GENERALIZED HYERS-ULAM STABILITY OF CUBIC TYPE FUNCTIONAL EQUATIONS IN NORMED SPACES

Gwang Hui Kim* and Hwan-Yong Shin**

Abstract

In this paper, we solve the Hyers-Ulam stability problem for the following cubic type functional equation $$
\begin{aligned} & f(r x+s y)+f(r x-s y) \\ & =r s^{2} f(x+y)+r s^{2} f(x-y)+2 r\left(r^{2}-s^{2}\right) f(x) \end{aligned}
$$ in quasi-Banach space and non-Archimedean space, where $r \neq \pm 1,0$ and s are real numbers.

1. Introduction

In [26], S.M. Ulam proposed the stability problem for functional equations concerning the stability of group homomorphisms. A functional equation is called stable if any approximate solution to the functional equation is near a true solution of that functional equation. In [11], D.H. Hyers considered the case of approximate additive mappings with the Cauchy difference controlled by a positive constant in Banach spaces. D.G. Bourgin [4] and T. Aoki [2] treated this problem for approximate additive mappings controlled by unbounded function. In [21], Th. M. Rassias provided a generalization of Hyers' theorem for linear mappings which allows the Cauchy difference to be unbounded. In 1994, P. Gǎvruta [8] generalized these theorems for approximate additive mappings controlled by the unbounded Cauchy difference with regular conditions. During the last three decades a number of papers and research

[^0]monographs have been published on various generalizations and applications of the Hyers-Ulam stability and generalized Hyers-Ulam stability to a number of functional equations and mappings $[1,5,7,13,20]$.

A stability problem of Ulam for the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

was first proved by F . Skof for mapping $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space [24]. In the paper [6], S. Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (1.1).

Let both E_{1} and E_{2} real vector spaces. K. Jun and H. Kim [12] proved that a mapping $f: E_{1} \rightarrow E_{2}$ satisfies the functional equation
(1.2) $f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x)$
if and only if there exists a mapping $B: E_{1} \times E_{1} \times E_{1} \rightarrow E_{2}$ such that $f(x)=B(x \cdot x \cdot x)$ for all $x \in E_{1}$, where B, defined by

$$
\begin{aligned}
B(x, y, z)= & \frac{1}{24}[f(x+y+z)+f(x-y-z) \\
& -f(x+y-z)-f(x-y+z)]
\end{aligned}
$$

for all $x, y, z \in E_{1}$, is symmetric for each fixed one variable and additive for each fixed two variables. It is easy to see that the functional equation (1.2) is equivalent to a cubic functional equation

$$
C(2 x+y)+C(x-y)+3 C(y)=3 C(x+y)+6 C(x)
$$

and every solution of the cubic functional equation is said to be a cubic mapping [19]. A. Najati [17] investigated the following generalized cubic functional equation:

$$
\begin{align*}
& f(k x+y)+f(k x-y) \tag{1.3}\\
& =k f(x+y)+k f(x-y)+2\left(k^{3}-k\right) f(x)
\end{align*}
$$

for a positive integers $k \geq 2$.
Now, we introduce the following more generalized functional equation

$$
\begin{align*}
& f(r x+s y)+f(r x-s y) \tag{1.4}\\
& =r s^{2} f(x+y)+r s^{2} f(x-y)+2 r\left(r^{2}-s^{2}\right) f(x)
\end{align*}
$$

where $r \neq-1,0,1$ and $s \in \mathbb{R}$. It is easy to see that the function $f(x)=$ $c x^{3}$ is a solution of the above functional equation. And if one take $r=2$ and $s=1$ in (1.4), then the functional equation is (1.2). Also if one take $r \geq 2$ an integer and $s=1$ in (1.4), then the functional equation is (1.3).

In this paper, we establish the stability problem for the functional equation (1.4) for real number $r \neq-1,0,1$ and s in quasi normed spaces and non-Archimedean spaces.

2. The Hyers-Ulam Stability in quasi-Banach spaces

In this section, we investigate the generalized Hyers-Ulam stability problem for the functional equation (1.4) in quasi-Banach space. First, we introduce some basic information concerning quasi-Banach spaces which are referred in [3] and [23]. Let X be a linear space. A quasinorm is a real-valued function on X satisfying the following:
(i) $\|x\| \geq 0$ for all $x \in X$, and $\|x\|=0$ if and only if $x=0$;
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for any scalar λ and all $x \in X$;
(iii) There is a constant $M \geq 1$ such that $\|x+y\| \leq M(\|x\|+\|y\|)$ for all $x, y \in X$.

