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GENERALIZED FORMS OF SWIATAK’S FUNCTIONAL

EQUATIONS WITH INVOLUTION

Zhihua Wang

Abstract. In this paper, we study two functional equations with two un-

known functions from an Abelian group into a commutative ring without
zero divisors. The two equations are generalizations of Swiatak’s func-

tional equations with an involution. We determine the general solutions
of the two functional equations and the properties of the general solutions

of the two functional equations under three different hypotheses, respec-

tively. For one of the functional equations, we establish the Hyers-Ulam
stability in the case that the unknown functions are complex valued.

1. Introduction

Let G be an abelian group with the identity element e and K a commutative
ring without zero divisors. Let σ : G → G be an involution, that is, σ is an
endomorphism of G satisfying σ(σ(x)) = x for all x ∈ G. We consider the
following two functional equations

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y) + g(x)g(y),(1.1)

f(x+ y + z) + f(x+ σ(y) + z) + f(x+ y + σ(z)) + f(σ(x) + y + z)

= 4f(x) + 4f(y) + 4f(z) + 2g(x)g(y) + 2g(x)g(z) + 2g(y)g(z)(1.2)

for all x, y, z ∈ G and f, g take values in K. When σ(x) = −x for all x ∈ G,
then the above two equations are respectively reduced to

f(x+ y) + f(x− y) = 2f(x) + 2f(y) + g(x)g(y),(1.3)

f(x+ y + z) + f(x− y + z) + f(x+ y − z) + f(−x+ y + z)

= 4f(x) + 4f(y) + 4f(z) + 2g(x)g(y) + 2g(x)g(z) + 2g(y)g(z)(1.4)
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which are connected with the quadratic functional equation, and these two
functional equations were studied by Swiatak in [20]. She determined the so-
lutions f, g : G → K of (1.3) and (1.4) when g(e) 6= 0. Later, the equation
(1.3) was completely solved by Chung, Ebank, Ng and Sahoo [5] on arbitrary
groups when the unknown functions f : G → C was abelian. Recall that a
function f is abelian if f(xyz) = f(xzy) for all x, y, z ∈ G. Without the re-
striction g(e) 6= 0, the general solutions f, g : G→ K of (1.4) were determined
by Chung, Ebanks and Sahoo in [6] on arbitrary groups when f is abelian.
Recently, Belaid, Elhoucien and Rassias [2] proved the generalized Hyers-Ulam
stability of (1.3) in the case that f, g : G→ C are complex-valued functions and
g(e) 6= 0. However, the Hyers-Ulam stability of the equation (1.4) is unknown.

In this paper, we consider the functional equations (1.1) and (1.2) under
three different hypotheses:

(H1): g(e) 6= 0 and (K,+) is a uniquely 2-divisible group (i.e., for each
x ∈ K there is a unique y ∈ K such that x = 2y).

(H2): g(e) = 0 and for each k ∈ K, 2k = 0 if and only if k = 0.
(H2s): g : G→ K satisfies

(1.5) g(x+ y) + g(x+ σ(y)) = 2g(x) + 2g(y)

and for each k ∈ K, 2k = 0 if and only if k = 0.

Note that in (H2s) the condition (1.5) implies g(e) = 0. So (H2) is weaker
than (H2s). If (K,+) is a uniquely 2-divisible group, then we have 2k = 0 if
and only if k = 0 for each k ∈ K. We first present the relationship between the
general solutions of (1.1) (resp. (1.2)) and the quadratic functional equation
with an involution under (H1). Then we characterize properties of the general
solutions of (1.1) and (1.2) under (H2) and prove that (1.1) is equivalent
to (1.2) under the special hypotheses (H2s). In this paper, we also discuss
the Hyers-Ulam stability of the equation (1.1) in the case that f, g : G → C
satisfying g(e) 6= 0.

2. The general solutions and properties of the general solutions of
(1.1) and (1.2)

In this section, we discuss the functional equations (1.1) and (1.2) under
hypotheses (H1), (H2) and (H2s), respectively.

