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ABSTRACT. We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach
spaces for the following functional equation which is two types, that is, either cubic or
quadratic:

2f(x+3y) +6f(z —y) +12f(2y) = 2f(x — 3y) + 6 (z +y) + 3/ (4y).

The concept of Hyers-Ulam-Rassias stability originated essentially with the Th. M.
Rassias’ stability theorem that appeared in his paper: On the stability of the linear map-
ping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.

1. Introduction

Under what condition does there is a homomorphism near an approximately
homomorphism between a group and a metric group? This is called the stability
problem of functional equations which was first raised by S. M. Ulam [37] in 1940.
In next year, D. H. Hyers [11] answers the problem of Ulam under the assumption
that the groups are Banach spaces. A generalized version of the theorem of Hyers
for approximately linear mappings was given by Th. M. Rassias [25]. The terminol-
ogy Hyers-Ulam-Rassias stability originates from this historical background. Since
then, a great deal of work has been done by a number of authors (for instances, [2],
], [6], [7), [8], [10], [12], [13], [16], [20], [21], [23], [24], [26], [27], [28], [29], [30], [31];
[32], [33]). In particular, one of the important functional equations studied is the
following functional equation [1], [5], [15], [17], [19]:

fle+y) + fl@—y) =2f(z) +2f(y).

Received July 24, 2006, and, in revised form, August 23, 2006.

2000 Mathematics Subject Classification: 39B72, 39B52.

Key words and phrases: stability, cubic mapping; quadratic mapping, quasi-normed
spaces, p-Banach spaces.

*This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (MOEHRD)(KRF-2005-041-C00029).

45



46 Kyoo-Hong Park and Yong-Soo Jung

The quadratic mapping f(z) = gz? is a solution of this functional equation, and
so one usually is said the above functional equation to be quadratic. A Hyers-Ulam
stability problem for the quadratic functional equation was first proved by F. Skof
[35] for mappings f : X — Y, where X is a normed space and Y a Banach space. S.
Czerwik [5] generalized the Hyers-Ulam stability of the quadratic functional equa-
tion. The cubic mapping f(x) = ca?® satisfies the functional equation

(1.1) fRr+y)+ f(2x —y) =2f(z +y) +2f(z —y) + 12f(x).

The equation (1.1) was solved by K.-W. Jun and H.-M. Kim [14] (see also [22]).

In this note we promise that the equation (1.1) is called a cubic functional
equation and every solution of the cubic functional equation (1.1) is said to be a
cubic mapping. Now, let us introduce the following functional equation:

(1.2)  2f(x+3y) +6f(r —y) +12f(2y) = 2f(x — 3y) + 6f(x +y) + 3f(4y).

It is easy to see that all the real-valued mappings f : R — R of the two types, i.e.,
either f(z) = cz® or f(x) = qa? satisfy the functional equation (1.2).

Our main goal in this note is to investigate the generalized Hyers-Ulam-Rassias
stability problem (or the stability in the sense of Gavruta [10]) for the equation
(1.2) in quasi-Banach spaces.

We first recall some basic facts concerning quasi-Banach spaces and some pre-
liminary results.

Definition 1.1([3], [34]). Let X be a linear space. A quasi-norm | - || is a real-
valued function on X satisfying the following:

(i) [Jz|| > 0 for all z € X and ||z|| = 0 if and only if x = 0.
(i) ||Az| = |A] - ||z|| for all scalar A and all x € X.
(iii) There is a constant K > 1 such that ||z +y| < K(||z| + ||ly||) for all z,y € X.