The pair $(X,\|\cdot\|)$ is called a quasi-normed space if $\|\cdot\|$ is a quasinorm on X. The smallest possible M is called the modulus of concavity of the quasi-norm $\|\cdot\|$. A quasi-Banach space is a complete quasinormed space. A quasi-norm $\|\cdot\|$ is called a q-norm $(0<q \leq 1)$ if $\|x+y\|^{q} \leq\|x\|^{q}+\|y\|^{q}$ for all $x, y \in X$. In this case, a quasi-Banach space is called a q-Banach space. Let X be a quasi-Banach space. Given a q-norm, the formula $d(x, y):=\|x-y\|^{q}$ gives us a translation invariant metric on X. By Aoki-Rolewicz Theorem [23] (see also [3]), each quasinorm is equivalent to some q-norm. Since it is much easier to work with q-norms than quasi-norms, here and subsequently, we restrict our attention mainly to q-norms. Moreover, generalized stability theorems of functional equations in quasi-Banach spaces have been investigated by a lot of authors [14, 18, 25].

Now we introduce an abbreviation $D_{r, s} f$ for a given mapping f : $X \rightarrow Y$ as follows:

$$
\begin{aligned}
D_{r, s} f(x, y):= & f(r x+s y)+f(r x-s y) \\
& -r s^{2} f(x+y)-r s^{2} f(x-y)-2 r\left(r^{2}-s^{2}\right) f(x)
\end{aligned}
$$

for all $x, y \in X$, where $r \neq-1,0,1$ and s are fixed real numbers.
From now on, let X be a normed linear space with quasi-norm $\|\cdot\|$ and Y be a q-Banach space with q-norm $\|\cdot\|$. In this part, by using an direct method, we prove the stability theorem of the equation (1.4).

Theorem 2.1. Let $\phi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{1}{|r|^{3 j q}} \phi\left(r^{j} x, 0\right)^{q}<\infty, \quad \lim _{j \rightarrow \infty} \frac{\phi\left(r^{j} x, r^{j} y\right)}{|r|^{3 j}}=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{r, s} f(x, y)\right\| \leq \phi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique mapping $C: X \rightarrow Y$ satisfying (1.4) such that

$$
\begin{equation*}
\|f(x)-C(x)\| \leq \frac{1}{2 r^{3}}\left[\sum_{j=0}^{\infty} \frac{\phi\left(r^{j} x, 0\right)^{q}}{|r|^{3 j q}}\right]^{\frac{1}{q}} \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
Proof. Replacing (x, y) by $(x, 0)$ in (2.2), we have

$$
\begin{equation*}
\left\|f(r x)-r^{3} f(x)\right\| \leq \frac{1}{2} \phi(x, 0) \tag{2.4}
\end{equation*}
$$

for all $x \in X$. Replacing x by $r^{k} x$ in (2.4) and then dividing both sides by $r^{3 k+3}$, we get

$$
\left\|\frac{1}{r^{3 k}} f\left(r^{k} x\right)-\frac{1}{r^{3 k+3}} f\left(r^{k+1} x\right)\right\| \leq \frac{1}{2 r^{3}} \frac{\phi\left(r^{k} x, 0\right)}{r^{3 k}}
$$

for all $x \in X$ and all integers $k \geq 0$. Then for any integers m, k with $m \geq k \geq 0$, we obtain

$$
\begin{align*}
& \left\|\frac{1}{r^{3 m+3}} f\left(r^{m+1} x\right)-\frac{1}{r^{3 k}} f\left(r^{k} x\right)\right\|^{q} \tag{2.5}\\
& =\left\|\sum_{j=k}^{m}\left(\frac{1}{r^{3 j+3}} f\left(r^{j+1} x\right)-\frac{1}{r^{3 j}} f\left(r^{j} x\right)\right)\right\|^{q} \\
& \leq \sum_{j=k}^{m}\left\|\frac{1}{r^{3 j+3}} f\left(r^{j+1} x\right)-\frac{1}{r^{3 j}} f\left(r^{j} x\right)\right\|^{q} \\
& \leq \frac{1}{2^{q}|r|^{3 q}} \sum_{j=k}^{m} \frac{\phi\left(r^{j} x, 0\right)^{q}}{|r|^{3 j q}}
\end{align*}
$$

for all $x \in X$. Thus the sequence $\left\{\frac{f\left(r^{k} x\right)}{r^{3 k}}\right\}_{k=1}^{\infty}$ is Cauchy by (2.1). Since Y is complete, this sequence converges for all $x \in X$. So one can
define a mapping $C: X \rightarrow Y$ by