Proposition 2.1. Suppose (H1) holds. Then the general solution (f, g) of the
equation (1.1) (resp. (1.2)) is given by

f(x) = ϕ(x) +A, g(x) = B,(2.1)

for all x ∈ G, where ϕ is an arbitrary solution of the following quadratic func-
tional equation with an involution

(2.2) ϕ(x+ y) + ϕ(x+ σ(y)) = 2ϕ(x) + 2ϕ(y),

A := f(e) and B := g(e) 6= 0 satisfy 2A+B2 = 0 (resp. 4A+ 3B2 = 0).



GENERALIZED FORMS OF SWIATAK’S FUNCTIONAL EQUATIONS 781

Remark 1 (see [19, Theorem 3]). Let (S,+) be an additive semigroup, and let
H be a uniquely 2-divisible Abelian group. Note that the general solution of
the functional equation (2.2) is given by

ϕ(x) = B(x, x) + φ(x), ∀x ∈ S,

where B : S × S → H is an arbitrary symmetric biadditive function with
B(σ(x), y) = −B(x, y) and φ is an arbitrary additive function with φ(σ(x)) =
φ(x).

Proof. It is easy to check that any function (f, g) of the form (2.1) satisfies the
equation (1.1) (resp. (1.2)).

Conversely, assume that (f, g) is a solution of the equation (1.1) (resp. (1.2)).
We first consider the equation (1.1). Setting x = y = e in (1.1), we obtain
2f(e) + g(e)2 = 0, i.e.,

(2.3) 2A+B2 = 0.

Putting y = e in (1.1), we obtain

(2.4) 2A+Bg(x) = 0.

From (2.3) and (2.4), we get B(g(x)−B) = 0, which implies that

(2.5) g(x) ≡ B,

since the ring K has no zero divisors and B 6= 0. Subtracting 2A from both
sides of (1.1) and using (2.3) and (2.5), we get

(f(x+ y)−A) + (f(x+ σ(y))−A) = 2(f(x)−A) + 2(f(y)−A).

This implies that f(x)−A is a solution of (2.2).
Next, we consider the equation (1.2). Putting x = y = z = e in (1.2), we

get 8f(e) + 6g(e)2 = 0. Since (K,+) is a uniquely 2-divisible group, we have

(2.6) 4A+ 3B2 = 0.

Let ϕ(x) := f(x)−A, ; γ(x) := g(x)−B. Then ϕ(e) = γ(e) = 0, and

ϕ(x+ y + z) + ϕ(x+ σ(y) + z) + ϕ(x+ y + σ(z)) + ϕ(σ(x) + y + z)

= 4ϕ(x) + 4ϕ(y) + 4ϕ(z) + 2γ(x)γ(y) + 2γ(x)γ(z) + 2γ(y)γ(z)

+ 4B[γ(x) + γ(y) + γ(z)] + 8A+ 6B2

for all x, y, z ∈ G. It follows from (2.6) that

ϕ(x+ y + z) + ϕ(x+ σ(y) + z) + ϕ(x+ y + σ(z)) + ϕ(σ(x) + y + z)

= 4ϕ(x) + 4ϕ(y) + 4ϕ(z) + 2γ(x)γ(y) + 2γ(x)γ(z) + 2γ(y)γ(z)(2.7)

+ 4B[γ(x) + γ(y) + γ(z)].

Putting y = z = e in (2.7), we get

(2.8) ϕ(σ(x)) = ϕ(x) + 4Bγ(x).
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Hence, we have

(2.9) ϕ(x) = ϕ(σ(x)) + 4Bγ(σ(x))

for all x ∈ G. By (2.8) and (2.9), we obtain

4B[γ(x) + γ(σ(x))] = 0

for all x ∈ G. Since (K,+) is a uniquely 2-divisible group, we have

B[γ(x) + γ(σ(x))] = 0.

