GENERALIZED MODULE LEFT (m, n)-DERIVATIONS

SUNG JIN LEE^a and Jung Rye Lee^{b,*}

ABSTRACT. Fošner [4] defined a generalized module left (m, n)-derivation and proved the Hyers-Ulam stability of generalized module left (m, n)-derivations.

In this note, we prove that every generalized module left (m, n)-derivation is trivial if the algebra is unital and $m \neq n$.

1. Stability of Module Left (m, n)-derivations

Let A be an algebra and M be a left A-module. An additive mapping $d: A \to M$ is called a *module left derivation* if $d(xy) = x \cdot d(y) + y \cdot d(x)$ for all $x, y \in A$.

Definition 1.1 ([3]). Let A be an algebra and M be a left A-module. An additive mapping $d: A \to M$ is called a *module left* (m, n)-derivation if

(1.1) $(m+n)d(xy) = 2mx \cdot d(y) + 2ny \cdot d(x)$

for all $x, y \in A$. Here m and n are nonnegative integers with $m + n \neq 0$.

Let A be an algebra and M be a left A-module. An additive mapping $g: A \to M$ is called a *generalized module left derivation* if there exists a module left derivation $d: A \to M$ such that $g(xy) = x \cdot g(y) + y \cdot d(x)$ for all $x, y \in A$.

Definition 1.2 ([4]). Let A be an algebra and M be a left A-module. An additive mapping $g: A \to M$ is called a *generalized module left* (m, n)-derivation if there exists a module left (m, n)-derivation $d: A \to M$ such that

(1.2)
$$(m+n)g(xy) = 2mx \cdot g(y) + 2ny \cdot d(x)$$

for all $x, y \in A$. Here m and n are nonnegative integers with $m + n \neq 0$.

*Corresponding author.

© 2016 Korean Soc. Math. Educ.

Received by the editors October 17, 2016. Accepted October 24, 2016.

²⁰¹⁰ Mathematics Subject Classification. 16W25, 16D60, 39B62.

Key words and phrases. Hyers-Ulam stability, normed algebra, Banach left A-module, generalized module left (m, n)-derivation.

Proposition 1.3 ([2]). Let A be a unital algebra with unit e and M be a left Amodule. Assume that m and n are nonnegative integers with $m + n \neq 0$ and $m \neq n$. Then each module left (m, n)-derivation $d : A \to M$ is trival.

Assume that $e \cdot x = x$ for all $x \in M$.

Theorem 1.4. Let A be a unital algebra with unit e and M be a left A-module. Assume that m and n are nonnegative integers with $m + n \neq 0$ and $m \neq n$. Then each generalized module left (m, n)-derivation $g : A \to M$ is trival.

Proof. By Proposition 1.3, d(e) = 0.

Letting x = y = e in (1.2), we get (m+n)g(e) = 2mg(e) + 2nd(e) = 2mg(e) and so g(e) = 0, since $m \neq n$.

Letting y = e in (1.2), we get

$$(m+n)g(x) = 2mx \cdot g(e) + 2nd(x) = 2nd(x) = 0$$

for all $x \in A$, since d(x) = 0 and g(e) = 0. Since $m + n \neq 0$, g(x) = 0 for all $x \in A$, as desired.

Remark 1.5. When m = n, the generalized module left (m, n)-derivation is just a generalized module left derivation. In [1], Cao et al. proved the Hyers-Ulam stability of generalized module left derivations $d : A \to M$.

Problem 1.6. Let A be a non-unital algebra and M be a left A-module. Assume that m and n are nonnegative integers with $m + n \neq 0$ and $m \neq n$.

- (1) Is there a non-trivial generalized module left (m, n)-derivation $d: A \to M$?
- (2) Construct a non-trivial generalized module left (m, n)-derivation $d: A \to M$.

References

- H.X. Cao, J.R. Lv & J.M. Rassias: Superstability for generalized module left derivations and generalized module derivations on a Banach module. J. Inequal. Appl. 2009, Art. ID 718020 (2009).
- 2. Y. Cui & D. Shin: Module left (m, n)-derivations (preprint).
- 3. A. Fošner: On the generalized Hyers-Ulam stability of module left (m, n)-derivations. Aequationes Math. 84 (2012), 91-98.
- A. Fošner: Hyers-Ulam-Rassias stability of generalized module left (m, n)-derivations.
 J. Inequal. Appl. 2013, Art. ID 2013:208 (2013).

 $^{\rm a}{\rm Department}$ of Mathematics, Daejin University, Kyeonggi 11159, Korea $\mathit{Email}\ address:\ {\tt hyper@daejin.ac.kr}$

 $^{\rm b}{\rm Department}$ of Mathematics, Daejin University, Kyeonggi 11159, Korea $\mathit{Email}\ address: {\tt jrlee@daejin.ac.kr}$