A quasi-normed space is a linear space together with a specified quasi-norm.
A quasi-Banach space means a complete quasi-normed space. A quasi-norm || - ||
is called a p-norm (0 < p < 1) if the inequality

llz +ylI” < =] + llyl”

holds for all z,y € X. In this case, a quasi-Banach space is called a p-Banach space.
Clearly, p-norms are continuous, and in fact, if || - || is a p-norm on X, then the
formula d(z,y) := ||z — y||? defines a translation invariant metric for X and || - ||? is
a p-homogeneous F-norm. The Aoki-Rolewicz theorem [34] (see also [3, 18]) yields
that each quasi-norm is equivalent to some p-norm, for some 0 < p < 1. Since it
is much easier to work with p-norms than quasi-norms, henceforth we restrict our
attention mainly to p-norms. In [36], J. Tabor has investigated a version of the
Hyers-Rassias-Gajda theorem (see [9]) in quasi-Banach spaces. In this paper, we
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will prove the Hyers—Ulam-Rassias stability of mappings satisfying approximately
the equations (1.2)in p-Banach spaces.

2. Solutions of equation (1.2)

Let X and Y be linear spaces. In this section we will find out the general
solution of (1.2).

Lemma 2.1. A mapping f : X — Y is cubic if and only if f is odd and satisfies
the functional equation f(x+3y)+3f(x —y) = f(x —3y)+3f(z+y)+48f(y) for
all z, ye X.

Proof. (=) Suppose that f is cubic, that is, the functional equation

(2.1) f@r+y)+ f(2x —y) =2f(z +y) +2f(z —y) + 12f(x)

holds for all z, y € X. By putting x =y = 0 in (2.1), we see that f(0) = 0, and
setting = 0 in (2.1) yields the fact that f is odd. If we interchange = and y in
(2.1), we have

(22) fle+2y) = fle—2y) = 2f(x +y) = 2f(z —y) + 12f(y).
Let x := .+ y and x := x — y, respectively, in (2.2). Then we obtain
fl@+3y) = flz—y) =2f(x+2y) — 2f(z) + 12/ (y)

and
f@+y) — flz—3y) =2f(x) = 2f(x — 2y) + 12f(y).

Comparing the above two results, we get
fle+3y) = fle=3y) = fle —y) + [z +y) = 2f(x + 2y) — 2f(x = 2y) + 24/ (y),
which, by (2.2), gives
f(x+3y) +3f(x —y) = e = 3y) +3f(z +y) + 48/ (y).

(«=) Assume that f is odd and satisfies the functional equation
(2:3) flx+3y) +3f(x —y) = flz = 3y) + 3f(x +y) + 48/(y)
for all z, y € X. By interchanging z and y in (2.3), we obtain
(2.4) fBr+y)+ fBr —y) =3f(x +y) +3f(z —y) +48f(x).

We substitute x = 0 = y in (2.4) and then y = 0 in (2.4) to obtain f(0) = 0 and

(2.5) f(3x) =27f(x).
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Putting y = z in (2.4), we get

(2.6) Jl4z) = 2f(20) + 48f(x),

and replacing y by 3z in (2.4) and employing (2.5), we obtain

(2.7) 10f(2z) = f(4x) 4+ 16f(x).
Now it follows from (2.6) and (2.7) that

(2.8) F(22) = 8f ().

If we set y := —x +y and y := —x — y in (2.4), respectively and then compare
the results, then we obtain

(2.9) fldz +y) + fdz —y) = 2f (22 +y) + 2f(2x — y) + 96 f ().

Finally, replacing y by 2y in (2.9) and using (2.8), we get the functional equation
(1.1), that is, f is cubic. O

Lemma 2.2. A mapping f : X — Y is quadratic if and only if f(0) =0, f is even
and satisfies the functional equation f(x+3y)+3f(x —y) = f(xr —3y) +3f(x+y)
forall z, ye X.

