], S. Czer-
wik proved the Hyers–Ulam–Rassias stability of the quadratic functional
equation (1.1).

Let both E1 and E2 real vector spaces. K. Jun and H. Kim [12]
proved that a mapping f : E1 → E2 satisfies the functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x)(1.2)

if and only if there exists a mapping B : E1 × E1 × E1 → E2 such that
f(x) = B(x.x.x) for all x ∈ E1, where B, defined by

B(x, y, z) =
1
24

[
f(x + y + z) + f(x− y − z)

−f(x + y − z)− f(x− y + z)
]

for all x, y, z ∈ E1, is symmetric for each fixed one variable and additive
for each fixed two variables. It is easy to see that the functional equation
(1.2) is equivalent to a cubic functional equation

C(2x + y) + C(x− y) + 3C(y) = 3C(x + y) + 6C(x)

and every solution of the cubic functional equation is said to be a cubic
mapping [19]. A. Najati [17] investigated the following generalized cubic
functional equation:

f(kx + y) + f(kx− y)(1.3)
= kf(x + y) + kf(x− y) + 2(k3 − k)f(x)

for a positive integers k ≥ 2.
Now, we introduce the following more generalized functional equation

f(rx + sy) + f(rx− sy)(1.4)
= rs2f(x + y) + rs2f(x− y) + 2r(r2 − s2)f(x)

where r 6= −1, 0, 1 and s ∈ R. It is easy to see that the function f(x) =
cx3 is a solution of the above functional equation. And if one take r = 2
and s = 1 in (1.4), then the functional equation is (1.2). Also if one
take r ≥ 2 an integer and s = 1 in (1.4), then the functional equation is
(1.3).
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In this paper, we establish the stability problem for the functional
equation (1.4) for real number r 6= −1, 0, 1 and s in quasi normed spaces
and non-Archimedean spaces.

2. The Hyers–Ulam Stability in quasi-Banach spaces

In this section, we investigate the generalized Hyers–Ulam stability
problem for the functional equation (1.4) in quasi-Banach space. First,
we introduce some basic information concerning quasi-Banach spaces
which are referred in [3] and [23]. Let X be a linear space. A quasi-
norm is a real-valued function on X satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈ X, and ‖x‖ = 0 if and only if x = 0;
(ii) ‖λx‖ = |λ|‖x‖ for any scalar λ and all x ∈ X;
(iii) There is a constant M ≥ 1 such that ‖x + y‖ ≤ M(‖x‖+ ‖y‖) for

all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-
norm on X. The smallest possible M is called the modulus of concavity
of the quasi-norm ‖ · ‖. A quasi-Banach space is a complete quasi-
normed space. A quasi-norm ‖ · ‖ is called a q-norm(0 < q ≤ 1) if
‖x + y‖q ≤ ‖x‖q + ‖y‖q for all x, y ∈ X. In this case, a quasi-Banach
space is called a q-Banach space. Let X be a quasi-Banach space. Given
a q-norm, the formula d(x, y) := ‖x−y‖q gives us a translation invariant
metric on X. By Aoki–Rolewicz Theorem [23] (see also [3]), each quasi-
norm is equivalent to some q-norm. Since it is much easier to work
with q-norms than quasi-norms, here and subsequently, we restrict our
attention mainly to q-norms. Moreover, generalized stability theorems
of functional equations in quasi-Banach spaces have been investigated
by a lot of authors [14, 18, 25].

Now we introduce an abbreviation Dr,sf for a given mapping f :
X → Y as follows:

Dr,sf(x, y) := f(rx + sy) + f(rx− sy)

−rs2f(x + y)− rs2f(x− y)− 2r(r2 − s2)f(x)

for all x, y ∈ X, where r 6= −1, 0, 1 and s are fixed real numbers.
From now on, let X be a normed linear space with quasi-norm ‖ · ‖

and Y be a q-Banach space with q-norm ‖ · ‖. In this part, by using an
direct method, we prove the stability theorem of the equation (1.4).
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Theorem 2.1. Let φ : X2 → [0,∞) be a function such that

∞∑

j=0

1
|r|3jq

φ(rjx, 0)q < ∞, lim
j→∞

φ(rjx, rjy)
|r|3j

= 0(2.1)

for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies the
inequality

‖Dr,sf(x, y)‖ ≤ φ(x, y)(2.2)

for all x, y ∈ X. Then there exists a unique mapping C : X → Y
satisfying (1.4) such that

‖f(x)− C(x)‖ ≤ 1
2r3

[ ∞∑

j=0

φ(rjx, 0)q

|r|3jq

] 1
q(2.3)

for all x ∈ X.

