ON THE STABILITY OF THE JENSEN'S EQUATION IN A HILBERT MODULE

CHUN-GIL PARK AND WON-GIL PARK

ABSTRACT. We prove the generalized Hyers-Ulam-Rassias stability of the invertible mapping in a Banach module over a unital Banach algebra, and prove the generalized Hyers-Ulam-Rassias stability of the Jensen's functional equations in a Hilbert module over a unital C^* -algebra.

Let E_1 and E_2 be Banach spaces. Consider $f: E_1 \to E_2$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_1$. Assume that there exist constants $\epsilon \geq 0$ and $p \in [0,1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$. Th. M. Rassias [5] showed that there exists a unique \mathbb{R} -linear mapping $T: E_1 \to E_2$ such that

$$\|f(x)-T(x)\|\leq \frac{2\epsilon}{2-2^p}||x||^p$$

for all $x \in E_1$.

In this paper, let A be a unital Banach algebra with norm $|\cdot|$, $A_1 = \{a \in A \mid |a| = 1\}$, and ${}_{A}\mathcal{H}$ a left Banach A-module with norm $||\cdot||$. Throughout this paper, assume that $F, G: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ are mappings such that F(tx) and G(tx) are continuous in $t \in \mathbb{R}$ for each fixed $x \in {}_{A}\mathcal{H}$.

We are going to prove the generalized Hyers-Ulam-Rassias stability of the invertible mapping in a Banach module over a unital Banach algebra.

Received May 3, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B52, 47J25, 46L05.

Key words and phrases: stability, A-linear, Banach module over Banach algebra, Hilbert module over C^* -algebra.

LEMMA 1. Let $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ be a mapping for which there exists a function $\varphi: {}_{A}\mathcal{H} \times {}_{A}\mathcal{H} \to [0, \infty)$ such that

$$\widetilde{\varphi}(x,y):=\sum_{k=0}^{\infty}3^{-k}\varphi(3^kx,3^ky)<\infty,$$

$$\|2F(\frac{ax+ay}{2})-aF(x)-aF(y)\|\leq\varphi(x,y)$$

for all $a \in A_1$ and all $x, y \in {}_{A}\mathcal{H}$. Then there exists a unique A-linear mapping $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ such that

(ii)
$$||F(x) - F(0) - T(x)|| \le \frac{1}{3} (\widetilde{\varphi}(x, -x) + \widetilde{\varphi}(-x, 3x))$$

for all $x \in {}_{A}\mathcal{H}$.

Proof. By [2, Theorem 1], it follows from the inequality of the statement for a=1 that there exists a unique additive mapping $T:_A\mathcal{H}\to_A\mathcal{H}$ satisfying (ii). The additive mapping T given in the proof of [2, Theorem 1] is similar to the additive mapping T given in the proof of [5, Theorem]. By the same reasoning as the proof of [5, Theorem], it follows from the assumption that F(tx) is continuous in $t\in\mathbb{R}$ for each fixed $x\in_A\mathcal{H}$ that the additive mapping $T:_A\mathcal{H}\to_A\mathcal{H}$ is \mathbb{R} -linear.

By the assumption, for each $a \in A_1$,

$$||2F(3^n ax) - aF(2 \cdot 3^{n-1}x) - aF(4 \cdot 3^{n-1}x)|| \le \varphi(2 \cdot 3^{n-1}x, 4 \cdot 3^{n-1}x)$$

for all $x \in {}_{A}\mathcal{H}$. Using the fact that there exists a K > 0 such that, for each $a \in A$ and each $z \in {}_{A}\mathcal{H}$, $||az|| \le K|a| \cdot ||z||$, one can show that

$$\begin{split} & \|\frac{1}{2}aF(2\cdot 3^{n-1}x) + \frac{1}{2}aF(4\cdot 3^{n-1}x) - aF(3^nx)\| \\ & \leq \frac{1}{2}K|a| \cdot \|2F(3^nx) - F(2\cdot 3^{n-1}x) - F(4\cdot 3^{n-1}x)\| \\ & \leq \frac{K}{2}\varphi(2\cdot 3^{n-1}x, 4\cdot 3^{n-1}x) \end{split}$$