Proof. (=) Suppose that f is quadratic, that is, the functional equation

(2.10) flx+y) + flz—y) =2f(x) +2f(y)

holds for all z, y € X. Putting z = y = 0 in (2.10) gives f(0) = 0, and setting
2 = 0 in (2.10) leads to the fact that f is even. We also obtain f(2z) = 4f(x) by
letting y := x in (2.10). From the substitutions x := x + 2y and y := x — 2y in
(2.10), it follows that

(2.11) 2f(x) +8f(y) = f(z +2y) + fz — 2y).
Putting # := 2 + y and z := 2 — y in (2.11), respectively, we obtain
(212) 2f(z+y) +8f(y) = flx+3y) + flz—y)

and

(2.13) 2f(z —y) +8f(y) = f(z +y) + flz — 3y).

If we subtract (2.13) from (2.12), we get

flx+3y) +3f(x —y) = f(z—3y) +3f(z +y).

(<) Assume that f(0) =0, f is even and satisfies the functional equation

(2.14) fl@+3y) +3f(x —y) = f(z = 3y) + 3f(x +y)
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for all z, y € X. Let us replace x by y in (2.14) and then put y := % Then we
get f(2y) = 4f(y). If we set x := 3y in (2.14) and use f(2y) = 4f(y), then we have
f(By) = 9f(y). Substituting z :=  —y and x := x + y in (2.14), respectively and
then comparing the results, we obtain

(2.15) flz+4y) +2f(x —2y) = f(z — dy) + 2f(z + 2y).
Replacing x by 2z in (2.15) and using f(2y) = 4f(y), we have
(2.16) fl@+2y) +2f(x —y) = f(z—2y) + 2f(z +y).

From the substitutions = := x 4+ y and y := z — y in (2.16), we deduce
fBr —y) +8f(y) = f(z - 3y) + 8f(),
and replacing y by —y gives
fBr+y)+8f(y) = f(z +3y) +8f(z),
that is,
(2.17) fBz+y) — f(z+3y) =8f(x) —8f(y),
Setting x + y instead of = in (2.16), we get
(2.18) fl@+3y) +2f(x) = 2f(z +2y) + 2f (z — ),
and interchanging x and y in (2.18) yields
(2.19) fBx+y)+2f(y) =2f2z +y) +2f(x —y).
If we subtract (2.19) from (2.18) and use (2.17), we obtain
(2.20) f@+2y) +3f(x) = f(2x +y) +3f(v),
which, by putting y := 2y in (2.20) and using f(2y) = 4f(y), leads to
(2.21) flx+4y) +3f(x) =4f(x +y) + 12f(y).
Interchanging = with y in (2.21) gives
(2.22) flz+y) +3f(y) = 4f(z +y) + 12/ (2),
and by replacing y by —y in (2.22), we arrive at
(2.23) flz —y) +3f(y) = 4f (& —y) + 12f (2).
Comparing (2.22) with (2.23), we have

(2.24) flAx +y) + f(4z —y) + 6f(y) = 4f(x +y) + 4f(z — y) + 24f ().
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Now utilizing the substitutions x := x + y and y := = — % in (2.20), we obtain

fGo)+3f@+y) = f(3(e+2)) +37 (s - 2),

and letting y := —y in this relation yields

@0y +3f@—y) = f(3(z = 2)) +37(z+ ).

2 2
Since f(2z) = 4f(z) and f(3z) = 9f(x), we add the above two relations to obtain
(2.25) fRe+y)+fQRr—y) = flz+y) + f(z —y) +6f(2)

Replacing « by 2z in (2.25), we get

fldz +y) + fAz —y) = f2z +y) + f(2z — y) + 24 f(x),

which, by (2.25), gives

(2.26) flz+y)+ f(4e —y) = f(z +y) + f(z —y) + 30/ (2).

By comparing (2.24) with (2.26), we conclude that

flx+y)+ flx—y)=2f(z) +2f(y),
which implies that f is quadratic. ]
Our main result in this section is

Theorem 2.3. A mapping f: X — Y satisfies the equation (1.2) for all x, y € X

if and only if there exist a cubic mapping C : X — Y and a quadratic mapping
Q:X —Y such that f(z) = C(z) + Q(z) for allxz € X.

