On the Generalized Hyers-Ulam-Rassias Stability for a Functional Equation of Two Types in p-Banach Spaces

Kyoo-Hong Park

Department of Mathematics Education Seowon University, Cheongju, Chungbuk 361-742, Korea

 $e ext{-}mail: parkkh@seowon.ac.kr$

Yong-Soo Jung*

Mirae Changjo Research Institute of Seowon University, Cheongju, Chungbuk 361-742. Korea

 $e ext{-}mail: ysjung@seowon.ac.kr}$

ABSTRACT. We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach spaces for the following functional equation which is two types, that is, either cubic or quadratic:

$$2f(x+3y) + 6f(x-y) + 12f(2y) = 2f(x-3y) + 6f(x+y) + 3f(4y).$$

The concept of Hyers-Ulam-Rassias stability originated essentially with the Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.

1. Introduction

Under what condition does there is a homomorphism near an approximately homomorphism between a group and a metric group? This is called the stability problem of functional equations which was first raised by S. M. Ulam [37] in 1940. In next year, D. H. Hyers [11] answers the problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings was given by Th. M. Rassias [25]. The terminology Hyers-Ulam-Rassias stability originates from this historical background. Since then, a great deal of work has been done by a number of authors (for instances, [2], [4], [6], [7], [8], [10], [12], [13], [16], [20], [21], [23], [24], [26], [27], [28], [29], [30], [31], [32], [33]). In particular, one of the important functional equations studied is the following functional equation [1], [5], [15], [17], [19]:

$$f(x + y) + f(x - y) = 2f(x) + 2f(y).$$

Received July 24, 2006, and, in revised form, August 23, 2006.

2000 Mathematics Subject Classification: 39B72, 39B52.

Key words and phrases: stability, cubic mapping; quadratic mapping, quasi-normed spaces, p-Banach spaces.

*This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD)(KRF-2005-041-C00029).

The quadratic mapping $f(x) = qx^2$ is a solution of this functional equation, and so one usually is said the above functional equation to be quadratic. A Hyers-Ulam stability problem for the quadratic functional equation was first proved by F. Skof [35] for mappings $f: X \to Y$, where X is a normed space and Y a Banach space. S. Czerwik [5] generalized the Hyers-Ulam stability of the quadratic functional equation. The cubic mapping $f(x) = cx^3$ satisfies the functional equation

$$(1.1) f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x).$$

The equation (1.1) was solved by K.-W. Jun and H.-M. Kim [14] (see also [22]).

In this note we promise that the equation (1.1) is called a cubic functional equation and every solution of the cubic functional equation (1.1) is said to be a cubic mapping. Now, let us introduce the following functional equation:

$$(1.2) 2f(x+3y) + 6f(x-y) + 12f(2y) = 2f(x-3y) + 6f(x+y) + 3f(4y).$$

It is easy to see that all the real-valued mappings $f : \mathbb{R} \to \mathbb{R}$ of the two types, i.e., either $f(x) = cx^3$ or $f(x) = qx^2$ satisfy the functional equation (1.2).

Our main goal in this note is to investigate the generalized Hyers-Ulam-Rassias stability problem (or the stability in the sense of Găvruta [10]) for the equation (1.2) in quasi-Banach spaces.

We first recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1([3], [34]). Let X be a linear space. A *quasi-norm* $\|\cdot\|$ is a real-valued function on X satisfying the following:

- (i) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.
- (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$ for all scalar λ and all $x \in X$.
- (iii) There is a constant $K \ge 1$ such that $||x+y|| \le K(||x|| + ||y||)$ for all $x, y \in X$.

A quasi-normed space is a linear space together with a specified quasi-norm.

A quasi-Banach space means a complete quasi-normed space. A quasi-norm $\|\cdot\|$ is called a *p-norm* (0 if the inequality

$$||x + y||^p \le ||x||^p + ||y||^p$$

holds for all $x, y \in X$. In this case, a quasi-Banach space is called a p-Banach space. Clearly, p-norms are continuous, and in fact, if $\|\cdot\|$ is a p-norm on X, then the formula $d(x,y):=\|x-y\|^p$ defines a translation invariant metric for X and $\|\cdot\|^p$ is a p-homogeneous F-norm. The Aoki–Rolewicz theorem [34] (see also [3, 18]) yields that each quasi-norm is equivalent to some p-norm, for some 0 . Since it is much easier to work with <math>p-norms than quasi-norms, henceforth we restrict our attention mainly to p-norms. In [36], J. Tabor has investigated a version of the Hyers-Rassias-Gajda theorem (see [9]) in quasi-Banach spaces. In this paper, we

will prove the Hyers–Ulam–Rassias stability of mappings satisfying approximately the equations (1.2)in p-Banach spaces.

2. Solutions of equation (1.2)

Let X and Y be linear spaces. In this section we will find out the general solution of (1.2).

