
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 32, No. 1, February 2019
http://dx.doi.org/10.14403/jcms.2019.32.1.1

ON THE FUZZY STABILITY PROBLEM OF A

QUADRATIC MAPPING WITH INVOLUTION

Heejeong Koh

Abstract. We prove the generalized Hyers-Ulam-Rassias stability
problem of the quadratic functional equation with involution in the
fuzzy quasi β-normed space by using the fixed point method.

1. Introduction

The concept of stability problem of a functional equation was first
posed by Ulam [23] concerning the stability of group homomorphisms;
Let G1 be a group and let G2 be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 then there
is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?
Hyers [9] gave us a partial answer to the question of Ulam. His theorem
was generalized in various directions. The very first author who gener-
alized Hyers’ theorem to the case of unbounded control functions was
Aoki [1]. Also, Rassias [20] succeeded in extending the result of Hyers’
theorem by weakening the condition for the Cauchy difference. Rassias’
paper [20] has provided a lot of influence in the development of Hyers-
Ulam stability or Hyers-Ulam-Rassias stability of functional equations.
In 1996, Isac and Rassias [10] were first to provide applications of new
fixed point theorems for the proof of stability theory of functional equa-
tions. By using fixed point methods the stability problems of several
functional equations have been extensively investigated by a number of
authors; see [5], [6], [18] and [19].
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Let X and Y be real vector spaces. If an additive function σ : X → Y
satisfies σ(σ(x)) = x , for all x ∈ X , then we call it an involution; see [3]
and [22]. The following functional equation

(1.1) f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y)

is called the quadratic functional equation with involution σ . Recently,
Belaid et al [3]. proved the Hyers-Ulam-Rassias stability with involution
in Banach space for this functional equation. Also, Jung and Lee [11]
have proved the Hyers-Ulam-Rassias stability of the quadratic functional
equation with involution in a complete β-normed space by using fixed
point method.

In this paper we prove the generalized Hyers-Ulam-Rassias stability
problem of the quadratic functional equation with involution(1.1) in the
fuzzy quasi β-normed space by using the fixed point method.

2. Preliminaries

We will use the following definition to prove Hyers-Ulam-Rassias sta-
bility for the generalized quintic functional equation in the quasi β-
normed space. Let β be a real number with 0 < β ≤ 1 and K be either
R or C .

Definition 2.1. Let X be a linear space over a field K . A quasi
β-norm || · || is a real-valued function on X satisfying the following
statements:

(1) ||x|| ≥ 0 for all x ∈ X and ||x|| = 0 if and only if x = 0 .

(2) ||λx|| = |λ|β · ||x|| for all λ ∈ K and all x ∈ X .
(3) There is a constant K ≥ 1 such that ||x+ y|| ≤ K(||x||+ ||y||) for

all x, y ∈ X .

The pair (X, || · ||) is called a quasi β-normed space if || · || is a quasi
β-norm on X . The smallest possible K is called the modulus of concavity
of || · || . A quasi β-Banach space is a complete quasi-β-normed space.

In 1984, Katsaras [12] and Wu and Fang [24] independently intro-
duced a notion of a fuzzy norm. Since then some mathematicians have
defined fuzzy metrics and norms on a linear space from various points
of view; see [2], [8], [13], [25] and [16]. In 2003, Bag and Samanta [2]
modified the definition of Cheng and Mordeson [7]. Bag and Samanta [2]
introduced the following definition of fuzzy normed spaces. The notion
of fuzzy stability of functional equations was given in the paper [17].
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We will use the definition of fuzzy normed spaces to investigate a
fuzzy version of Hyers-Ulam-Rassias stability in the fuzzy normed alge-
bra setting.

Definition 2.2. Let X be a real vector space. A function N : X ×
R→ [0, 1] is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R ,
(N1) N(x, t) = 0 for t ≤ 0 ;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0 ;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0 ;

(N4) N(x+ y, s+ t) ≥ min {N(x, s), N(y, t)} ;
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x 6= 0 , N(x, ·) is continuous on R .