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{f\left(r^{k} x\right)}{r^{3 k}}=C(x) \quad(x \in X) . \tag{2.6}
\end{equation*}
$$

It follows from (2.1) and (2.6) that

$$
\begin{aligned}
\left\|D_{r, s} C(x, y)\right\| & =\lim _{k \rightarrow \infty} \frac{1}{r^{3 k}}\left\|D_{r, s} f\left(r^{k} x, r^{k} y\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} \frac{\phi\left(r^{k} x, r^{k} y\right)}{r^{3 k}}=0
\end{aligned}
$$

for all $x, y \in X$. Hence, the mapping C satisfies (1.4). Putting $k:=0$ and letting m go to infinity in (2.5), we see that (2.3) holds. For the uniqueness of C, assume that there exists a mapping $C^{\prime}: X \rightarrow Y$ satisfying (1.4) and (2.3). Then, we find that

$$
\begin{aligned}
\left\|C(x)-C^{\prime}(x)\right\|^{q} & =\lim _{k \rightarrow \infty} \frac{1}{|r|^{3 k q}}\left\|f\left(r^{k} x\right)-C^{\prime}\left(r^{k} x\right)\right\|^{q} \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{2^{q} r^{3 q} r^{3 k q}} \sum_{j=0}^{\infty} \frac{1}{|r|^{3 j q}} \phi\left(r^{j+k} x, 0\right)^{q} \\
& =\frac{1}{2^{q}|r|^{3 q}} \lim _{k \rightarrow \infty} \sum_{j=k}^{\infty} \frac{1}{|r|^{3 k q}} \phi\left(r^{k} x, 0\right)^{q}=0
\end{aligned}
$$

for all $x \in X$, which proves the uniqueness.
Theorem 2.2. Let $\phi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\sum_{j=0}^{\infty}|r|^{3 j q} \phi\left(r^{-j} x, 0\right)^{q}<\infty, \quad \lim _{j \rightarrow \infty}|r|^{3 j} \phi\left(r^{-j} x, r^{-j} y\right)=0
$$

for all $x, y, z \in X$. Suppose that $f: X \rightarrow Y$ is a mapping satisfying the inequality

$$
\left\|D_{r, s} f(x, y)\right\| \leq \phi(x, y)
$$

for all $x, y \in X$. Then there exists a unique mapping $C: X \rightarrow Y$ satisfying (1.4) such that

$$
\|f(x)-C(x)\| \leq \frac{1}{2|r|^{3}}\left[\sum_{j=1}^{\infty}|r|^{3 j q} \phi\left(r^{-j} x, 0\right)^{q}\right]^{\frac{1}{q}}
$$

for all $x \in X$.

Proof. We observe that one can obtain the following inequality
$\left\|r^{3 k} f\left(\frac{x}{r^{k}}\right)-r^{3(m+1)} f\left(\frac{x}{r^{m+1}}\right)\right\|^{q} \leq \frac{1}{2^{q}|r|^{3 q}} \sum_{j=k}^{m}|r|^{3(j+1) q} \phi\left(r^{-(j+1)} x, 0\right)^{q}$
for all $x \in X$ and all integers k, m with $m \geq k \geq 0$ by use of (2.2). Thus, we see that the proof may be verified by applying similar argument to that of Theorem 2.1.

In case $r=2$ and $s=1$, as a special case of Theorems 2.1 and 2.2 we have the Hyers-Ulam stability results for the cubic functional equation (1.2)(see [12]).

Corollary 2.3. Let $\varepsilon \geq 0$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{r, s} f(x, y)\right\| \leq \varepsilon
$$

for all $x, y \in X$. Then there exists a unique mapping $C: X \rightarrow Y$ satisfying (1.4) such that

$$
\|f(x)-C(x)\| \leq \frac{\varepsilon}{2 \sqrt[q]{\left.| | r\right|^{3 q}-1 \mid}}
$$

for all $x \in X$.
Corollary 2.4. Let α, a_{1}, a_{2} be positive real numbers such that either $a_{i}>3$ or $a_{i}<3$ simultaneously for all $i \in\{1,2\}$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{r . s} f(x, y)\right\| \leq \alpha\left(\|x\|^{a_{1}}+\|y\|^{a_{2}}\right)
$$

for all $x, y \in X$. Then there exists a unique mapping $C: X \rightarrow Y$ satisfying (1.4) such that

$$
\|f(x)-C(x)\| \leq \frac{\alpha\|x\|^{a_{i}}}{2 \sqrt[q]{\|\left. r\right|^{3 q}-|r|^{q \cdot a_{i}} \mid}} \quad(i=1,2)
$$

for all $x \in X$.

