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ON THE QUADRATIC MAPPING IN GENERALIZED
QUASI-BANACH SPACES

Choonkil Park*, Kil-Woung Jun**, and Gang Lu***

Abstract. In this paper, we prove the Hyers–Ulam–Rassias sta-
bility of the quadratic mapping in generalized quasi-Banach spaces,
and of the quadratic mapping in generalized p-Banach spaces.

1. Introduction and preliminaries

We recall some basic facts concerning quasi-Banach spaces and some
preliminary results.

Definition 1.1. ([1, 25]) Let X be a linear space. A quasi-norm is
a real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖+ ‖y‖) for

all x, y ∈ X.
The pair (X, ‖·‖) is called a quasi-normed space if ‖·‖ is a quasi-norm

on X.
A quasi-Banach space is a complete quasi-normed space.
A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach
space.

Given a p-norm, the formula d(x, y) := ‖x−y‖p gives us a translation
invariant metric on X. By the Aoki–Rolewicz theorem [25] (see also
[1]), each quasi-norm is equivalent to some p-norm. Since it is much
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easier to work with p-norms than quasi-norms, henceforth we restrict
our attention mainly to p-norms.

In [16], the author generalized the concept of quasi-normed spaces.

Definition 1.2. Let X be a linear space. A generalized quasi-norm
is a real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖∑∞

j=1 xj‖ ≤
∑∞

j=1 K‖xj‖
for all x1, x2, · · · ∈ X with

∑∞
j=1 xj ∈ X.

The pair (X, ‖ · ‖) is called a generalized quasi-normed space if ‖ · ‖
is a generalized quasi-norm on X. The smallest possible K is called the
modulus of concavity of ‖ · ‖.

A generalized quasi-Banach space is a complete generalized quasi-
normed space.

A generalized quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a generalized quasi-Banach space is called
a generalized p-Banach space.

The stability problem of functional equations originated from a ques-
tion of S.M. Ulam [29] concerning the stability of group homomorphisms:
Let (G1, ∗) be a group and let (G2, ¦, d) be a metric group with the met-
ric d(·, ·). Given ε > 0, does there exist a δ(ε) > 0 such that if a mapping
h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) ¦ h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε

for all x ∈ G1? If the answer is affirmative, we would say that the
equation of homomorphism H(x ∗ y) = H(x) ¦ H(y) is stable. The
concept of stability for a functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is that how
do the solutions of the inequality differ from those of the given functional
equation?

D.H. Hyers [9] gave a first affirmative answer to the question of Ulam
for Banach spaces. Let X and Y be Banach spaces. Assume that f :
X → Y satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ ε
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for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X.
Let X and Y be Banach spaces with norms || · || and ‖·‖, respectively.

Consider f : X → Y to be a mapping such that f(tx) is continuous in
t ∈ R for each fixed x ∈ X. Th.M. Rassias [17] introduced the following
inequality, that we call Cauchy–Rassias inequality : Assume that there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)
for all x, y ∈ X. Th.M. Rassias [17] showed that there exists a unique
R-linear mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X. The above inequality has provided a lot of influence
in the development of what we now call Hyers–Ulam–Rassias stability
of functional equations. Beginning around the year 1980 the topic of
approximate homomorphisms, or the stability of the equation of homo-
morphism, was studied by a number of mathematicians. Găvruta [8]
generalized the Rassias’ result.

A square norm on an inner product space satisfies the important
parallelogram equality

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution
of the quadratic functional equation is said to be a quadratic mapping.
A Hyers–Ulam–Rassias stability problem for the quadratic functional
equation was proved by Skof [27] for mappings f : X → Y , where X
is a normed space and Y is a Banach space. Cholewa [3] noticed that
the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group. In [4], Czerwik proved the Hyers–Ulam–Rassias
stability of the quadratic functional equation. C. Borelli and G.L. Forti
[2] generalized the stability result as follows: Let G be an abelian group,
E a Banach space. Assume that a mapping f : G → E satisfies the
functional inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y)
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for all x, y ∈ G, and ϕ : G×G → [0,∞) is a function such that

Φ(x, y) :=
∞∑

i=0

1
4i+1

ϕ(2ix, 2iy) < ∞

for all x, y ∈ G. Then there exists a unique quadratic mapping Q : G →
E with the properties

‖f(x)−Q(x)‖ ≤ Φ(x, x)

for all x ∈ G. The stability problems of several functional equations
have been extensively investigated by a number of authors and there
are many interesting results concerning this problem. A large list of
references can be found, for example, in the papers [5, 6, 7, 10, 11, 12,
13, 14, 15, 18, 19, 20, 21, 23, 24, 26, 28].