The pair (X, N) is called a fuzzy normed vector space.

Definition 2.3. Let X be a real vector space. A fuzzy norm N :
X ×R→ [0, 1] is called a quasi fuzzy β-norm on X if (N3) and (N4) in
Definition 2.2 are replaced by the following forms

(N ′3) N(cx, t) = N(x,
t

|c|β
) (c 6= 0, 0 < β ≤ 1) .

and

(N ′4) N(x+y, K(s+t)) ≥ min {N(x, s), N(y, t)} (x, y ∈ X , s, t > 0) ,

respectively.

Example 2.4. Let (X, || · ||) be a real quasi β-normed space. Define

N(x, t) =

{
t

t+||x|| when t > 0, t ∈ R
0 when t ≤ 0 ,

where x ∈ X . Then (X,N) is a quasi fuzzy β-normed space.

Note that when p = 1 , we call the quasi fuzzy β-norm a quasi fuzzy
β-norm.

Definition 2.5. Let (X, N) be a quasi fuzzy β-normed vector space.
A sequence {xn} in X is said to be convergent or converge if there exists
an x ∈ X such that limn→∞ N(xn − x, t) = 1 for all t > 0 . In this
case, x is called the limit of the sequence {xn} and we denote it by
N- limn→∞ xn = x .

Definition 2.6. Let (X, N) be a quasi fuzzy β-normed vector space.
A sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0
there exists an n0 ∈ N such that for all n ≥ n0 and all integer d > 0 , we
have N(xn+d − xn, t) > 1− ε .
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It is well-known that every convergent sequence in a quasi fuzzy β-
normed vector space is Cauchy. If each Cauchy sequaence is convergent,
then the quasi fuzzy β-normed space is said to be quasi fuzzy complete
and the quasi fuzzy β-normed vector space is called a quasi fuzzy Banach
space.

Now, we will state the theorem, the alternative of fixed point in a
generalized metric space.

Definition 2.7. Let X be a set. A function d : X ×X → [0, ∞] is
called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 2.8 ( The alternative of fixed point [14], [21] ). Sup-
pose that we are given a complete generalized metric space (X, d) and
a strictly contractive mapping T : X → X with Lipschitz constant
0 < L < 1 . Then for each given x ∈ X , either

d(Tnx, Tn+1x) =∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

1. d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;
2. The sequence {Tnx} is convergent to a fixed point y∗ of J ;
3. y∗ is the unique fixed point of T in the set

Y = {y ∈ X|d(Tn0x, y) <∞} ;

4. d(y, y∗) ≤ 1
1−L d(y, Ty) for all y ∈ Y .

3. Fuzzy fixed point stability over a Fuzzy Banach space

Let us fix some notations which will be used throughout this section.
We assume X is a vector space and (Y, N) is a fuzzy Banach space.
Using fixed point method, we will prove the Hyers-Ulam stability of the
functional equation satisfying equation (3.1) in fuzzy Banach space. For
a given mapping f : X → Y let

(3.1) Dσf(x, y) := f(x+ y) + f(x+ σ(y))− 2f(x)− 2f(y)

for all x, y ∈ X , where σ : X → X is an involution.

Theorem 3.1. Let β be a fixed real number with 0 < β ≤ 1 and let
φ : X2 → [0,∞) be a function such that there exists an 0 < L < 1 with

(3.2) φ(2x , 2y) ≤ 22βLφ(x , y) , φ(x+ σ(x) , y + σ(y)) ≤ 22βLφ(x , y)
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for all x, y ∈ X . Let f : X → Y be a mapping satisfying

(3.3) N(Dσf(x, y), t) ≥ t

t+ φ(x, y)

for all x, y ∈ X and all t > 0 . Then

Q(x) := N- lim
n→∞

1

22n

[
f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))

]
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

(3.4) N(f(x)−Q(x), t) ≥ 22β(1− L) t

22β(1− L) t+ φ(x, x)

for all x ∈ X and all t > 0 .