Lemma 2.1. A mapping $f: X \to Y$ is cubic if and only if f is odd and satisfies the functional equation f(x+3y)+3f(x-y)=f(x-3y)+3f(x+y)+48f(y) for all $x, y \in X$.

Proof. (\Rightarrow) Suppose that f is cubic, that is, the functional equation

$$(2.1) f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x)$$

holds for all $x, y \in X$. By putting x = y = 0 in (2.1), we see that f(0) = 0, and setting x = 0 in (2.1) yields the fact that f is odd. If we interchange x and y in (2.1), we have

$$(2.2) f(x+2y) - f(x-2y) = 2f(x+y) - 2f(x-y) + 12f(y).$$

Let x := x + y and x := x - y, respectively, in (2.2). Then we obtain

$$f(x+3y) - f(x-y) = 2f(x+2y) - 2f(x) + 12f(y)$$

and

$$f(x+y) - f(x-3y) = 2f(x) - 2f(x-2y) + 12f(y).$$

Comparing the above two results, we get

$$f(x+3y) - f(x-3y) - f(x-y) + f(x+y) = 2f(x+2y) - 2f(x-2y) + 24f(y),$$

which, by (2.2), gives

$$f(x+3y) + 3f(x-y) = f(x-3y) + 3f(x+y) + 48f(y).$$

 (\Leftarrow) Assume that f is odd and satisfies the functional equation

$$(2.3) f(x+3y) + 3f(x-y) = f(x-3y) + 3f(x+y) + 48f(y)$$

for all $x, y \in X$. By interchanging x and y in (2.3), we obtain

$$(2.4) f(3x+y) + f(3x-y) = 3f(x+y) + 3f(x-y) + 48f(x).$$

We substitute x = 0 = y in (2.4) and then y = 0 in (2.4) to obtain f(0) = 0 and

$$(2.5) f(3x) = 27f(x).$$

Putting y = x in (2.4), we get

$$(2.6) f(4x) = 2f(2x) + 48f(x),$$

and replacing y by 3x in (2.4) and employing (2.5), we obtain

$$(2.7) 10f(2x) = f(4x) + 16f(x).$$

Now it follows from (2.6) and (2.7) that

$$(2.8) f(2x) = 8f(x).$$

If we set y := -x + y and y := -x - y in (2.4), respectively and then compare the results, then we obtain

$$(2.9) f(4x+y) + f(4x-y) = 2f(2x+y) + 2f(2x-y) + 96f(x).$$

Finally, replacing y by 2y in (2.9) and using (2.8), we get the functional equation (1.1), that is, f is cubic.

Lemma 2.2. A mapping $f: X \to Y$ is quadratic if and only if f(0) = 0, f is even and satisfies the functional equation f(x+3y) + 3f(x-y) = f(x-3y) + 3f(x+y) for all $x, y \in X$.

Proof. (\Rightarrow) Suppose that f is quadratic, that is, the functional equation

$$(2.10) f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

holds for all $x, y \in X$. Putting x = y = 0 in (2.10) gives f(0) = 0, and setting x = 0 in (2.10) leads to the fact that f is even. We also obtain f(2x) = 4f(x) by letting y := x in (2.10). From the substitutions x := x + 2y and y := x - 2y in (2.10), it follows that

$$(2.11) 2f(x) + 8f(y) = f(x+2y) + f(x-2y).$$

Putting x := x + y and x := x - y in (2.11), respectively, we obtain

$$(2.12) 2f(x+y) + 8f(y) = f(x+3y) + f(x-y)$$

and

$$(2.13) 2f(x-y) + 8f(y) = f(x+y) + f(x-3y).$$

If we subtract (2.13) from (2.12), we get

$$f(x+3y) + 3f(x-y) = f(x-3y) + 3f(x+y).$$

 (\Leftarrow) Assume that f(0) = 0, f is even and satisfies the functional equation

$$(2.14) f(x+3y) + 3f(x-y) = f(x-3y) + 3f(x+y)$$

for all $x, y \in X$. Let us replace x by y in (2.14) and then put $y := \frac{y}{2}$. Then we get f(2y) = 4f(y). If we set x := 3y in (2.14) and use f(2y) = 4f(y), then we have f(3y) = 9f(y). Substituting x := x - y and x := x + y in (2.14), respectively and then comparing the results, we obtain