for all $a \in A_1$ and all $x \in {}_{A}\mathcal{H}$. So

$$\begin{split} & \|F(3^nax) - aF(3^nx)\| \\ & \leq \|F(3^nax) - \frac{1}{2}aF(2\cdot 3^{n-1}x) - \frac{1}{2}aF(4\cdot 3^{n-1}x)\| \\ & + \|\frac{1}{2}aF(2\cdot 3^{n-1}x) + \frac{1}{2}aF(4\cdot 3^{n-1}x) - aF(3^nx)\| \\ & \leq \frac{1}{2}\varphi(2\cdot 3^{n-1}x, 4\cdot 3^{n-1}x) + \frac{K}{2}\varphi(2\cdot 3^{n-1}x, 4\cdot 3^{n-1}x) \end{split}$$

for all $a \in A_1$ and all $x \in {}_A\mathcal{H}$. Thus $3^{-n} || F(3^n a x) - a F(3^n x) || \to 0$ as $n \to \infty$ for all $a \in A_1$ and all $x \in {}_A\mathcal{H}$. Hence

$$T(ax) = \lim_{n \to \infty} \frac{F(3^n ax)}{3^n} = \lim_{n \to \infty} \frac{aF(3^n x)}{3^n} = aT(x)$$

for each $a \in A_1$. So

$$T(ax) = |a|T(\frac{a}{|a|}x) = |a|\frac{a}{|a|}T(x) = aT(x)$$

for all $a \in A \setminus \{0\}$ and all $x \in {}_{A}\mathcal{H}$. Hence

$$T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)$$

for all $a, b \in A$ and all $x, y \in {}_{A}\mathcal{H}$. So the unique \mathbb{R} -linear mapping $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is an A-linear mapping, as desired.

THEOREM 2. Let $F, G : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ be mappings for which there exists a function $\varphi : {}_{A}\mathcal{H} \times {}_{A}\mathcal{H} \to [0, \infty)$ satisfying (i) such that

$$||2F(\frac{ax + ay}{2}) - aF(x) - aF(y)|| \le \varphi(x, y),$$

 $||2G(\frac{ax + ay}{2}) - aG(x) - aG(y)|| \le \varphi(x, y)$

for all $a \in A_1$ and all $x, y \in {}_{A}\mathcal{H}$. Assume that $F(3^nx) = 3^nF(x)$ and $G(3^nx) = 3^nG(x)$ for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Then the mappings $F, G: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ are A-linear mappings. Furthermore, if the mappings $F, G: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfy the inequalities

$$||F \circ G(x) - x|| \le \varphi(x, x),$$

$$||G \circ F(x) - x|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping G is the inverse of the mapping F.

Proof. By the same method as the proof of Lemma 1, one can show that there exists a unique A-linear mapping $L: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ such that

$$\|G(x)-L(x)\|\leq rac{1}{3}(\widetilde{arphi}(x,-x)+\widetilde{arphi}(-x,3x))$$

for all $x \in {}_{A}\mathcal{H}$.

By the assumption,

$$T(x) = \lim_{n \to \infty} \frac{F(3^n x)}{3^n} = F(x),$$

$$L(x) = \lim_{n \to \infty} \frac{G(3^n x)}{3^n} = G(x)$$

for all $x \in {}_{A}\mathcal{H}$, where the mapping $T : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is given in the proof of Lemma 1. Hence the A-linear mappings T and L are the mappings F and G, respectively. So the mappings $F, G : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ are A-linear mappings.

Now by the assumption,

$$||F \circ G(3^n x) - 3^n x|| \le \varphi(3^n x, 3^n x),$$

$$||G \circ F(3^n x) - 3^n x|| \le \varphi(3^n x, 3^n x)$$

for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Thus

$$3^{-n} \| F \circ G(3^n x) - 3^n x \| \to 0,$$

$$3^{-n} \| G \circ F(3^n x) - 3^n x \| \to 0$$

as $n \to \infty$ for all $x \in {}_{A}\mathcal{H}$. Hence

$$F \circ G(x) = \lim_{n \to \infty} \frac{F \circ G(3^n x)}{3^n} = x,$$
$$G \circ F(x) = \lim_{n \to \infty} \frac{G \circ F(3^n x)}{3^n} = x$$

for all $x \in {}_{A}\mathcal{H}$. So the mapping G is the inverse of the mapping F. \square

From now on, let A be a unital C^* -algebra with norm $|\cdot|$, A_1^+ the set of positive elements in A_1 , and ${}_A\mathcal{H}$ a left Hilbert A-module with norm $||\cdot||$.

Now we are going to prove the generalized Hyers-Ulam-Rassias stability of linear functional equations in a Hilbert module over a unital C^* -algebra.

