• Title/Summary/Keyword: generalized Hyers-Ulam Stability

Search Result 164, Processing Time 0.027 seconds

A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION

  • Mohanapriya, Arusamy;Sivakumar, Varudaraj;Prakash, Periasamy
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.749-763
    • /
    • 2021
  • This research article deals with the Mittag-Leffler-Hyers-Ulam stability of linear and impulsive fractional order differential equation which involves the Caputo derivative. The application of the generalized fractional Fourier transform method and fixed point theorem, evaluates the existence, uniqueness and stability of solution that are acquired for the proposed non-linear problems on Lizorkin space. Finally, examples are introduced to validate the outcomes of main result.

GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

  • Jun, Kil-Woung;Oh, Jeong-Ha
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • In this paper, we investigate the generalized Hyers-Ulam{Rasssias stability of the following Euler-Lagrange type quadratic functional equation $$f(ax+by+cz)+f(ax+by-cz)+f(ax-by+cz)+f(ax-by-cz)=4a^2f(x)+4b^2f(y)+4c^2f(z)$$.

  • PDF

GENERALIZED HYERS-ULAM STABILITY OF FUNCTIONAL EQUATIONS

  • Kwon, Young Hak;Lee, Ho Min;Sim, Jeong Soo;Yang, Jeha;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.387-399
    • /
    • 2007
  • In this paper, we prove the generalized Hyers-Ulam stability of the following linear functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 2f(x) + 2f(y) and f((1 + i)x) = (1 + i)f(x), and of the following quadratic functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 0 and f((1 + i)x) = 2if(x) in complex Banach spaces.

  • PDF

On the Generalized Hyers-Ulam-Rassias Stability for a Functional Equation of Two Types in p-Banach Spaces

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.45-61
    • /
    • 2008
  • We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach spaces for the following functional equation which is two types, that is, either cubic or quadratic: 2f(x+3y) + 6f(x-y) + 12f(2y) = 2f(x - 3y) + 6f(x + y) + 3f(4y). The concept of Hyers-Ulam-Rassias stability originated essentially with the Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.