Proof. First, let us define S to be the set of all functions g : X → Y
and introduce a generalized metric on X as follows:

S := {g : X → X}

and the mapping d defined on S × S by

d(g, h) = inf{µ ∈ R+ |N
(
g(x)−h(x), µt

)
≥ t

t+ φ(x, x)
, ∀x ∈ X and t > 0}

where inf ∅ = +∞ , as usual. Then (S, d) is a complete generalized
metric space; see [15, Lemma 2.1]. For each g , h ∈ X , there exists a
non-negative real number µ such that d(g , h) ≤ µ . We note that

N
(
g(x)− f(x), µt

)
≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 .

By letting y = x in the inequality (3.3), we have

(3.5) N
(
f(2x) + f(x+ σ(x))− 22f(x), t

)
≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0 . Hence we may define an operator T : S → S
by

T (g) =
1

22

[
f(2x) + f(x+ σ(x))

]
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for all x ∈ X .

N
(
T (g)(x)− T (h)(x), Lµt

)
= N

(1

4

[
g(2x)− h(2x) + g(x+ σ(x))− h(x+ σ(x))

]
, Lµt

)
≥ min

{
N
(
g(2x)− h(2x), |2|2βLµt

)
,

N
(
g(x+ σ(x))− h(x+ σ(x)), |2|2βLµt

)}
≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 . Hence we have d(T (g), T (h)) ≤ Lµ . This
implies that d(T (g), T (h)) ≤ Ld(g, h) , for g, h ∈ S . Thus T is strictly
contractive because L is a constant with 0 < L < 1 . Next, the inequality
(3.5) implies that

N
(
T (f)(x)− f(x), t

)
= N

(
f(2x) + f(x+ σ(x))− 22f(x), |2|2βt

)
≥ 22βt

22βt+ φ(x, x)

or

(3.6) N
(
T (f)(x)− f(x), t

)
≥ 22βt

22βt+ φ(x, x)

for all x ∈ X and t > 0 . Replacing t by 1
|2|2β t in the inequality (3.6), we

have

N
(
T (f)(x)− f(x),

1

|2|2β
t
)
≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 . This means that d(T (f), f) ≤ 1
22β

<∞ . Now,
we claim that

(3.7) Tn(f)(x) =
1

22n

[
f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))

]
for all x ∈ X and n ∈ N . We denote that T 0(f) = f . The first step
follows from the inequality (3.6), that is,

N
(
T (f)(x)− f(x), t

)
≥ t

t+ 1
22β
φ(x, x)

.
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For each n ∈ N , we have

N
(
Tn(f)(x)− Tn−1(f)(x), t

)
≥ N

( 1

22n
[f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))]

− 1

2n−1
[f(2n−1x) + (2n−1 − 1)f(2n−2(x+ σ(x)))], t

)
= N

( 1

22
[f(2nx) + f(2n−1(x+ σ(x)))]− f(2n−1x)

+
2n−1 − 1

22
[2f(2n−1(x+ σ(x)))− f(2n−2(x+ σ(x)))], |2|2(n−1)βt)

≥ 22(n−1)βt

22(n−1)βt+ 1
22β
φ(2n−1x, 2n−1x)

=
t

t+ 1
22β
Ln−1φ(x, x)

for all x ∈ X and t > 0 . Hence we have

N
(
Tn(f)(x)− Tn−1(f)(x),

1

|2|2β
Ln−1t

)
≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 . This implies that

(3.8) d(Tn(f), Tn−1(f)) ≤ 1

22β
Ln−1 <∞

as n→∞ , where 0 < L < 1 . By the (2) of Theorem 2.8, there exists a
mapping Q : X → Y which is a fixed point of T such that d(Tn(f), Q) =
0 as n → ∞ . Since limn→∞ d(Tn(f) , Q) = 0 , there exists a sequence
{µn} in R such that µn → 0 as n→∞ and d(Tnf ,Q) ≤ µn for n ∈ N .
The definition of d implies that

Q(x) := N- lim
n→∞

1

22n

[
f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))