Proof. Replacing (x, y) by (x, 0) in (2.2), we have

‖f(rx)− r3f(x)‖ ≤ 1
2
φ(x, 0)(2.4)

for all x ∈ X. Replacing x by rkx in (2.4) and then dividing both sides
by r3k+3, we get

‖ 1
r3k

f(rkx)− 1
r3k+3

f(rk+1x)‖ ≤ 1
2r3

φ(rkx, 0)
r3k

for all x ∈ X and all integers k ≥ 0. Then for any integers m, k with
m ≥ k ≥ 0, we obtain

∥∥∥ 1
r3m+3

f(rm+1x)− 1
r3k

f(rkx)
∥∥∥

q
(2.5)

=
∥∥∥

m∑

j=k

( 1
r3j+3

f(rj+1x)− 1
r3j

f(rjx)
)∥∥∥

q

≤
m∑

j=k

∥∥∥ 1
r3j+3

f(rj+1x)− 1
r3j

f(rjx)
∥∥∥

q

≤ 1
2q|r|3q

m∑

j=k

φ(rjx, 0)q

|r|3jq

for all x ∈ X. Thus the sequence
{f(rkx)

r3k

}∞
k=1

is Cauchy by (2.1).
Since Y is complete, this sequence converges for all x ∈ X. So one can



On the stability of cubic functional equations 401

define a mapping C : X → Y by

lim
k→∞

f(rkx)
r3k

= C(x) (x ∈ X).(2.6)

It follows from (2.1) and (2.6) that

‖Dr,sC(x, y)‖ = lim
k→∞

1
r3k

‖Dr,sf(rkx, rky)‖

≤ lim
k→∞

φ(rkx, rky)
r3k

= 0

for all x, y ∈ X. Hence, the mapping C satisfies (1.4). Putting k := 0
and letting m go to infinity in (2.5), we see that (2.3) holds. For the
uniqueness of C, assume that there exists a mapping C ′ : X → Y
satisfying (1.4) and (2.3). Then, we find that

∥∥∥C(x)− C ′(x)
∥∥∥

q
= lim

k→∞
1

|r|3kq

∥∥∥f(rkx)− C ′(rkx)
∥∥∥

q

≤ lim
k→∞

1
2qr3qr3kq

∞∑

j=0

1
|r|3jq

φ(rj+kx, 0)q

=
1

2q|r|3q
lim

k→∞

∞∑

j=k

1
|r|3kq

φ(rkx, 0)q = 0

for all x ∈ X, which proves the uniqueness.

Theorem 2.2. Let φ : X2 → [0,∞) be a function such that

∞∑

j=0

|r|3jqφ(r−jx, 0)q < ∞, lim
j→∞

|r|3jφ(r−jx, r−jy) = 0

for all x, y, z ∈ X. Suppose that f : X → Y is a mapping satisfying the
inequality

‖Dr,sf(x, y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a unique mapping C : X → Y
satisfying (1.4) such that

‖f(x)− C(x)‖ ≤ 1
2|r|3

[ ∞∑

j=1

|r|3jqφ(r−jx, 0)q
] 1

q

for all x ∈ X.
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Proof. We observe that one can obtain the following inequality

‖r3kf(
x

rk
)− r3(m+1)f(

x

rm+1
)‖q ≤ 1

2q|r|3q

m∑

j=k

|r|3(j+1)qφ(r−(j+1)x, 0)q

for all x ∈ X and all integers k,m with m ≥ k ≥ 0 by use of (2.2). Thus,
we see that the proof may be verified by applying similar argument to
that of Theorem 2.1.

In case r = 2 and s = 1, as a special case of Theorems 2.1 and 2.2 we
have the Hyers-Ulam stability results for the cubic functional equation
(1.2)(see [12]).

Corollary 2.3. Let ε ≥ 0. Suppose that a mapping f : X → Y
satisfies the inequality

‖Dr,sf(x, y)‖ ≤ ε

for all x, y ∈ X. Then there exists a unique mapping C : X → Y
satisfying (1.4) such that

‖f(x)− C(x)‖ ≤ ε

2 q
√
||r|3q − 1|

for all x ∈ X.