3. The Hyers-Ulam Stability in non-Archimedean spaces

Hensel [10] has introduced a normed space which does not have the non-Archimedean spaces property. During the last three decades, the theory of non-Archimedean spaces has gain the interest of physicists for their research in problems coming from quantum physics, p-adic strings and superstrings [15].

A valuation is a function $|\cdot|$ from a field \mathbb{K} to $[0, \infty)$ such that 0 is the unique element having the 0 valuation, $|a b|=|a| \cdot|b|$ and the triangle inequality holds, i.e.,

$$
|a+b| \leq|a|+|b|, \forall a, b \in \mathbb{K}
$$

A field \mathbb{K} is called a valued field if \mathbb{K} equips with a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations. Alternatively, if the triangle inequality is replaced by the weakly triangle inequality

$$
|a+b| \leq \max \{|a|,|b|\}, \forall a, b \in \mathbb{K}
$$

then the valuation $|\cdot|$ is called a non-Archimedean valuation, and the field is called a non-Archimedean field. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. A trivial example of a non-Archimedean valuation is the function $|\cdot|$ taking everything except for 0 into 1 and $|0|=0$.

Definition 3.1. Let X be a vector space over a field \mathbb{K} with a nonArchimedean valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is said to be a non-Archimedean norm on X if it satisfies the following conditions
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|a x\|=|a|\|x\|(a \in \mathbb{K})$;
(iii) $\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)$.

In this case $(X,\|\cdot\|)$ is called a non-Archimedean normed space. Because of the fact

$$
\left\|x_{k}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq k-1\right\} \quad(k>m)
$$

a sequence $\left\{x_{m}\right\}$ is Cauchy in the non-Archimedean normed space if and only if $\left\{x_{m+1}-x_{m}\right\}$ converges to zero with respect to the nonArchimedean norm. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

Example 3.2. Let p be a prime number. For any nonzero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on rational \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p} which is called the p-adic number field. In fact, \mathbb{Q}_{p} is the set of all formal series $x=\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}$, where $\left|a_{k}\right| \leq p-1$ are integers. The addition and multiplication between any two elements of \mathbb{Q}_{p} are defined naturally. The norm $\left|\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}\right|=p^{-n_{x}}$ is a non-Archimedean norm on \mathbb{Q}_{p} and it makes \mathbb{Q}_{p} a locally compact field (see [9, 22]).

Let X be a vector space and Y be a non-Archimedean Banach space. In the following, we now prove the generalized Hyers-Ulam stability of quadratic functional equation (1.4) over the non-Archimedean space. As corollaries, we obtain especially stability result over the p-adic field \mathbb{Q}_{p}. To avoid trivial case, we assume $|r|<1$.

Theorem 3.3. Let $\phi: X^{2} \rightarrow[0, \infty)\left(\psi: X^{2} \rightarrow[0, \infty)\right)$ be a function such that

$$
\begin{align*}
& \lim _{j \rightarrow \infty} \frac{\phi\left(r^{j} x, r^{j} y\right)}{|r|^{3 j}}=0 \tag{3.1}\\
& \left(\lim _{j \rightarrow \infty}|r|^{3 j} \psi\left(r^{-j} x, r^{-j} y\right)=0, r e s p\right)
\end{align*}
$$

for all $x, y \in X$ and the limit

$$
\begin{align*}
& \Phi(x) \equiv \lim _{k \rightarrow \infty} \max \left\{\frac{\phi\left(r^{j} x, 0\right)}{|r|^{3 j}}: 0 \leq j<k\right\} \tag{3.2}\\
& \left(\Psi(x) \equiv \lim _{k \rightarrow \infty} \max \left\{|r|^{3 j} \psi\left(r^{-j} x, 0\right): 1 \leq j \leq k\right\}, \text { resp }\right)
\end{align*}
$$

exists for each $x \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{align*}
& \left\|D_{r, s} f(x, y)\right\| \leq \phi(x, y) \tag{3.3}\\
& \left(\left\|D_{r, s} f(x, y)\right\| \leq \psi(x, y), r e s p\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a mapping $C: X \rightarrow Y$ satisfying (1.4) such that