Proof. (=) Define the mappings C, Q : X — Y by C(z) = = [f(z) — f(~2)]
and Q(z) = %[ F(@) + f(—a)] for all # € X, respectively. Then we have C(0) =
0, C(=2) = —C(2), Q(-z) = Q(x),

(2.27) 2C(x + 3y) + 6C(z — y) + 12C(2y) = 2C(z — 3y) + 6C(x + y) + 3C (4y)
and

(2.28) 2Q(z +3y) +6Q(z — y) + 12Q(2y) = 2Q(z — 3y) + 6Q(z +y) + 3Q(4y)

for all z, y € X.
First, we claim that C' is cubic. If we let z :=y in (2.27), we get

(2.29) 8C(2y) = Clay),
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and replacing y by % in (2.29) gives

C(2y) =8C(y).
Therefore the equation (2.27) is reduced to the form
Clz +3y) +3C(x —y) = C(x — 3y) + 3C(z + y) + 48C(y)
for all z, y € X and Lemma 2.1 guarantees that C' is cubic.

Secondly, we claim that @ is quadratic. By letting © = y = 0 in (2.28), we get
Q(0) = 0. If we put =0 in (2.28) and then replace y by %, we have

Q(2y) = 4Q(y).

Hence (2.28) can be written in the form

Q(r +3y) +3Q(z —y) = Q(z — 3y) + 3Q(z + y),

which shows that @ is quadratic according to Lemma 2.2.

That is, if f : X — Y satisfies the equation (1.2), then we have f(z) = C(z) +
Q(x) for all z € X.

(<) Suppose that there exist a cubic mapping C' : X — Y and a quadratic
mapping @ : X — Y such that f(z) = C(z) + Q(z) for all z € X.

Since C(2z) = 8C(x) and Q(2z) = 4Q(x) for all z € X, it follows from Lemma
2.1 and Lemma 2.2 that

2f(z+3y) +6f(z —y) +12f(2y) — 2f(z — 3y) — 6f(z +y) — 3f(4y)
=2C(z + 3y) + 6C(xz —y) + 12C(2y) — 2C(z — 3y) — 6C(z + y) — 3C(4y)
+2Q(x + 3y) + 6Q(x — y) +12Q(2y) — 2Q(x — 3y) — 6Q(z +y) — 3Q(4y)
=2[C(z+3y) +3C(x —y) — C(x — 3y) — 3C(x + y) — 48C(y)]
+2[Q(z +3y) +3Q(z —y) — Q(z — 3y) —3Q(z +y)] =0
for all z, y € X. O

3. Stability of equation (1.2) in p-Banach spaces

In this section X and Y will be a quasi-normed space and a p-Banach space,
respectively. Given a mapping f: X — Y, we set

Df(z,y) :==2f(r +3y) +6f(z —y) +12f(2y) — 2f(z — 3y) — 6f (= +y) — 3f(4y)

for all z, y € X. Let ¢ : X x X — [0,00) be a mapping satisfying one of the
conditions (3.1) and (3.2), and one of the conditions (3.3) and (3.4) below:

P(2"x,2"y)

I =1
(3.1) @) =15 Z i (2)? < oc, o

=0

—0 as n— oo,
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oo

1 , .
(3.2) eq(x):= > 28’”(1(2*(”1)@” < oo, 8"p(27"x,27"y) — 0as n — oo,
i=0
where a(x) := ¢(E, E) + ng(—E7 _f) for all z, y € X, and
2°2 2" 2
Ll 1 P(2"x,2™y)
(3.3) : 24pz;4plﬁ T_)O as n — 0o,
(3.4) = 24’”6 )P <00, 4"¢(27"z,27"y) — 0 as n — oo,

where B(z) = ¢(0, g) + (0, —g) for all z, y € X.
Theorem 3.1. If the mapping [ : X — Y satisfies the inequality

(3.5) IDf(z, 9)|| < o(x,y)

for all x, y € X, then there exist a unique cubic mapping C' : X — Y and a unique
quadratic mapping Q : X — Y such that