$$(2.15) f(x+4y) + 2f(x-2y) = f(x-4y) + 2f(x+2y).$$

Replacing x by 2x in (2.15) and using f(2y) = 4f(y), we have

$$(2.16) f(x+2y) + 2f(x-y) = f(x-2y) + 2f(x+y).$$

From the substitutions x := x + y and y := x - y in (2.16), we deduce

$$f(3x - y) + 8f(y) = f(x - 3y) + 8f(x),$$

and replacing y by -y gives

$$f(3x + y) + 8f(y) = f(x + 3y) + 8f(x),$$

that is,

$$(2.17) f(3x+y) - f(x+3y) = 8f(x) - 8f(y),$$

Setting x + y instead of x in (2.16), we get

$$(2.18) f(x+3y) + 2f(x) = 2f(x+2y) + 2f(x-y),$$

and interchanging x and y in (2.18) yields

(2.19)
$$f(3x+y) + 2f(y) = 2f(2x+y) + 2f(x-y).$$

If we subtract (2.19) from (2.18) and use (2.17), we obtain

$$(2.20) f(x+2y) + 3f(x) = f(2x+y) + 3f(y),$$

which, by putting y := 2y in (2.20) and using f(2y) = 4f(y), leads to

$$(2.21) f(x+4y) + 3f(x) = 4f(x+y) + 12f(y).$$

Interchanging x with y in (2.21) gives

$$(2.22) f(4x+y) + 3f(y) = 4f(x+y) + 12f(x),$$

and by replacing y by -y in (2.22), we arrive at

$$(2.23) f(4x - y) + 3f(y) = 4f(x - y) + 12f(x).$$

Comparing (2.22) with (2.23), we have

$$(2.24) f(4x+y) + f(4x-y) + 6f(y) = 4f(x+y) + 4f(x-y) + 24f(x).$$

Now utilizing the substitutions x := x + y and $y := x - \frac{y}{2}$ in (2.20), we obtain

$$f(3x) + 3f(x+y) = f(3(x+\frac{y}{2})) + 3f(x-\frac{y}{2}),$$

and letting y := -y in this relation yields

$$f(3x) + 3f(x - y) = f(3(x - \frac{y}{2})) + 3f(x + \frac{y}{2}).$$

Since f(2x) = 4f(x) and f(3x) = 9f(x), we add the above two relations to obtain

$$(2.25) f(2x+y) + f(2x-y) = f(x+y) + f(x-y) + 6f(x).$$

Replacing x by 2x in (2.25), we get

$$f(4x + y) + f(4x - y) = f(2x + y) + f(2x - y) + 24f(x),$$

which, by (2.25), gives

$$(2.26) f(4x+y) + f(4x-y) = f(x+y) + f(x-y) + 30f(x).$$

By comparing (2.24) with (2.26), we conclude that

$$f(x+y) + f(x-y) = 2f(x) + 2f(y),$$

which implies that f is quadratic.

Our main result in this section is

Theorem 2.3. A mapping $f: X \to Y$ satisfies the equation (1.2) for all $x, y \in X$ if and only if there exist a cubic mapping $C: X \to Y$ and a quadratic mapping $Q: X \to Y$ such that f(x) = C(x) + Q(x) for all $x \in X$.

Proof. (\Rightarrow) Define the mappings C, $Q: X \to Y$ by $C(x) = \frac{1}{2} [f(x) - f(-x)]$ and $Q(x) = \frac{1}{2} [f(x) + f(-x)]$ for all $x \in X$, respectively. Then we have C(0) = 0, C(-x) = -C(x), Q(-x) = Q(x),

$$(2.27) \quad 2C(x+3y)+6C(x-y)+12C(2y)=2C(x-3y)+6C(x+y)+3C(4y)$$

and

$$(2.28) \quad 2Q(x+3y) + 6Q(x-y) + 12Q(2y) = 2Q(x-3y) + 6Q(x+y) + 3Q(4y)$$

for all $x, y \in X$.

First, we claim that C is cubic. If we let x := y in (2.27), we get

$$(2.29) 8C(2y) = C(4y),$$

and replacing y by $\frac{y}{2}$ in (2.29) gives

$$C(2y) = 8C(y).$$

Therefore the equation (2.27) is reduced to the form

$$C(x+3y) + 3C(x-y) = C(x-3y) + 3C(x+y) + 48C(y)$$

for all $x, y \in X$ and Lemma 2.1 guarantees that C is cubic.

Secondly, we claim that Q is quadratic. By letting x=y=0 in (2.28), we get Q(0)=0. If we put x=0 in (2.28) and then replace y by $\frac{y}{2}$, we have

$$Q(2y) = 4Q(y).$$

Hence (2.28) can be written in the form

$$Q(x+3y) + 3Q(x-y) = Q(x-3y) + 3Q(x+y),$$

which shows that Q is quadratic according to Lemma 2.2.

That is, if $f: X \to Y$ satisfies the equation (1.2), then we have f(x) = C(x) + Q(x) for all $x \in X$.

 (\Leftarrow) Suppose that there exist a cubic mapping $C: X \to Y$ and a quadratic mapping $Q: X \to Y$ such that f(x) = C(x) + Q(x) for all $x \in X$.

Since C(2x) = 8C(x) and Q(2x) = 4Q(x) for all $x \in X$, it follows from Lemma 2.1 and Lemma 2.2 that

$$\begin{split} &2f(x+3y)+6f(x-y)+12f(2y)-2f(x-3y)-6f(x+y)-3f(4y)\\ &=2C(x+3y)+6C(x-y)+12C(2y)-2C(x-3y)-6C(x+y)-3C(4y)\\ &+2Q(x+3y)+6Q(x-y)+12Q(2y)-2Q(x-3y)-6Q(x+y)-3Q(4y)\\ &=2[C(x+3y)+3C(x-y)-C(x-3y)-3C(x+y)-48C(y)]\\ &+2[Q(x+3y)+3Q(x-y)-Q(x-3y)-3Q(x+y)]=0 \end{split}$$

for all $x, y \in X$.