]
for all x ∈ X . By the (4) of Theorem 2.8, we get d(f, Q) ≤ 1

1−L d(T (f), f) .
Hence we have the inequality

d(f, Q) ≤ 1

22β(1− L)
.
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Thus the inequality (3.4) holds. For x, y ∈ X and t > 0 ,

N
(
DσT

n(f)(x, y), t
)

= N
(

[f(2n(x+ y)) + f(2n(x+ σ(y)))− 2f(2nx)− 2f(2ny)]

+(2n−1 − 1)[2f(2n−1(x+ y + σ(x+ y)))− 2f(2n−1(x+ σ(x)))

−2f(2n−1(y + σ(y)))], |2|2nβ t
)

≥ min
{
N(Dσf(2nx, 2ny), |2|2nβ t),

N(Dσf(2n−1(x+ σ(x)), 2n−1(y + σ(y)), |2|2nβ t)
}

=
22nβt

22nβt+ φ(2nx, 2ny)
=

t

t+ Lnφ(x, y)
→ 1

as n → ∞ . Thus Q(x) := N- limn→∞ T
n(f)(x) is a quadratic map-

ping. The uniqueness of the quadratic mapping follows from (3) in
Theorem 2.8.

Corollary 3.2. Let θ ≥ 0 , p < 1 be real numbers and let β be a
real number with p+1

2 < β ≤ 1 . Let X be a normed linear space with
norm || · || . Suppose f : X → Y is a mapping satisfying

(3.9) N(Dσf(x, y), t) ≥ t

t+ θ(||x||p + ||y||p)
for all x, y ∈ X and t > 0 . Then there exists a unique quadratic mapping
Q : X → Y such that

N(f(x)−Q(x), t) ≥ (22β − 2p+1) t

(22β − 2p+1) t+ 2θ ||x||p

where ||x+ σ(x)||p ≤ 2p+1||x||p for all x ∈ X and t > 0 .

Proof. Let φ(x, y) = θ(||x||p + ||y||p) for all x , y ∈ X and L =
2p−2β+1 . We note that 0 < L < 1 and

φ(2x, 2x) = 2p+1θ||x||p = 22βLφ(x , x)

φ(x+ σ(x) , x+ σ(x)) = 2θ||x+ σ(x)||p ≤ 2 · 2p+1θ||x||p = 22βLφ(x , x)

for all x ∈ X . The remains follow from the proof follows from Theo-
rem 3.1.

Corollary 3.3. Let θ ≥ 0 , p and β be real numbers with p < β ≤ 1 .
Let X be a normed linear space with norm || · || . Suppose f : X → Y is
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a mapping satisfying

(3.10) N(Dσf(x, y), t) ≥ t

t+ θ(||x||p ||y||p)
for all x, y ∈ X and t > 0 . Then there exists a unique quadratic mapping
Q : X → Y such that

N(f(x)−Q(x), t) ≥ (22β − 22p) t

(22β − 22p) t+ θ ||x||2p

where ||x+ σ(x)||p ≤ 2p||x||p for all x ∈ X and t > 0 .

Proof. Let φ(x, y) = θ(||x||p||y||p) for all x , y ∈ X and L = 22(p−β) .
Since p < β ≤ 1 , we know that 0 < L < 1 and

φ(2x, 2x) = 22pθ||x||2p = 22βLφ(x , x)

φ(x+ σ(x) , x+ σ(x)) = θ||x+ σ(x)||2p ≤ 22pθ||x||2p = 22βLφ(x , x)

for all x ∈ X . The remains follow from the proof follows from Theo-
rem 3.1.

Theorem 3.4. Let β be a fixed real number with 0 < β ≤ 1 and let
φ : X2 → [0,∞) be a function such that there exists an 0 < L < 1 with

(3.11) φ(
x

2
,
y

2
) ≤ L

22β
φ(x , y) , φ(x+ σ(x) , y + σ(y)) ≤ 2βφ(2x , 2y)

for all x, y ∈ X . Suppose that f : X → Y be a mapping satisfying

(3.12) N(Dσf(x, y), t) ≥ t

t+ φ(x, y)

for all x, y ∈ X and all t > 0 . Then there exists a unique quadratic
mapping Q : X → Y such that

(3.13) N(f(x)−Q(x), t) ≥ 22β(1− L) t

22β(1− L) t+ Lφ(x, x)

for all x ∈ X and all t > 0 .