In this paper, we prove the Hyers–Ulam–Rassias stability of the
quadratic mapping in generalized quasi-Banach spaces, and prove the
Hyers–Ulam–Rassias stability of the quadratic mapping in generalized
p-Banach spaces.

2. Stability of the quadratic mapping in generalized quasi-
Banach spaces

Throughout this section, assume that X is a generalized quasi-normed
vector space with generalized quasi-norm ||·|| and that Y is a generalized
quasi-Banach space with generalized quasi-norm ‖ · ‖. Let K be the
modulus of concavity of ‖ · ‖.

Theorem 2.1. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) such that

ϕ̃(x, y) :=
∞∑

j=1

4jϕ(
x

2j
,

y

2j
) < ∞,(2.1)

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y)(2.2)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ K

4
ϕ̃(x, x)(2.3)

for all x ∈ X.
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Proof. Letting y = x in (2.2), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x)(2.4)

for all x ∈ X. So
‖f(x)− 4f(

x

2
)‖ ≤ ϕ(

x

2
,
x

2
)

for all x ∈ X. Hence

‖4lf(
x

2l
)− 4mf(

x

2m
)‖ ≤ K

m−1∑

j=l

4jϕ(
x

2j+1
,

x

2j+1
)(2.5)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.1) and (2.5) that the sequence {4nf( x

2n )} is a Cauchy sequence
for all x ∈ X. Since Y is complete, the sequence {4nf( x

2n )} converges.
So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞ 4nf(

x

2n
)

for all x ∈ X.
By (2.2) and (2.1),

‖Q(x + y) + Q(x− y)− 2Q(x)− 2Q(y)‖
= lim

n→∞ 4n‖f(
x + y

2n
) + f(

x− y

2n
)− 2f(

x

2n
)− 2f(

y

2n
)‖

≤ lim
n→∞ 4nϕ(

x

2n
,

y

2n
) = 0

for all x, y ∈ X. So

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y)

for all x, y ∈ X. Moreover, letting l = 0 and passing the limit m → ∞
in (2.5), we get (2.3).

Now, let Q′ : X → Y be another quadratic mapping satisfying (2.3).
Then we have

‖Q(x)−Q′(x)‖ = 4n‖Q(
x

2n
)−Q′(

x

2n
)‖

≤ 4nK(‖Q(
x

2n
)− f(

x

2n
)‖+ ‖Q′(

x

2n
)− f(

x

2n
)‖)

≤ 2K

4
· 4nϕ̃(

x

2n
,

x

2n
),

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that
Q(x) = Q′(x) for all x ∈ X. This proves the uniqueness of Q.
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Corollary 2.2. Let r > 2 and θ be positive real numbers, and let
f : X → Y be a mapping such that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(||x||r + ||y||r)
for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ 2Kθ

2r − 4
||x||r

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||r + ||y||r), and apply Theorem 2.1.

Theorem 2.3. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) such that

ϕ̃(x, y) :=
∞∑

j=0

1
4j

ϕ(2jx, 2jy) < ∞,(2.6)

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y)(2.7)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ K

4
ϕ̃(x, x)(2.8)

for all x ∈ X.

Proof. It follows from (2.4) that

‖f(x)− 1
4
f(2x)‖ ≤ 1

4
ϕ(x, x)

for all x ∈ X. Hence

‖ 1
4l

f(2lx)− 1
4m

f(2mx)‖ ≤ K
m−1∑

j=l

1
4j+1

ϕ(2jx, 2jx)(2.9)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.6) and (2.9) that the sequence { 1

4n f(2nx)} is a Cauchy sequence
for all x ∈ X. Since Y is complete, the sequence { 1

4n f(2nx)} converges.
So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1
4n

f(2nx)

for all x ∈ X.
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By (2.7) and (2.6),

‖Q(x + y) + Q(x− y)− 2Q(x)− 2Q(y)‖
= lim

n→∞
1
4n
‖f(2n(x + y)) + f(2n(x− y))− 2f(2nx)− 2f(2ny)‖

≤ lim
n→∞

1
4n

ϕ(2nx, 2ny) = 0

for all x, y ∈ X. So

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y)

for all x, y ∈ X. Moreover, letting l = 0 and passing the limit m → ∞
in (2.9), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let r < 2 and θ be positive real numbers, and let
f : X → Y be a mapping such that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(||x||r + ||y||r)
for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ 2Kθ

4− 2r
||x||r

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||r + ||y||r), and apply Theorem 2.3.

3. Stability of the quadratic mapping in generalized p-Banach
spaces

Throughout this section, assume that X is a generalized quasi-normed
vector space with generalized quasi-norm ||·|| and that Y is a generalized
p-Banach space with generalized quasi-norm ‖ · ‖.