3. Stability of equation (1.2) in p-Banach spaces

In this section X and Y will be a quasi-normed space and a p-Banach space, respectively. Given a mapping $f: X \to Y$, we set

$$Df(x,y) := 2f(x+3y) + 6f(x-y) + 12f(2y) - 2f(x-3y) - 6f(x+y) - 3f(4y)$$

for all $x, y \in X$. Let $\phi: X \times X \to [0, \infty)$ be a mapping satisfying one of the conditions (3.1) and (3.2), and one of the conditions (3.3) and (3.4) below:

(3.1)
$$\varepsilon_1(x) := \frac{1}{16^p} \sum_{i=0}^{\infty} \frac{1}{8^{pi}} \alpha(2^i x)^p < \infty, \quad \frac{\phi(2^n x, 2^n y)}{8^n} \to 0 \quad \text{as} \quad n \to \infty,$$

$$(3.2) \quad \varepsilon_2(x) := \frac{1}{2^p} \sum_{i=0}^{\infty} 8^{pi} \alpha (2^{-(i+1)} x)^p < \infty, \quad 8^n \phi(2^{-n} x, 2^{-n} y) \to 0 \text{ as } n \to \infty,$$

where $\alpha(x) := \phi(\frac{x}{2}, \frac{x}{2}) + \phi(-\frac{x}{2}, -\frac{x}{2})$ for all $x, y \in X$, and

(3.3)
$$\varepsilon_3(x) := \frac{1}{24^p} \sum_{i=0}^{\infty} \frac{1}{4^{pi}} \beta(2^i x)^p < \infty, \quad \frac{\phi(2^n x, 2^n y)}{4^n} \to 0 \quad \text{as} \quad n \to \infty,$$

$$(3.4) \quad \varepsilon_4(x) := \frac{1}{6^p} \sum_{i=0}^{\infty} 4^{pi} \beta (2^{-(i+1)} x)^p < \infty, \quad 4^n \phi (2^{-n} x, 2^{-n} y) \to 0 \quad \text{as} \quad n \to \infty,$$

where $\beta(x) := \phi(0, \frac{x}{2}) + \phi(0, -\frac{x}{2})$ for all $x, y \in X$.

Theorem 3.1. If the mapping $f: X \to Y$ satisfies the inequality

(3.5)
$$||Df(x,y)|| \le \phi(x,y)$$

for all $x, y \in X$, then there exist a unique cubic mapping $C: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$(3.6) ||f(x) - (C(x) + Q(x))|| \le \left[\varepsilon_k(x) + \varepsilon_j(x)\right]^{\frac{1}{p}},$$

(3.7)
$$\left\| \frac{f(x) - f(-x)}{2} - C(x) \right\| \le \varepsilon_k(x)^{\frac{1}{p}},$$

and

(3.8)
$$\left\| \frac{f(x) + f(-x)}{2} - Q(x) \right\| \le \varepsilon_j(x)^{\frac{1}{p}}$$

for all $x \in X$, where k = 1 or 2 and j = 3 or 4.

The mappings C and Q are given by

$$C(x) = \begin{cases} \lim_{n \to \infty} \frac{f(2^n x) - f(-2^n x)}{2 \cdot 8^n} & \text{if } \phi \text{ satisfies } (3.3) \\ \lim_{n \to \infty} 8^n \cdot \frac{1}{2} \left[f(\frac{x}{2^n}) - f(-\frac{x}{2^n}) \right] & \text{if } \phi \text{ satisfies } (3.4) \end{cases}$$

$$Q(x) = \begin{cases} \lim_{n \to \infty} \frac{f(2^n x) + f(-2^n x)}{2 \cdot 4^n} & \text{if } \phi \text{ satisfies } (3.3) \\ \lim_{n \to \infty} 4^n \cdot \frac{1}{2} \left[f(\frac{x}{2^n}) + f(-\frac{x}{2^n}) \right] & \text{if } \phi \text{ satisfies } (3.4) \end{cases}$$

for all $x \in X$.

Proof. Let $g: X \to Y$ be the mapping defined by $g(x) = \frac{1}{2} [f(x) - f(-x)]$ for all $x \in X$. Then we have g(0) = 0, g(-x) = -g(x) and

(3.9)
$$||Dg(x,y)|| = ||2g(x+3y) + 6g(x-y) + 12g(2y) -2g(x-3y) - 6g(x+y) - 3g(4y)||$$
$$\leq \frac{1}{2} [\phi(x,y) + \phi(-x,-y)]$$

for all $x, y \in X$. Putting y := x in (3.9) yields

(3.10)
$$||8g(2x) - g(4x)||^p \le \frac{1}{2^p} \left[\phi(x, x) + \phi(-x, -x) \right]^p,$$

which, by setting $x:=\frac{x}{2}$ and dividing by 8^p in (3.10), gives

for all $x \in X$.