Since the ring K has no zero divisors and B 6= 0, we have

(2.10) γ(x) + γ(σ(x)) = 0

for all x ∈ G. Putting z = e in (2.7), we obtain

2ϕ(x+ y) + ϕ(x+ σ(y)) + ϕ(σ(x) + y)

= 4ϕ(x) + 4ϕ(y) + 2γ(x)γ(y) + 4B[γ(x) + γ(y)].(2.11)

Replacing x and y by σ(x) and σ(y) in (2.11), respectively, we get

2ϕ(σ(x+ y)) + ϕ(σ(x) + y) + ϕ(x+ σ(y))

= 4ϕ(σ(x)) + 4ϕ(σ(y)) + 2γ(σ(x))γ(σ(y)) + 4B[γ(σ(x)) + γ(σ(y))].(2.12)

Put ϕ̃(x) = ϕ(x) + ϕ(σ(x)). It follows from (2.11) and (2.12) that

2ϕ̃(x+ y) + 2ϕ̃(x+ σ(y))

= 4ϕ̃(x) + 4ϕ̃(y) + 2[γ(x)γ(y) + γ(σ(x))γ(σ(y))](2.13)

+ 4B[γ(x) + γ(σ(x)) + γ(y) + γ(σ(y))].

By (2.10), we have

ϕ̃(x+ y) + ϕ̃(x+ σ(y)) = 2ϕ̃(x) + 2ϕ̃(y) + 2γ(x)γ(y).(2.14)

Replacing y by σ(y) in (2.14), and noting that ϕ̃(x) = ϕ̃(σ(x)), we obtain

ϕ̃(x+ σ(y)) + ϕ̃(x+ y) = 2ϕ̃(x) + 2ϕ̃(y) + 2γ(x)γ(σ(y)).(2.15)

From (2.14) and (2.15) we get

2γ(x)[γ(y)− γ(σ(y))] = 0.

Consequently,

(2.16) γ(x)[γ(y)− γ(σ(y))] = 0.

By (H1), (2.10) and (2.16), we obtain γ(x)γ(y) = 0, which implies that

γ(x) ≡ 0, i.e., g(x) ≡ B.

Now, (2.8) implies that ϕ(σ(x)) = ϕ(x). Then (2.11) can be expressed as
the functional equation

ϕ(x+ y) + ϕ(x+ σ(y)) = 2ϕ(x) + 2ϕ(y)

for all x ∈ G. This completes the proof of the proposition. �
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Proposition 2.2. Suppose (H2) holds. Then the general solution (f, g) of the
equation (1.1) satisfies

f(e) = 0, f(x) = f(σ(x)) and g(x) = g(σ(x)).

Proof. Setting x = y = e in (1.1), we get 2f(e) + g(e)2 = 0. According to
hypotheses (H2), we get f(e) = 0.

Putting x = e in (1.1), we get f(y) = f(σ(y)). Replacing y by σ(y) in (1.1),
and noting that f(y) = f(σ(y)), we obtain

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y) + g(x)g(σ(y)).(2.17)

Hence by (1.1), we have g(x)g(y) = g(x)g(σ(y)). Since the ring K has no zero
divisors, we have

g(y) = g(σ(y)).

This completes the proof of the proposition. �

Remark 2. Without the second part of hypotheses (H2), Proposition 2.2 re-
mains true if the condition g(e) = 0 is replaced with that f(e) = 0, i.e., we
have the following result: If f(e) = 0, then the general solution (f, g) of the
equation (1.1) satisfies g(e) = 0, f(x) = f(σ(x)) and g(x) = g(σ(x)).

Proposition 2.3. Suppose (H2) holds. Then the general solution (f, g) of the
equation (1.2) satisfies f(e) = 0, f(x) = f(σ(x)), g(x) = g(σ(x)) and

[g(x+ y)− g(x+ σ(y))][g(x+ y) + g(x+ σ(y))− 2g(x)− 2g(y)] = 0.

Proof. Putting x = y = z = e in (1.2) and noting that g(e) = 0, we obtain
8f(e) = 0. By hypotheses (H2), we obtain f(e) = 0.