$$
\begin{align*}
& \|f(x)-C(x)\| \leq \frac{1}{|2| \cdot|r|^{3}} \Phi(x) \tag{3.4}\\
& \left(\|f(x)-C(x)\| \leq \frac{1}{|2| \cdot|r|^{3}} \Psi(x), r e s p\right)
\end{align*}
$$

for all $x \in X$. Moreover, if
(3.5) $\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \max \left\{\frac{\phi\left(r^{j} x, 0\right)}{|r|^{3 j}}: m \leq j<k+m\right\}=0$

$$
\left(\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \max \left\{|r|^{3 j} \psi\left(r^{-j} x, 0\right): m<j \leq k+m\right\}=0, \text { resp }\right)
$$

for all $x \in X$, then the mapping C is unique.
Proof. Replacing (x, y) by $(x, 0)$ in (3.3), we have

$$
\begin{equation*}
\left\|f(r x)-r^{3} f(x)\right\| \leq \frac{1}{|2|} \phi(x, 0) \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Replacing x by $r^{k} x$ in (3.6) and then dividing both sides by $|r|^{3 k+3}$, we get

$$
\begin{equation*}
\left\|\frac{1}{r^{3 k+3}} f\left(r^{k+1} x\right)-\frac{1}{r^{3 k}} f\left(r^{k} x\right)\right\| \leq \frac{1}{|2| \cdot|r|^{3}} \frac{\phi\left(r^{k} x, 0\right)}{|r|^{3 k}} \tag{3.7}
\end{equation*}
$$

for all $x \in X$. It follows from (3.7) and (3.1) that the sequence $\left\{\frac{f\left(r^{k} x\right)}{\left.|r|\right|^{3 k}}\right\}_{k=1}^{\infty}$ is Cauchy in the non-Archimedean Banach space Y. Since Y is complete, we may define a mapping $C: X \rightarrow Y$ as $C(x):=\lim _{k \rightarrow \infty} \frac{f\left(r^{k} x\right)}{r^{3 k}}$ for all $x \in X$. Using induction, one can show that

$$
\begin{equation*}
\left\|\frac{f\left(r^{k} x\right)}{r^{3 k}}-f(x)\right\| \leq \frac{1}{|2| \cdot|r|^{3}} \max \left\{\frac{\phi\left(r^{j} x, 0\right)}{|r|^{3 j}}: 0 \leq j<k\right\} \tag{3.8}
\end{equation*}
$$

for all $k \in \mathbb{N}$ and all $x \in X$. By taking k to approach infinity in (3.8) and using (3.2), one obtains (3.4). Replacing x, y and z by $r^{3 k} x, r^{3 k} y$ and $r^{3 k} z$, respectively, in (3.3), we get

$$
\begin{equation*}
\left\|\frac{D_{r, s} f\left(r^{k} x, r^{k} y\right)}{r^{3 k}}\right\| \leq \frac{\phi\left(r^{k} x, r^{k} y\right)}{|r|^{3 k}} \tag{3.9}
\end{equation*}
$$

for all $x, y \in X$. Taking the limit as $k \rightarrow \infty$, we conclude that C satisfies (1.4). Moreover, to prove the uniqueness, we assume that there exists a mapping $C^{\prime}: X \rightarrow Y$ satisfying (1.4) and (3.4), (3.5). Then we figure out

$$
\begin{aligned}
& \left\|C(x)-C^{\prime}(x)\right\| \\
& =\lim _{m \rightarrow \infty} \frac{1}{|r|^{3 m}}\left\|C\left(r^{m} x\right)-C^{\prime}\left(r^{m} x\right)\right\| \\
& \leq \lim _{m \rightarrow \infty} \max \left\{\frac{\left\|C\left(r^{m} x\right)-f\left(r^{m} x\right)\right\|}{|r|^{3 m}}, \frac{\left\|f\left(r^{m} x\right)-C^{\prime}\left(r^{m} x\right)\right\|}{|r|^{3 m}}\right\} \\
& \leq \lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \frac{1}{|2| \cdot|r|^{3}} \max \left\{\frac{\phi\left(r^{j} x, 0\right)}{|r|^{3 j}}: m \leq j<m+k\right\}=0
\end{aligned}
$$

for all $x \in X$. This completes the proof.
Corollary 3.4. Let X be a non-Archimedean normed space, $t \neq 3$ and θ be positive numbers. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{r, s} f(x, y)\right\| \leq \theta\left(\|x\|^{t}+\|y\|^{t}\right) \quad(x, y \in X) .
$$