Proof. We will use the same definitions for the set S and the metric
d as in the proof of Theorem 3.1. For each g , h ∈ X , there exists a
non-negative real number µ such that d(g , h) ≤ µ . We note that

N
(
g(x)− f(x), µt

)
≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 . To apply the fixed point method, we will define
the contractive mapping T : S → S as in the proof of Theorem 2.8 and
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then inductively define Tn(f)(x) . By letting y = x in the inequality
(3.12), we have

(3.14) N
(
f(2x) + f(x+ σ(x))− 22f(x), t

)
≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0 . Replacing x by x
2 and 1

4(x + σ(x)) in the
inequality (3.14), respectively, we have

N
(
f(x) + f

(1

2
(x+ σ(x))

)
− 22f

(x
2

)
, t
)
≥ t

t+ φ
(
x
2 ,

x
2

)
N
(

2f
(1

2
(x+ σ(x))

)
− 22f

(1

4
(x+ σ(x))

)
, t
)

≥ t

t+ φ
(
1
4(x+ σ(x)), 14(x+ σ(x))

)
for all x ∈ X and t > 0 . By using the inequalities (3.11), we get

N
(

22f
(x

2

)
− f

(1

2
(x+ σ(x))

)
− f(x), t

)
≥ t

t+ L
22β
φ(x, x)

N
(
f
(1

2
(x+ σ(x))

)
− 2f

(1

4
(x+ σ(x))

)
, t
)
≥ t

t+ L
22β
φ(x, x)

for all x ∈ X and t > 0 . Hence we may define an operator T : S → S by

T (g)(x) = 22
[
f
(x

2

)
− 1

2
f
(1

4
(x+ σ(x))

)]
for all x ∈ X . Now, for g, h ∈ S ,

N
(
T (g)(x)− T (h)(x), Lµt

)
= N

(
22
[
g
(x

2

)
− h
(x

2

)]
+ 2
[
g
(1

4
(x+ σ(x))

)
− h
(1

4
(x+ σ(x))

)]
, Lµt

)
≥ min

{
N
(
g
(x

2

)
− h
(x

2

)
,
Lµ

|2|2β
t
)
,

N
(
g
(1

4
(x+ σ(x))

)
− h
(1

4
(x+ σ(x))

)
,
Lµ

|2|β
t
)}

≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 . Hence we have d(T (g), T (h)) ≤ Lµ . This
implies that d(T (g), T (h)) ≤ Ld(g, h) , for g, h ∈ S . Thus T is strictly
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contractive because L is a constant with 0 < L < 1 . Also, we have

N
(
T (f)(x)− f(x), t

)
= N

(
22
[
f
(x

2

)
− 1

2
f
(1

4
(x+ σ(x))

)]
− f(x), Lµt

)
≥ min

{
N
(

22f
(x

2

)
− f

(1

2
(x+ σ(x))

)
− f(x), t

)
,

N
(
f
(1

2
(x+ σ(x))

)
− 2f

(1

4
(x+ σ(x))

)
, t
)}

≥ t

t+ L
22β
φ(x, x)

for all x ∈ X and t > 0 . That is,

(3.15) N
(
T (f)(x)− f(x), t

)
≥ t

t+ L
22β
φ(x, x)

for all x ∈ X and t > 0 . Replacing t by L
|2|2β t in the inequality (3.15),

we have

N
(
T (f)(x)− f(x),

L

|2|2β
t
)
≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 . This means that d(T (f), f) ≤ L
22β

< ∞ .
Similar to the proof of Theorem 3.1, we have

(3.16) Tn(f)(x) = 22n
[
f
( 1

2n
x
)

+
( 1

2n
− 1
)
f
( 1

2n+1
(x+ σ(x))