Putting y = z = e in (1.2), we get f(x) = f(σ(x)). Furthermore, if we put
z = e in (1.2), then the equation (1.2) yields the equation (1.1). Hence, similar
to the proof of Proposition 2.2, we have g(x) = g(σ(x)).

Putting y = σ(x), z = e in (1.2), we obtain

2f(2x) + 2f(x+ σ(x)) = 8f(x) + 2g(x)2.

Then

(2.18) f(2x) + f(x+ σ(x)) = 4f(x) + g(x)2.

Letting z = x+ y in (1.2) and noting that f(e) = 0, we obtain

f(2(x+ y)) + f(x+ σ(y) + x+ y)

+ f(x+ y + σ(x) + σ(y)) + f(σ(x) + y + x+ y)

= 4f(x) + 4f(y) + 4f(x+ y) + 2g(x)g(y)(2.19)

+ 2g(x)g(x+ y) + 2g(y)g(x+ z).

Replacing x by σ(x) in (2.19), we have

f(2(σ(x) + y)) + f(σ(x) + σ(y) + σ(x) + y)

+ f(σ(x) + y + x+ σ(y)) + f(x+ y + σ(x) + y)
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= 4f(x) + 4f(y) + 4f(σ(x) + y) + 2g(x)g(y)(2.20)

+ 2g(x)g(σ(x) + y) + 2g(y)g(σ(x) + y).

From (2.19) and (2.20), we get

[f(2(x+ y)) + f(x+ y + σ(x) + σ(y)]

− [f(2(σ(x) + y)) + f(σ(x) + y + x+ σ(y))]

= [4f(x+ y)− 4f(σ(x) + y)] + 2g(x)[g(x+ y)− g(σ(x) + y)](2.21)

+ 2g(y)[g(x+ y)− g(σ(x) + y)].

It follows from (2.17) that

g(x+ y)2 − g(σ(x) + y)2 = 2[g(x) + g(y)][g(x+ y)− g(σ(x) + y)],

i.e.,

[g(x+ y)− g(σ(x) + y)][g(x+ y) + g(σ(x) + y)− 2g(x)− 2g(y)] = 0.

This completes the proof of the proposition. �

Proposition 2.4. Suppose (H2s) holds. Then the equation (1.1) is equivalent
to the equation (1.2).

Proof. Setting x = y = e in (1.5), we obtain g(e) = 0. Putting x = e in (1.5),
we get g(y) = g(σ(y)). And by the proof of Proposition 2.3, one can prove that
the equation (1.2) implies the equation (1.1).

In order to prove that the equation (1.1) implies the equation (1.2), putting
x = y = e in (1.1), we get f(e) = 0. Putting x = e in (1.1), we obtain
f(y) = f(σ(y)). Replacing x by x+ z in (1.1), we get

(2.22) f(x+ y + z) + f(x+ σ(y) + z) = 2f(x+ z) + 2f(y) + g(x+ z)g(y).

Replacing x by σ(x) in (2.22), we obtain

f(σ(x) + y + z) + f(σ(x) + σ(y) + z)

= 2f(σ(x) + z) + 2f(y) + g(σ(x) + z)g(y).(2.23)

It follows from (2.22) and (2.23) that

f(x+ y + z) + f(x+ σ(y) + z)

+ f(σ(x) + y + z) + f(σ(x) + σ(y) + z)

= 2[f(x+ z) + f(σ(x) + z)] + 4f(y) + [g(x+ z) + g(σ(x) + z)]g(y).(2.24)

Since

f(σ(x) + σ(y) + z) = f(x+ y + σ(z)),

f(x+ z) + f(σ(x) + z) = f(x+ z) + f(x+ σ(z))

= 2f(x) + 2f(z) + g(x)g(z).