Assume that ϕ satisfies the condition (3.1). Substituting 2x for x in (3.11) and dividing by 8^p , we get

$$\left\| \frac{g(2x)}{8} - \frac{g(2^2x)}{8^2} \right\|^p \le \frac{1}{16^p} \frac{1}{8^p} \alpha (2x)^p$$

for all $x \in X$. An induction argument now implies that

(3.12)
$$\left\| g(x) - \frac{g(2^n x)}{8^n} \right\|^p \le \frac{1}{16^p} \sum_{i=0}^{n-1} \frac{1}{8^{pi}} \alpha(2^i x)^p$$

for all $x \in X$. We claim that $\{8^{-n}g(2^nx)\}$ is a Cauchy sequence in Y. For m < n,

(3.13)
$$\|8^{-n}g(2^{n}x) - 8^{-m}g(2^{m}x)\|^{p}$$

$$\leq \sum_{i=m}^{n-1} \|8^{-i}g(2^{i}x) - 8^{-(i+1)}g(2^{i+1}x)\|^{p}$$

$$\leq \frac{1}{16^{p}} \sum_{i=m}^{n-1} \frac{1}{8^{pi}} \alpha(2^{i}x)^{p}$$

for all $x \in X$. Taking the limit as $m \to \infty$, we get

$$\lim_{m \to \infty} \|8^{-n}g(2^n x) - 8^{-m}g(2^m x)\|^p = 0$$

for all $x \in X$. Since Y is a Banach space, it follows that the sequence $\{8^{-n}g(2^n)\}$ converges. We define a mapping $C: X \to Y$ by

(3.14)
$$C(x) = \lim_{n \to \infty} 8^{-n} g(2^n x)$$

for all $x \in X$. It is clear that C(-x) = -C(x) for all $x \in X$, and it follows from (3.14) that

$$||DC(x,y)||^p = \lim_{n \to \infty} 8^{-pn} ||Dg(2^n x, 2^n y)||^p$$

$$\leq \frac{1}{2} \lim_{n \to \infty} 8^{-pn} [\phi(2^n x, 2^n y)^p + \phi(-2^n x, -2^n y)^p] = 0$$

for all $x, y \in X$. Hence we see that C is cubic as in the proof of Theorem 2.3. To prove the inequality (3.7), taking the limit in (3.12) as $n \to \infty$, we have

(3.15)
$$||g(x) - C(x)|| \le \varepsilon_1(x)^{\frac{1}{p}}$$

for all $x \in X$. Now it remains to show that C is unique. Suppose that $\widetilde{C}: X \to Y$ is another cubic mapping satisfying (3.15). Then it is obvious that C(2x) = 8C(x) for all $x \in X$, and so it follows from (3.15) that

$$\begin{split} \|\widetilde{C}(x) - C(x)\|^p &= 8^{-pn} \|\widetilde{C}(2^n x) - C(2^n x)\|^p \\ &\leq 8^{-pn} (\|\widetilde{C}(2^n x) - g(2^n x)\|^p + \|g(2^n x) - C(2^n x)\|^p) \\ &\leq 2 \cdot 8^{-pn} \varepsilon_1(2^n x) \end{split}$$

for all $x \in X$. By letting $n \to \infty$ in this inequality, we have $\widetilde{C}(x) = C(x)$ for all $x \in X$.

If ϕ satisfies the condition (3.2), then we replace x by $\frac{x}{4}$ in (3.10) to obtain

$$\|g(x) - 8g(2^{-1}x)\|^p \le \frac{1}{2p}\alpha(2^{-1}x)^p$$

for all $x \in X$. By following the corresponding part of the proof of the case (3.1), we see that the inequality

$$\left\|g(x) - 8^n g(2^{-n}x)\right\|^p \le \frac{1}{2^p} \sum_{i=0}^{n-1} 8^{pi} \alpha (2^{-(i+1)}x)^p$$

holds for all $x \in X$ and $\{8^n g(2^{-n}x)\}$ is a Cauchy sequence in Y, from which the mapping $C: X \to Y$ defined by

$$C(x) = \lim_{n \to \infty} 8^n g(2^{-n}x)$$

for all $x \in X$ is cubic and unique such that

$$||g(x) - C(x)|| \le \varepsilon_2(x)^{\frac{1}{p}}$$

for all $x \in X$.