)]
for all x ∈ X and n ∈ N . We denote that T 0(f) = f . Also, we note that

N
(
Tn(f)(x)− Tn−1(f)(x),

Ln

|2|2β
t
)
≥ t

t+ φ(x, x)

for all x ∈ X and t > 0 . This implies that

(3.17) d(Tn(f), Tn−1(f)) ≤ Ln

22β
<∞

as n→∞ , where 0 < L < 1 . By the (2) of Theorem 2.8, there exists a
mapping Q : X → Y which is a fixed point of T such that d(Tn(f), Q) =
0 as n → ∞ . Since limn→∞ d(Tn(f) , Q) = 0 , there exists a sequence
{µn} in R such that µn → 0 as n→∞ and d(Tnf ,Q) ≤ µn for n ∈ N .
The definition of d implies that

Q(x) := N- lim
n→∞

22n
[
f
( 1

2n
x
)

+
( 1

2n
− 1
)
f
( 1

2n+1
(x+ σ(x))

)]
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for all x ∈ X . By the (4) of Theorem 2.8, we get d(f, Q) ≤ 1
1−L d(T (f), f) .

Hence we have the inequality

d(f, Q) ≤ L

22β(1− L)
.

Thus the inequality (3.13) holds. For x, y ∈ X and t > 0 ,

N
(
DσT

n(f)(x, y), t
)

≥ min
{
N
(
Dσf

( 1

2n
x,

1

2n
y
)
,

1

|2|2nβ
t
)
,

N
(
Dσf

( 1

2n+1
(x+ σ(x)),

1

2n+1
(y + σ(y)),

1

|2|nβ
t
)}

=
t

t+ Lnφ(x, y)
→ 1

as n → ∞ . Thus Q(x) := N- limn→∞ T
n(f)(x) is a quadratic map-

ping. The uniqueness of the quadratic mapping follows from (3) in
Theorem 2.8.

Corollary 3.5. Let θ ≥ 0 , p > 1 be real numbers and let β be a
real number with β < p−1

2 . Let X be a normed linear space with norm
|| · || . Suppose f : X → Y is a mapping satisfying

(3.18) N(Dσf(x, y), t) ≥ t

t+ θ(||x||p + ||y||p)
for all x, y ∈ X and t > 0 . Then there exist a unique quadratic mapping
Q : X → Y such that

N(f(x)−Q(x), t) ≥ (2p − 22β+1) t

(2p − 22β+1) t+ 4θ ||x||p

where ||x+ σ(x)||p ≤ 2p+β||x||p for all x ∈ X and all t > 0 .

Proof. Let φ(x, y) = θ(||x||p + ||y||p) for all x , y ∈ X in the Theo-

rem 3.4 and let L = 22β−(p+1) . We have 0 < L < 1 . The remains follows
from Theorem 3.4.

Corollary 3.6. Let θ ≥ 0 , p ≥ 1 and β be real numbers with β < p .
Let X be a normed linear space with norm || · || . Suppose f : X → Y is
a mapping satisfying

(3.19) N(Dσf(x, y), t) ≥ t

t+ θ||x||p ||y||p
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for all x, y ∈ X and t > 0 . Then there exist a unique quadratic mapping
Q : X → Y such that

N(f(x)−Q(x), t) ≥ (2p − 22β+1) t

(2p − 22β+1) t+ 4θ ||x||p

where ||x+ σ(x)||p ≤ 22p+β||x||p for all x ∈ X and all t > 0 .

Proof. Let φ(x, y) = θ||x||p ||y||p for all x , y ∈ X in the Theorem 3.4.
Let L = 22β−2p . Since L = 22β−2p and ||x+ σ(x)||p ≤ 22p+β||x||p , then
we have 0 < L < 1 and

φ(
x

2
,
x

2
) =

1

22p
θ||x||2p ≤ L

22β
φ(x , x)

φ(x+ σ(x) , x+ σ(x)) = θ||x+ σ(x)||2p ≤ 2βφ(2x , 2x)

for all x ∈ X . The remains follows from Theorem 3.4.
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