And by hypotheses (H2s) and g(y) = g(σ(y)), we have

g(x+ z) + g(σ(x) + z) = g(x+ z) + g(x+ σ(z)) = 2g(x) + 2g(z).
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Thus, we conclude that the equation (2.24) implies the equation (1.2), and the
proof of the proposition is now complete. �

3. Stability of the equation (1.1)

Given an operator T and a solution class {u} with the property that T (u) =
0, when does ‖T (v)‖ ≤ ε for an ε > 0 imply that ‖u − v‖ ≤ δ(ε) for some
u and for some δ > 0 ? This problem is called the stability of the functional
transformation. A great deal of work has been done in connection with the
ordinary and partial differential equations. If f is a function from a normed
vector space into a Banach space and satisfies ‖f(x+y)−f(x)−f(y)‖ ≤ ε, Hyers
[9] proved that there exists an additive function A such that ‖f(x)−A(x)‖ ≤ ε.
If f(x) is a real continuous function of x over R, and |f(x+y)−f(x)−f(y)| ≤ ε,
it was shown by Hyers and Ulam [12] that there exists a constant k such that
|f(x) − kx| ≤ 2ε. Taking these results into account, we say that the additive
Cauchy equation f(x + y) = f(x) + f(y) is stable in the sense of Hyers and
Ulam. The stability of many other functional equations have been studied
in the sense of Hyers-Ulam as well as Hyers-Ulam-Rassias after Hyers paper
[9]. The interested reader should refer to the books [10, 13, 18, 21] and papers
[1,4,7,8,11,14–17] and references therein for an in depth account on the subject
of stability of functional equations.

In this section, we discuss the Hyers-Ulam stability of the functional equation
(1.1) in the case of K = C.

Theorem 3.1. Suppose that f, g : G→ C with g(e) 6= 0 satisfy the inequality

|f(x+ y) + f(x+ σ(y))− 2f(x)− 2f(y)− g(x)g(y)| ≤ δ(3.1)

for all x, y ∈ G, where δ > 0 is a constant. Then

(3.2) |g(x)− g(e)| ≤ 2δ

|g(e)|

for all x ∈ G, and there exists a unique solution q : G → C of the equation
(2.2) such that

(3.3) |f(x)− q(x)− f(e)| ≤ 2δ2

|g(e)|2
+ 2δ

for all x ∈ G.

Proof. Let (f, g) be a solution of inequality (3.1). Define

θ(x, y) = g(x)g(y) + 2f(x) + 2f(y)− f(x+ y)− f(x+ σ(y))(3.4)

for all x, y ∈ G. It follows from (3.1) that

|θ(x, y)| ≤ δ
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for all x, y ∈ G. Putting x = y = e in (3.4), we have θ(e, e) = g(e)2 + 2f(e).
Letting y = e in (3.4), we obtain θ(x, e) = g(x)g(e) + 2f(e) for all x ∈ G.
Hence, we get

(3.5) θ(x, e)− θ(e, e) = g(e)(g(x)− g(e))

for all x, y ∈ G. Since g(e) 6= 0, it follows that

(3.6) |g(x)− g(e)| ≤ 2δ

|g(e)|
which establishes (3.2) for all x ∈ G. By (3.4), we get

(f − f(e))(x+ y) + (f − f(e))(x+ σ(y))

= 2(f − f(e))(x) + 2(f − f(e))(y) + g(x)g(y)− g(x)g(e)

+ θ(x, e)− θ(x, y)

= 2(f − f(e))(x) + 2(f − f(e))(y) + g(x)
θ(y, e)− θ(e, e)

g(e)

+ θ(x, e)− θ(x, y).

By using the inequality (3.6), we obtain

|g(x)
θ(y, e)− θ(e, e)

g(e)
| ≤ 2δ +

4δ2

|g(e)|2

for all x ∈ G, and hence, we have

|(f − f(e))(x+ y) + (f − f(e))(x+ σ(y))

− 2(f − f(e))(x)− 2(f − f(e))(y)|

≤ 4δ2

|g(e)|2
+ 4δ

for all x, y ∈ G. By [3, Theorem 2.1], there exists a unique solution q : G→ C
of the equation (2.2) such that

|f(x)− q(x)− f(e)| ≤ 2δ2

|g(e)|2
+ 2δ

for all x ∈ G. This completes the proof of the theorem. �
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