Now let $h: X \to Y$ be the mapping defined by $h(x) = \frac{1}{2} [f(x) + f(-x)]$ for all $x \in X$. Then we have h(-x) = h(x) and

(3.16)
$$||Dh(x,y)|| = ||2h(x+3y) + 6h(x-y) + 12h(2y) - 2h(x-3y) - 6h(x+y) - 3h(4y)||$$
$$\leq \frac{1}{2} [\phi(x,y) + \phi(-x,-y)]$$

for all $x, y \in X$. By setting x := 0 in (3.16) and then letting y := x, we get

(3.17)
$$||12h(2x) - 3h(4x)||^p \le \frac{1}{2^p} \left[\phi(0, x) + \phi(0, -x)\right]^p.$$

Replacing x by $\frac{x}{2}$ in (3.17) and then dividing by 12^p , we obtain

(3.18)
$$\|h(x) - \frac{h(2x)}{4}\|^p \le \frac{1}{24p}\beta(x)^p$$

for all $x \in X$.

Assume that ϕ satisfies the condition (3.3). Substituting 2x for x in (3.18) and dividing by 4^p , we get

$$\left\| \frac{h(2x)}{4} - \frac{h(2^2x)}{4^2} \right\|^p \le \frac{1}{24^p} \cdot \frac{1}{4^p} \beta(2x)^p$$

for all $x \in X$. By induction we see that

(3.19)
$$\left\| h(x) - \frac{h(2^n x)}{4^n} \right\|^p \le \frac{1}{24^p} \sum_{i=0}^{n-1} \frac{1}{4^{pi}} \beta(2^i x)^p$$

for all $x \in X$. We claim that $\{4^{-n}h(2^n)\}$ is a Cauchy sequence in Y. For m < n,

$$\begin{aligned} & \|4^{-n}h(2^nx) - 4^{-m}h(2^mx)\|^p \\ & \leq & \sum_{i=m}^{n-1} \|4^{-i}h(2^ix) - 4^{-(i+1)}h(2^{i+1}x)\|^p \\ & \leq & \frac{1}{24^p} \sum_{i=m}^{n-1} \frac{1}{4^{pi}} \beta(2^ix)^p \end{aligned}$$

for all $x \in X$. Taking the limit as $m \to \infty$, we get

$$\lim_{m \to \infty} \|4^{-n}h(2^n x) - 4^{-m}h(2^m x)\|^p = 0$$

for all $x \in X$. Since Y is a Banach space, it follows that the sequence $\{4^{-n}h(2^nx)\}$ converges. We define a mapping $Q: X \to Y$ by

(3.20)
$$Q(x) = \lim_{n \to \infty} 4^{-n} h(2^n x)$$

for all $x \in X$. It is clear that Q(-x) = Q(x) for all $x \in X$, and it follows from (3.20) that

$$||DQ(x,y)||^p = \lim_{n \to \infty} 4^{-pn} ||Dh(2^n x, 2^n y)||^p$$

$$\leq \frac{1}{2} \lim_{n \to \infty} 4^{-pn} [\phi(2^n x, 2^n y)^p + \phi(-2^n x, -2^n y)^p] = 0$$

for all $x, y \in X$. Thus we see that Q is quadratic as in the proof of Theorem 2.3. By taking the limit in (3.19) as $n \to \infty$ to prove the inequality (3.8), we obtain

(3.21)
$$||h(x) - Q(x)|| \le \varepsilon_3(x)^{\frac{1}{p}}$$

for all $x \in X$. To show that Q is unique, let us assume that $\widetilde{Q}: X \to Y$ is another quadratic mapping satisfying (3.21). Then it is obvious that Q(2x) = 4Q(x) for all $x \in X$, and so it follows from (3.21) that

$$\begin{split} \|\widetilde{Q}(x) - Q(x)\|^p &= 4^{-pn} \|\widetilde{Q}(2^n x) - Q(2^n x)\|^p \\ &\leq 4^{-pn} (\|\widetilde{Q}(2^n x) - h(2^n x)\|^p + \|h(2^n x) - Q(2^n x)\|^p) \\ &\leq 2 \cdot 4^{-pn} \varepsilon_3(2^n x) \end{split}$$

for all $x \in X$. By letting $n \to \infty$ in this inequality, we have $\widetilde{Q}(x) = Q(x)$ for all $x \in X$. If ϕ satisfies the condition (3.4), then we replace x by $\frac{x}{4}$ in (3.17) and divide by 3^p to obtain

$$||h(x) - 4h(2^{-1}x)||^p \le \frac{1}{6p}\beta(2^{-1}x)^p$$

for all $x \in X$. The rest of the proof goes through the corresponding part of the proof of the case (3.3), that is, the inequality

$$\left\| h(x) - 4^n h(2^{-n}x) \right\|^p \le \frac{1}{6^p} \sum_{i=0}^{n-1} 4^{pi} \beta (2^{-(i+1)}x)^p$$

holds for all $x \in X$ and $\{4^n h(2^{-n})\}$ is a Cauchy sequence in Y, whence we obtain the unique quadratic mapping $Q: X \to Y$ defined by

$$Q(x) = \lim_{n \to \infty} 4^n h(2^{-n}x)$$

for all $x \in X$ such that

$$||h(x) - Q(x)|| \le \varepsilon_4(x)^{\frac{1}{p}}$$

for all $x \in X$. Since we have f(x) = g(x) + h(x) for all $x \in X$, we see that

$$||f(x) - (C(x) + Q(x))||^p$$

 $\leq ||g(x) - C(x)||^p + ||h(x) - Q(x)||^p$
 $\leq \varepsilon_k(x) + \varepsilon_j(x)$

for all $x \in X$, where k = 1 or 2 and j = 3 or 4. We complete the proof of the theorem.