(3 1£(2) = (C(@) + QNI < len(e) + 5],
(3.7 Rz e EE
and

(3.8) H f(x) +2f(—x)

- QW) <5(@)?

forallx € X, where k=1 or 2 and j = 3 or 4.
The mappings C and Q are given by

f(2"x) — f(=2"x)

lim,, — oo

if ¢ satisfies (3.3)

C(x) = 2.8
lim,, oo 8™ - % {f(%) - f(—zin)} if ¢ satisfies (3.4)

m f(2"z) + f(=2"x) , _
Q(CE) — \ n— oo 9. 4n Zf (b satzsﬁes (33)

lim,, o 47 % [f(%) —l—f(—%)} if ¢ satisfies (3.4)

forallx € X.
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Proof. Let g : X — Y be the mapping defined by g(z) =
xz € X. Then we have g(0) =0, g(—z) = —g(x) and

(3.9) 1Dg(, )l

[f(z) — f(—=2)] for all

N |

12g(x + 3y) + 6g9(x — y) + 129(2y)
—2g(x — 3y) — 6g9(x +y) — 3g(4y)||

< 519w y) + o~ )]

for all x, y € X. Putting y := « in (3.9) yields

A

(3.10) I89(22) — g4 < o [6(2,2) + B, )]

which, by setting x := g and dividing by 8P in (3.10), gives

g(2x) Hp 1

(3.11) o) = £52||" < rratay”

for all z € X.
Assume that ¢ satisfies the condition (3.1). Substituting 2z for « in (3.11) and
dividing by 8P, we get

p

2 22 11
Hg( z)  g(2%z) <L Loy
8 82 167 8P

for all x € X. An induction argument now implies that

—

n

g(2"x) HP 1 «— 1 i
12 — < — —a(2'x)?P
(3.12) lo@) - 22| < > o)
for all x € X. We claim that {87 "¢(2"z)} is a Cauchy sequence in Y. For m < n,
(3.13) 187"g(2"x) — 87" g(2™ )"
n—1
< ) I8Tg(2'r) — 8 Ug (2 ) |7
n—1
1 1 ;
< — —a(2'z)?
167 = 8Pt

for all x € X. Taking the limit as m — oo, we get
Tim_[[87"g(2") — 87" g(2"a) ¥ = 0
for all z € X. Since Y is a Banach space, it follows that the sequence {8 "¢(2")}
converges. We define a mapping C' : X — Y by
(3.14) C(z) = nlingo 87 "g(2"x)
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for all x € X. It is clear that C'(—z) = —C(x) for all x € X, and it follows from
(3.14) that

IDC(,y)P = lim 877" Dg(2"z,2") ”

1
< = lim 87P"[p(2"x, 2"y)P + ¢(—2"x, —2"y)?] = 0

2 n—oo

for all =,y € X. Hence we see that C' is cubic as in the proof of Theorem 2.3. To
prove the inequality (3.7), taking the limit in (3.12) as n — oo, we have

(3.15) lg(z) — C(@)|| < e1(2)?

for all x € X. Now it remains to show that C' is unique. Suppose that C: XY
is another cubic mapping satisfying (3.15). Then it is obvious that C(2z) = 8C(z)
for all z € X, and so it follows from (3.15) that

IC(z) - C(x)||” = 8_1’”H5~(2"$) —C@2" )|
g7 (C(2"x) — g(2" )| + [|9(2"2) — C(2"x)[]")

<
< 2.87Pg, (2)

for all z € X. By letting n — oo in this inequality, we have é(a:) = C(z) for all
reX. .
If ¢ satisfies the condition (3.2), then we replace = by 1 in (3.10) to obtain

Jot) B2 10| < a2 ey

for all z € X. By following the corresponding part of the proof of the case (3.1),
we see that the inequality

n—1
n —-n P 1 % —(z
() = 87927 "a)||" < 5 " 872 gy
=0
holds for all z € X and {8"¢(27"xz)} is a Cauchy sequence in Y, from which the

mapping C : X — Y defined by

C(z) = lim 8"g(27"x)

n—oo

for all x € X is cubic and unique such that

lg(x) — C()|| < e5(2)?

for all z € X.