Corollary 2.4. Let α, a1, a2 be positive real numbers such that
either ai > 3 or ai < 3 simultaneously for all i ∈ {1, 2}. Suppose that a
mapping f : X → Y satisfies the inequality

‖Dr.sf(x, y)‖ ≤ α
(‖x‖a1 + ‖y‖a2)

for all x, y ∈ X. Then there exists a unique mapping C : X → Y
satisfying (1.4) such that

‖f(x)− C(x)‖ ≤ α‖x‖ai

2 q
√
||r|3q − |r|q·ai | (i = 1, 2)

for all x ∈ X.

3. The Hyers–Ulam Stability in non-Archimedean spaces

Hensel [10] has introduced a normed space which does not have the
non-Archimedean spaces property. During the last three decades, the
theory of non-Archimedean spaces has gain the interest of physicists for
their research in problems coming from quantum physics, p-adic strings
and superstrings [15].
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A valuation is a function | · | from a field K to [0,∞) such that 0 is
the unique element having the 0 valuation, |ab| = |a| · |b| and the triangle
inequality holds, i.e.,

|a + b| ≤ |a|+ |b|, ∀a, b ∈ K.

A field K is called a valued field if K equips with a valuation. The usual
absolute values of R and C are examples of valuations. Alternatively, if
the triangle inequality is replaced by the weakly triangle inequality

|a + b| ≤ max {|a|, |b|},∀a, b ∈ K,

then the valuation | · | is called a non-Archimedean valuation, and the
field is called a non-Archimedean field. Clearly |1| = | − 1| = 1 and
|n| ≤ 1 for all n ∈ N. A trivial example of a non-Archimedean valuation
is the function | · | taking everything except for 0 into 1 and |0| = 0.

Definition 3.1. Let X be a vector space over a field K with a non-
Archimedean valuation | · |. A function ‖ · ‖ : X → [0,∞) is said to be
a non-Archimedean norm on X if it satisfies the following conditions

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖ax‖ = |a|‖x‖ (a ∈ K);
(iii) ‖x + y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

In this case (X, ‖ · ‖) is called a non-Archimedean normed space.
Because of the fact

‖xk − xm‖ ≤ max {‖xj+1 − xj‖ : m ≤ j ≤ k − 1} (k > m),

a sequence {xm} is Cauchy in the non-Archimedean normed space if
and only if {xm+1 − xm} converges to zero with respect to the non-
Archimedean norm. By a complete non-Archimedean space we mean
one in which every Cauchy sequence is convergent.

Example 3.2. Let p be a prime number. For any nonzero rational

number x, there exists a unique integer nx ∈ Z such that x =
a

b
pnx ,

where a and b are integers not divisible by p. Then |x|p := p−nx de-
fines a non-Archimedean norm on rational Q. The completion of Q
with respect to the metric d(x, y) = |x − y|p is denoted by Qp which is
called the p-adic number field. In fact, Qp is the set of all formal series

x =
∑∞

k≥nx
akp

k, where |ak| ≤ p−1 are integers. The addition and mul-
tiplication between any two elements of Qp are defined naturally. The

norm |∑∞
k≥nx

akp
k| = p−nx is a non-Archimedean norm on Qp and it

makes Qp a locally compact field (see [9, 22]).
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Let X be a vector space and Y be a non-Archimedean Banach space.
In the following, we now prove the generalized Hyers–Ulam stability of
quadratic functional equation (1.4) over the non-Archimedean space. As
corollaries, we obtain especially stability result over the p-adic field Qp.
To avoid trivial case, we assume |r| < 1.

Theorem 3.3. Let φ : X2 → [0,∞)
(
ψ : X2 → [0,∞)

)
be a function

such that

lim
j→∞

φ(rjx, rjy)
|r|3j

= 0(3.1)
(

lim
j→∞

|r|3jψ(r−jx, r−jy) = 0, resp
)

for all x, y ∈ X and the limit

Φ(x) ≡ lim
k→∞

max
{φ(rjx, 0)

|r|3j
: 0 ≤ j < k

}
(3.2)