Theorem 3.1. Let r > 2 and θ be positive real numbers, and let
f : X → Y be a mapping such that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(||x||r + ||y||r)(3.1)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ 2θ

(2pr − 4p)
1
p

||x||r(3.2)

for all x ∈ X.
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Proof. Letting y = x in (3.1), we get

‖f(2x)− 4f(x)‖ ≤ 2θ||x||r(3.3)

for all x ∈ X. So

‖f(x)− 4f(
x

2
)‖ ≤ 2

2r
θ||x||r

for all x ∈ X. Since Y is a generalized p-Banach space,

‖4lf(
x

2l
)− 4mf(

x

2m
)‖p ≤

m−1∑

j=l

‖4jf(
x

2j
)− 4j+1f(

x

2j+1
)‖p

≤
m−1∑

j=l

4pj

2prj
· 2p

2pr
θp||x||pr(3.4)

for all nonnegative integers m and l with m > l and all x ∈ X. So
the sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y
is complete, the sequence {4nf( x

2n )} converges. So one can define the
mapping Q : X → Y by

Q(x) := lim
n→∞ 4nf(

x

2n
)

for all x ∈ X.
By (3.1),

‖Q(x + y) + Q(x− y)− 2Q(x)− 2Q(y)‖
= lim

n→∞ 4n‖f(
x + y

2n
) + f(

x− y

2n
)− 2f(

x

2n
)− 2f(

y

2n
)‖

≤ lim
n→∞

4n

2rn
θ(||x||r + ||y||r) = 0

for all x, y ∈ X. So

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y)

for all x, y ∈ X. Moreover, letting l = 0 and passing the limit m → ∞
in (3.4), we get (3.2).

Now, let Q′ : X → Y be another quadratic mapping satisfying (3.2).
Then we have

‖Q(x)−Q′(x)‖p = 4pn‖Q(
x

2n
)−Q′(

x

2n
)‖p

≤ 4pn(‖Q(
x

2n
)− f(

x

2n
)‖p + ‖Q′(

x

2n
)− f(

x

2n
)‖p)

≤ 2 · 4pn

2prn
· 2pθp

2pr − 4p
||x||pr,
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which tends to zero as n → ∞ for all x ∈ X. So we can conclude that
Q(x) = Q′(x) for all x ∈ X. This proves the uniqueness of Q.

Remark 3.1. The result for the case K = 1 in Corollary 2.2 is the
same as the result for the case p = 1 in Theorem 3.1.

Theorem 3.2. Let r < 2 and θ be positive real numbers, and let
f : X → Y be a mapping such that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(||x||r + ||y||r)(3.5)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ 2θ

(4p − 2pr)
1
p

||x||r(3.6)

for all x ∈ X.

Proof. Letting y = x in (3.5), we get

‖f(2x)− 4f(x)‖ ≤ 2θ||x||r(3.7)

for all x ∈ X. So

‖f(x)− 1
4
f(2x)‖ ≤ 1

2
θ||x||r

for all x ∈ X. Since Y is a generalized p-Banach space,

‖ 1
4l

f(2lx)− 1
4m

f(2mx)‖p ≤
m−1∑

j=l

‖ 1
4j

f(2jx)− 1
4j+1

f(2j+1x)‖p

≤
m−1∑

j=l

2prj

4pj
· θp

2p
||x||pr(3.8)

for all nonnegative integers m and l with m > l and all x ∈ X. So
the sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
4n f(2nx)} converges. So one can define the

mapping Q : X → Y by

Q(x) := lim
n→∞

1
4n

f(2nx)

for all x ∈ X.
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By (3.5),

‖Q(x + y) + Q(x− y)− 2Q(x)− 2Q(y)‖
= lim

n→∞
1
4n
‖f(2n(x + y)) + f(2n(x− y))− 2f(2nx)− 2f(2ny)‖

≤ lim
n→∞

2rn

4n
θ(||x||r + ||y||y) = 0

for all x, y ∈ X. So

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y)

for all x, y ∈ X. Moreover, letting l = 0 and passing the limit m → ∞
in (3.8), we get (3.6).

Now, let Q′ : X → Y be another quadratic mapping satisfying (3.6).
Then we have

‖Q(x)−Q′(x)‖p =
1

4pn
‖Q(2nx)−Q′(2nx)‖p

≤ 1
4pn

(‖Q(2nx)− f(2nx)‖p + ‖Q′(2nx)− f(2nx)‖p)

≤ 2 · 2prn

4pn
· 2pθp

4p − 2pr
||x||pr,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that
Q(x) = Q′(x) for all x ∈ X. This proves the uniqueness of Q.

Remark 3.2. The result for the case K = 1 in Corollary 2.4 is the
same as the result for the case p = 1 in Theorem 3.3.
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