From Theorem 3.1, we obtain the following corollary concerning the Hyers-Ulam-Rassias stability [25] of the functional equation (1.2).

Let $q \neq 2,3$ be any real number. For the sake of convenience, let

$$\lambda_1(q) := \frac{1}{2^{(q+2)p}(1-2^{(q-3)p})}, \quad \lambda_2(q) := \frac{1}{2^{(2q-1)p}(1-2^{(3-q)p})},$$

and

$$\lambda_3(q) := \frac{1}{3^p \cdot 2^{(q+2)p}(1 - 2^{(q-2)p})}, \quad \lambda_4(q) := \frac{1}{3^p \cdot 4^{qp}(1 - 2^{(2-q)p})}.$$

Corollary 3.2. Let $q \neq 2, 3$ and $\theta > 0$ be real numbers. If the mapping $f: X \to Y$ satisfies the inequality

$$||Df(x,y)|| \le \theta(||x||^q + ||y||^q)$$

for all $x, y \in X$, then there exist a unique cubic mapping $C: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$||f(x) - (C(x) + Q(x))|| \le \lambda(q)^{\frac{1}{p}} \theta ||x||^{q},$$

$$||\frac{f(x) - f(-x)}{2} - C(x)|| \le \lambda_{k}(q)^{\frac{1}{p}} \theta ||x||^{q} \quad (k = 1 \quad or \quad 2),$$

$$||\frac{f(x) + f(-x)}{2} - Q(x)|| \le \lambda_{j}(q)^{\frac{1}{p}} \theta ||x||^{q} \quad (j = 3 \quad or \quad 4)$$

ana

for all $x \in X$, where

$$\lambda(q) = \begin{cases} \lambda_2(q) + \lambda_4(q) & \text{if } q > 3\\ \lambda_1(q) + \lambda_4(q) & \text{if } 2 < q < 3\\ \lambda_1(q) + \lambda_3(q) & \text{if } q < 2. \end{cases}$$

The mappings C and Q are given by

$$C(x) = \begin{cases} \lim_{n \to \infty} \frac{f(2^n x) - f(-2^n x)}{2 \cdot 8^n} & \text{if } q < 3\\ \lim_{n \to \infty} 8^n \cdot \frac{1}{2} \left[f(\frac{x}{2^n}) - f(-\frac{x}{2^n}) \right] & \text{if } q > 3, \end{cases}$$

$$Q(x) = \begin{cases} \lim_{n \to \infty} \frac{f(2^n x) + f(-2^n x)}{2 \cdot 4^n} & \text{if } q < 2\\ \lim_{n \to \infty} 4^n \cdot \frac{1}{2} \left[f(\frac{x}{2^n}) + f(-\frac{x}{2^n}) \right] & \text{if } q > 2 \end{cases}$$

for all $x \in X$.

Proof. Let $\phi(x,y) := \theta(\|x\|^q + \|y\|^q)$ for all $x \in X$. If q < 3, then a simple calculation gives $\alpha(2^i x) = 4 \cdot 2^{(i-1)q} \theta \|x\|^q$, and so we have

$$\varepsilon_1(x) = \frac{1}{16^p} \sum_{i=0}^{\infty} \frac{1}{8^{pi}} \alpha(2^i x)^p = \lambda_1(q) \theta^p ||x||^{qp}$$

for all $x \in X$. If q > 3, then, by considering $\alpha(2^{-(i+1)}x) = 4 \cdot 2^{-(i+2)q}\theta ||x||^q$, we obtain

$$\varepsilon_2(x) = \frac{1}{2^p} \sum_{i=0}^{\infty} 8^{pi} \alpha (2^{-(i+1)} x)^p = \lambda_2(q) \theta^p ||x||^{qp}$$

for all $x \in X$. On the other hand, suppose that q < 2. Since $\beta(2^i x) = 2 \cdot 2^{(i-1)q} \theta ||x||^q$, we see that

$$\varepsilon_3(x) = \frac{1}{24^p} \sum_{i=0}^{\infty} \frac{1}{4^{pi}} \beta(2^i x)^p = \lambda_3(q) \theta^p ||x||^{qp}$$

for all $x \in X$. Finally, if q > 2, then we know that

$$\varepsilon_4(x) = \frac{1}{6^p} \sum_{i=0}^{\infty} 4^{pi} \beta (2^{-(i+2)} x)^p = \lambda_4(q) \theta^p ||x||^{qp}$$

because of $\beta(2^{-(i+1)}x) = 2 \cdot 2^{-(i+2)q} \theta ||x||^q$ for all $x \in X$. Therefore, we deduce that

$$\varepsilon_{k}(x) + \varepsilon_{j}(x) := \lambda(q)\theta^{p} ||x||^{q} = \begin{cases} (\lambda_{2}(q) + \lambda_{4}(q))\theta^{p} ||x||^{qp} & \text{if } q > 3\\ (\lambda_{1}(q) + \lambda_{4}(q))\theta^{p} ||x||^{qp} & \text{if } 2 < q < 3\\ (\lambda_{1}(q) + \lambda_{3}(q))\theta^{p} ||x||^{qp} & \text{if } q < 2 \end{cases}$$

for all
$$x \in X$$
.