On the Generalized Hyers-Ulam-Rassias Stability 55

1
Now let h : X — Y be the mapping defined by h(z) = 3 [f(z) + f(—=)] for all
xz € X. Then we have h(—x) = h(z) and
(3.16) | Dh(z,y)|| = [|2h(x + 3y) + 6h(z —y) + 12h(2y)

—2h(z — 3y) — 6h(z + ) — 3h(4y)||
< 510(e,9) + o(—2, )

for all z, y € X. By setting « := 0 in (3.16) and then letting y := x, we get
1
(3.17) 1127(22) = 3h(42) " < 57 [6(0, @) + $(0, —2)]".

Replacing x by g in (3.17) and then dividing by 127, we obtain

1
< ﬁﬂ(ﬁﬂ)p

h(2z) |p
(3.18) Hh(x) _ hez) H
4
for all z € X.
Assume that ¢ satisfies the condition (3.3). Substituting 2z for x in (3.18) and

dividing by 4P, we get

152 45 < vy

= ur e
for all x € X. By induction we see that

D < LS ey

(3.19) Hh(m) - <55 2 T
0

for all x € X. We claim that {4 "h(2")} is a Cauchy sequence in Y. For m < n,
[47"h(2"x) — 47 ™h(2™2)||P

n—1
D 47 h(20) — 47D )P

i=m

IN

n—1
1 1 ,
G p
< . wiP(2')

for all x € X. Taking the limit as m — oo, we get

lim |[4~"h(2"z) — 4" h(2™2)|P = 0

for all z € X. Since Y is a Banach space, it follows that the sequence {4 "h(2"z)}
converges. We define a mapping @ : X — Y by

(3.20) Q(z) = lim 47"h(2"z)

n—oo
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for all x € X. It is clear that Q(—z) = Q(x) for all x € X, and it follows from
(3.20) that

IDQ(x, )P = Tim 47" |Dh(2", 2|

1
< = lim 47P"[¢(2"2,2"y)P + ¢(—2"x, —2"y)"] =0

n—oo

for all z,y € X. Thus we see that @) is quadratic as in the proof of Theorem 2.3.
By taking the limit in (3.19) as n — oo to prove the inequality (3.8), we obtain

(3.21) Ih(z) = Q)| < es(x)?

for all x € X. To show that @ is unique, let us assume that @ : X — Y is another
quadratic mapping satisfying (3.21). Then it is obvious that Q(2z) = 4Q(x) for all
x € X, and so it follows from (3.21) that

1Q(z) — Q)| = 4_””||@~(2"w) - QE"z)|]”
AT(1Q2% ) — h(2"2) |7 + [[n(2"2) — Q(2"2)|]")

<
< 2-47PMgg(2Mx)

for all z € X. By letting n — oo in this inequality, we have Qv(m) = Q(z) for all
x € X. If ¢ satisfies the condition (3.4), then we replace x by % in (3.17) and divide
by 3P to obtain

@)~ anet0)|" < 6%@(2—1:3)?

for all x € X. The rest of the proof goes through the corresponding part of the
proof of the case (3.3), that is, the inequality

n—1

1 24;}16(2 (i+1) )

Hh(x) _ 4%(2*%)“’) <=

=0

holds for all z € X and {4™h(27™)} is a Cauchy sequence in Y, whence we obtain
the unique quadratic mapping @ : X — Y defined by

Q(z) = lim 4"h(27"z)

n—oo

for all z € X such that )
[h(z) — Q(z)|| < ealz)?