(
Ψ(x) ≡ lim

k→∞
max

{
|r|3jψ(r−jx, 0) : 1 ≤ j ≤ k

}
, resp

)

exists for each x ∈ X. Suppose that a mapping f : X → Y satisfies the
inequality

‖Dr,sf(x, y)‖ ≤ φ(x, y)(3.3) (
‖Dr,sf(x, y)‖ ≤ ψ(x, y), resp

)
,

for all x, y ∈ X. Then there exists a mapping C : X → Y satisfying
(1.4) such that

‖f(x)− C(x)‖ ≤ 1
|2| · |r|3 Φ(x)(3.4)

(
‖f(x)− C(x)‖ ≤ 1

|2| · |r|3 Ψ(x), resp
)
,

for all x ∈ X. Moreover, if

lim
m→∞ lim

k→∞
max

{φ(rjx, 0)
|r|3j

: m ≤ j < k + m
}

= 0(3.5)
(

lim
m→∞ lim

k→∞
max

{
|r|3jψ(r−jx, 0) : m < j ≤ k + m

}
= 0, resp

)
,

for all x ∈ X, then the mapping C is unique.

Proof. Replacing (x, y) by (x, 0) in (3.3), we have

‖f(rx)− r3f(x)‖ ≤ 1
|2|φ(x, 0)(3.6)
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for all x ∈ X. Replacing x by rkx in (3.6) and then dividing both sides
by |r|3k+3, we get

‖ 1
r3k+3

f(rk+1x)− 1
r3k

f(rkx)‖ ≤ 1
|2| · |r|3

φ(rkx, 0)
|r|3k

(3.7)

for all x ∈ X. It follows from (3.7) and (3.1) that the sequence
{f(rkx)
|r|3k

}∞
k=1

is Cauchy in the non-Archimedean Banach space Y. Since Y is complete,
we may define a mapping C : X → Y as C(x) := limk→∞

f(rkx)
r3k for all

x ∈ X. Using induction, one can show that

‖f(rkx)
r3k

− f(x)‖ ≤ 1
|2| · |r|3 max

{φ(rjx, 0)
|r|3j

: 0 ≤ j < k
}

(3.8)

for all k ∈ N and all x ∈ X. By taking k to approach infinity in (3.8)
and using (3.2), one obtains (3.4). Replacing x, y and z by r3kx,r3ky
and r3kz, respectively, in (3.3), we get

‖Dr,sf(rkx, rky)
r3k

‖ ≤ φ(rkx, rky)
|r|3k

(3.9)

for all x, y ∈ X. Taking the limit as k →∞, we conclude that C satisfies
(1.4). Moreover, to prove the uniqueness, we assume that there exists a
mapping C ′ : X → Y satisfying (1.4) and (3.4), (3.5). Then we figure
out

‖C(x)− C ′(x)‖
= lim

m→∞
1

|r|3m
‖C(rmx)− C ′(rmx)‖

≤ lim
m→∞max{‖C(rmx)− f(rmx)‖

|r|3m
,
‖f(rmx)− C ′(rmx)‖

|r|3m
}

≤ lim
m→∞ lim

k→∞
1

|2| · |r|3 max{φ(rjx, 0)
|r|3j

: m ≤ j < m + k} = 0

for all x ∈ X. This completes the proof.

Corollary 3.4. Let X be a non-Archimedean normed space, t 6= 3
and θ be positive numbers. Suppose that a mapping f : X → Y satisfies
the inequality

‖Dr,sf(x, y)‖ ≤ θ
(‖x‖t + ‖y‖t

)
(x, y ∈ X).
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Then there exists a unique mapping C : X → Y satisfying (1.4) such
that

‖f(x)− C(x)‖ ≤





θ

|2| · |r|t ‖x‖
t if |r| > 1, t > 3 or |r| < 1, t < 3

θ

|2| · |r|3 ‖x‖
t if |r| > 1, t < 3 or |r| < 1, t > 3

for all x ∈ X.

Corollary 3.5. Let t 6= 3 and θ be positive numbers. Suppose that
a mapping f : Qp → Qp with satisfies the inequality

|Dp,sf(x, y)|p ≤ θ
(|x|tp + |y|tp

)
(x, y ∈ Qp).

Then there exists a unique mapping C : Qp → Qp satisfying (1.4) such
that

|f(x)− C(x)|p ≤





pt · θ
|2| ‖x‖

t if |r| > 1, t > 3 or |r| < 1, t < 3

p3 · θ
|2| ‖x‖

t if |r| > 1, t < 3 or |r| < 1, t > 3

for all x ∈ Qp.
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