The following corollary is the Hyers-Ulam stability of the equation (1.2) which is an immediate consequence of Corollary 3.2 by setting $\theta := \frac{1}{2}\theta$ and q = 0.

Corollary 3.3. Let $\theta > 0$ be a real number. If the mapping $f: X \to Y$ satisfies the inequality

$$||Df(x,y)|| \le \theta$$

for all $x, y \in X$, then there exist a unique cubic mapping $C: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$||f(x) - (C(x) + Q(x))|| \le \left[\frac{1}{(8^p - 1)^{1/p}} + \frac{1}{6(4^p - 1)^{1/p}} \right] \theta,$$
$$\left| \left| \frac{f(x) - f(-x)}{2} - C(x) \right| \right| \le \frac{1}{(8^p - 1)^{1/p}} \theta,$$

and

$$\left\| \frac{f(x) + f(-x)}{2} - Q(x) \right\| \le \frac{1}{6(4^p - 1)^{1/p}} \theta$$

for all $x \in X$.

The mappings C and Q are given by

$$C(x) = \lim_{n \to \infty} \frac{f(2^n x) - f(-2^n x)}{2 \cdot 8^n}$$

and

$$Q(x) = \lim_{n \to \infty} \frac{f(2^n x) + f(-2^n x)}{2 \cdot 4^n}$$

for all $x \in X$.

References

- J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
- [2] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80(1980), 411-416.
- [3] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc. Providence, 2000.
- [4] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1984), 76-86.
- [5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64.
- [6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publ. Co., New Jersey, London, Singapore, Hong Kong, 2002.
- [7] S. Czerwik(ed), Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Inc., Palm Harbor, Florida, 2003.
- [8] V. A. Fažiev, Th. M. Rassias and P. K. Sahoo, The space of (ψ, γ) -additive mappings on semigroups, Trans. Amer. Math. Soc., 364(11)(2002), 4455-4472.
- [9] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14(1991), 431-434.
- [10] P. Găvruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
- [11] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27(1941), 222-224.
- [12] D. H. Hyers, G. Isac and Th. M. Rassias, "Stability of Functional Equations in Several Variables", Birkhäuser, Basel, 1998.

- [13] D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., 126(1998), 425-430.
- [14] K. -W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2)(2002), 867-878.
- [15] S. -M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222(1998), 126-137.
- [16] S. -M. Jung, Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.
- [17] S. -M. Jung, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., 232(1999), 384-393.
- [18] N. Kalton, N. T. Peck, and W. Roberts, An F-Space Sampler, London Mathematical Society Lecture Note Series 89, Cambridge University Press, (1984).
- [19] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27(1995), 368-372.
- [20] C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal. –TMA, 57(2004), 713-722.
- [21] C. Park, Cauchy–Rassias stability of a generalized Trif's mapping in Banach modules and its applications, Nonlinear Anal. –TMA, 62(2005), 595-613.
- [22] J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glas. Mat., 36(1)(2001), 63-72.
- [23] J. M. Rassias, On the Hyers-Ulam stability problem for quadratic multi-dimensional mappings, Aequationes Math., 64(2002), 62-69.
- [24] J. M. Rassias, On the Ulam stability of the mixed type mappings on restricted domains, J. Math. Anal. Appl., 276(2002), 747-762.
- [25] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
- [26] Th. M. Rassias, The problems of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378.
- [27] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251(2000), 264-284.
- [28] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., **62**(2000), 23-130.
- [29] Th. M. Rassias (Ed.), "Functional Equations and inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.
- [30] Th. M. Rassias (Ed.), "Functional Equations and Inequalities and Applications", Kluwer Academic, Dordrecht, Boston, London, 2003.
- [31] Th. M. Rassias and J. Tabor, What is left of Hyers-Ulam stability?, Journal of Natural Geometry, 1(1992), 65-69.
- [32] Th. M. Rassias and J. Tabor, "Stability of mappings of Hyers-Ulam type", Hadronic Press, Inc., Florida, 1994.

- [33] Th. M. Rassias and P. Šemrl, On the behavior of mappings which does not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114(1992), 989-993.
- [34] S. Rolewicz, Metric Linear Spaces, Reidel and Dordrecht, and PWN-Polish Sci. Publ. 1984.
- [35] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129.
- [36] J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math., 83(2004), 243-255.
- [37] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Science ed., Wiley, New York, 1960.