for all x € X. Since we have f(z) = g(z) + h(x) for all x € X, we see that

)=
f(@) = (C(z) + Q)|

) = C@)|I” + [|A(x) — Q=)|]”
) +e;()

g(x
€k($

+

IA A

J
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for all z € X, where £k = 1 or 2 and j = 3 or 4. We complete the proof of the
theorem. (]

From Theorem 3.1, we obtain the following corollary concerning the Hyers-
Ulam-Rassias stability [25] of the functional equation (1.2).
Let ¢ # 2,3 be any real number. For the sake of convenience, let

1 1
M) = 2(a+2)p (1 — 2(a=3)p)’ Aa() = 2(24=1)p(1 — 26-0)p)’

and

1 1

Mlg) = 3P - 4ap(1 — 2(2—q)p)'

As(g) = 3p . 2(q+2)p(1 — 2(q—2)p)’

Corollary 3.2. Let q # 2,3 and 0 > 0 be real numbers. If the mapping f: X =Y
satisfies the inequality

IDf (@ y)ll < Oz + [lyll*)

for all xz, y € X, then there exist a unique cubic mapping C : X — Y and a unique
quadratic mapping @ : X — Y such that

1f(2) — (Clz) + Q@) < A(q)7 87,

HL) ‘Qf(_” - C@)| < M@Flall (k=1 or 2),

and
HW - Q(x)H < )‘j(Q)%HHJEHq (j=3 or 4)

for all x € X, where

A2(q) + Aa(q) if ¢>3
M) = S Mi(q) + M(q) if 2<¢<3
Mi(q) + A3(q) if q<?2.

The mappings C and Q are given by
@) = f(—2")

Clz)= 9 e .if -
limy, o 8" 5 {f(ﬁ) - f(_27n)] if ¢>3,
) f(2"z) + f(=2"x) ‘
0@) = | hmnﬂoon R i Z'f q<2
lim, oo 4" 5 [£(5) + F(—5)] i a>2

forallx € X.
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Proof. Let ¢(z,y) :== 0(||z||9+]||y||?) for all z € X. If ¢ < 3, then a simple calculation
gives a(2'x) = 4 -20-199||z||9, and so we have

1 < 1
& Z@ z)? = A (q)0||z||P
=0

for all 2 € X. If ¢ > 3, then, by considering (2= +Vz) = 4 . 2704249 2||7, we
obtain

1 .
ea(z) = o > 8P a2 z)P = Xy (q)0P||]| P

for all z € X. On the other hand, suppose that ¢ < 2. Since 3(2iz) = 2 -
20=1a9||z||9, we see that

1 < 1
p;@ﬁ )P = A3(q)0P |||

for all x € X. Finally, if ¢ > 2, then we know that
L Q= pi gy
ea(x) = 67241” B2z = Ay (q)07||2]| P

because of (2 z) = 2.27(*2)49||2|| for all z € X. Therefore, we deduce that

(A2(q) + Aa(q)) 0P || ||7” if ¢>3
en(z) +g5(x) = Mq)0”||z]|? = { (M (q) + Malq))0P|z]|7® if 2<q<3
(AM(q) + As(9) 67 ||z||7P if ¢<2
for all z € X. 0

The following corollary is the Hyers-Ulam stability of the equation (1.2) which
is an immediate consequence of Corollary 3.2 by setting 6 := %0 and g = 0.

Corollary 3.3. Let 6 > 0 be a real number. If the mapping f : X — Y satisfies
the inequality

IDf(z,y)ll <6

for all z, y € X, then there exist a unique cubic mapping C : X — Y and a unique
quadratic mapping Q : X — Y such that

1) = (€@ + QDI < | =505 + 57— 1375

|[L D o) < We




and
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1

H f(@) +2f(—x) - Q)| = s’

forallxz € X.

The mappings C' and @ are given by

f(2"z) — f(=2"x)

C($) - nILH;o 2.8n
and
L f@ra) + f(—2 )
Q)= i T
forallx € X.
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