Then there exists a unique mapping $C: X \rightarrow Y$ satisfying (1.4) such that

$$
\|f(x)-C(x)\| \leq\left\{\begin{array}{lllll}
\frac{\theta}{|2| \cdot \mid r t^{t}}\|x\|^{t} & \text { if } & |r|>1, t>3 & \text { or } & |r|<1, t<3 \\
\frac{\theta}{|2| \cdot|r|^{3}}\|x\|^{t} & \text { if } & |r|>1, t<3 & \text { or } & |r|<1, t>3
\end{array}\right.
$$

for all $x \in X$.
Corollary 3.5. Let $t \neq 3$ and θ be positive numbers. Suppose that a mapping $f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ with satisfies the inequality

$$
\left|D_{p, s} f(x, y)\right|_{p} \leq \theta\left(|x|_{p}^{t}+|y|_{p}^{t}\right) \quad\left(x, y \in \mathbb{Q}_{p}\right)
$$

Then there exists a unique mapping $C: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ satisfying (1.4) such that
$|f(x)-C(x)|_{p} \leq\left\{\begin{array}{lllll}\frac{p^{t} \cdot \theta}{|2|}\|x\|^{t} & \text { if } & |r|>1, t>3 & \text { or } & |r|<1, t<3 \\ \frac{p^{3} \cdot \theta}{|2|}\|x\|^{t} & \text { if } & |r|>1, t<3 & \text { or } & |r|<1, t>3\end{array}\right.$
for all $x \in \mathbb{Q}_{p}$.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, (1989), Doi:10.1017/CBO9781139086578.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2, no. 1-2 (1950), 64-66, Doi:10.2969/jmsj/00210064.
[3] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society, 2000.
[4] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237, Doi:10.1090/S0002-9904-1951-09511-7.
[5] Y-J. Cho, Th. M. Rassias, and R. Saadati, Stability of Functional Equations in Random Normed Spaces, Springer Optimization and Its Applications 86, Springer, (2013), Doi:10.1007/978-1-4614-8477-6.
[6] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Bull. Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64, Doi:10.1007/BF02941618.
[7] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Florida, 2003.
[8] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[9] F. Q. Gouvêa, p-adic Numbers, Springer-Verlag, Berlin, 1997, Doi:10.1007/978-3-642-59058-04.
[10] K. Hensel, Über eine neue Begrndüng der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein 6 (1987), 83-88.
[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224, Doi:10.1073/pnas.27.4.222.
[12] K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[13] S-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, USA, 2011, Doi:10.1007/978-1-4419-9637-4.
[14] K.-W. Jun and H.-M. Kim, On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2006), no. 2, 1335-1350, Doi:10.1016/j.jmaa.2006.11.024.
[15] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.
[16] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Brazilian Math. Soc. 37 (2006), 361-376, Doi:10.1007/s00574-006-0016-z.
[17] A. Najati, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, Turk. J. Math. 31 (2007), 395-408
[18] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasiBanach algebras, Bull. Sci. Math. 132 (2008), no. 2, 87-96, Doi:10.1016/j.bulsci.2006.07.004.
[19] J.M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matem. 36 (2001), 63-72.
[20] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003, Doi:10.1007/978-94-017-0225-6.
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300, Doi:10.1090/S0002-9939-1978-05073271.
[22] A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, New-York, 2000, Doi:10.1007/978-1-4757-3254-2.
[23] S. Rolewicz, Metric linear spaces, Second edition. PWN-Polish Scientific Publishers, Warsaw:D. Reidel Publishing Co. Dordrecht, (1984).
[24] F. Skof, Local properties and approximations of operators, Rend. Sem. Math. Fis. Milano 53 (1983), 113-129.
[25] J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83 (2004), 243-255, Doi:10.4064/ap83-3-6.
[26] S. M. Ulam, Problems in Modern Mathematics, Chapter 6, Wiley Interscience, New York, 1964.
$*$
Department of Mathematics
Kangnam University
Yongin 446-702, Republic of Korea
E-mail: ghkim@kangnam.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: hyshin31@cnu.ac.kr

[^0]: Received April 20, 2015; Accepted June 25, 2015.
 2010 Mathematics Subject Classification: Primary 39B82, 39B52.
 Key words and phrases: cubic functional equation, quasi-noremd space, nonArchimedean space.

 Correspondence should be addressed to Hwan-Yong Shin, hyshin31@cnu.ac.kr.
 This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number: 2010-0010243).