LEMMA 3. Let $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ be a mapping for which there exists a function $\varphi: {}_{A}\mathcal{H} \times {}_{A}\mathcal{H} \to [0, \infty)$ satisfying (i) such that

$$\|2F(\frac{ax+ay}{2})-aF(x)-aF(y)\|\leq \varphi(x,y)$$

for all $a \in A_1^+ \cup \{i\}$ and all $x, y \in {}_A\mathcal{H}$. Then there exists a unique A-linear operator $T: {}_A\mathcal{H} \to {}_A\mathcal{H}$ satisfying (ii).

Proof. By the same reasoning as the proof of Lemma 1, there exists a unique \mathbb{R} -linear mapping $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfying (ii).

By the same method as the proof of Lemma 1, one can obtain that

$$T(ax) = \lim_{n \to \infty} \frac{F(3^n ax)}{3^n} = \lim_{n \to \infty} \frac{aF(3^n x)}{3^n} = aT(x)$$

for each $a \in A_1^+ \cup \{i\}$. So

$$T(ax) = |a|T(\frac{a}{|a|}x) = |a|\frac{a}{|a|}T(x) = aT(x), \quad \forall a \in A^+ \setminus \{0\}, \ \forall x \in {}_A\mathcal{H},$$
 $T(ix) = iT(x), \quad \forall x \in {}_A\mathcal{H}.$

For any element $a\in A$, $a=\frac{a+a^*}{2}+i\frac{a-a^*}{2i}$, where $\frac{a+a^*}{2}$ and $\frac{a-a^*}{2i}$ are self-adjoint elements, furthermore, $a=(\frac{a+a^*}{2})^+-(\frac{a+a^*}{2})^-+i(\frac{a-a^*}{2i})^+-i(\frac{a-a^*}{2i})^-$, where $(\frac{a+a^*}{2})^+$, $(\frac{a+a^*}{2})^-$, $(\frac{a-a^*}{2i})^+$, and $(\frac{a-a^*}{2i})^-$ are positive elements (see [1, Lemma 38.8]). So

$$T(ax)$$

$$= T((\frac{a+a^*}{2})^+x - (\frac{a+a^*}{2})^-x + i(\frac{a-a^*}{2i})^+x - i(\frac{a-a^*}{2i})^-x)$$

$$= (\frac{a+a^*}{2})^+T(x) + (\frac{a+a^*}{2})^-T(-x) + (\frac{a-a^*}{2i})^+T(ix)$$

$$+ (\frac{a-a^*}{2i})^-T(-ix)$$

$$= (\frac{a+a^*}{2})^+T(x) - (\frac{a+a^*}{2})^-T(x) + i(\frac{a-a^*}{2i})^+T(x)$$

$$- i(\frac{a-a^*}{2i})^-T(x)$$

$$= ((\frac{a+a^*}{2})^+ - (\frac{a+a^*}{2})^- + i(\frac{a-a^*}{2i})^+ - i(\frac{a-a^*}{2i})^-)T(x) = aT(x)$$

for all $a \in A$ and all $x \in {}_{A}\mathcal{H}$. Hence

$$T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)$$

for all $a, b \in A$ and all $x, y \in {}_{A}\mathcal{H}$. So the unique \mathbb{R} -linear mapping $T: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is an A-linear operator, as desired.

THEOREM 4. Let $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ be a mapping for which there exists a function $\varphi: {}_{A}\mathcal{H} \times {}_{A}\mathcal{H} \to [0, \infty)$ satisfying (i) such that

$$||2F(\frac{ax+ay}{2}) - aF(x) - aF(y)|| \le \varphi(x,y)$$

for all $a \in A_1^+ \cup \{i\}$ and all $x, y \in {}_A\mathcal{H}$. Assume that $F(3^nx) = 3^nF(x)$ for all positive integers n and all $x \in {}_A\mathcal{H}$. Then the mapping $F: {}_A\mathcal{H} \to {}_A\mathcal{H}$ is an A-linear operator. Furthermore,

(1) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequality

$$||F(x) - F^*(x)|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a self-adjoint operator,

(2) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequality

$$||F \circ F^*(x) - F^* \circ F(x)|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a normal operator,

(3) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequalities

$$||F \circ F^*(x) - x|| \le \varphi(x, x),$$

$$||F^* \circ F(x) - x|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a unitary operator, and

(4) if the mapping $F: {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ satisfies the inequalities

$$||F \circ F(x) - F(x)|| \le \varphi(x, x),$$

$$||F^*(x) - F(x)|| \le \varphi(x, x)$$

for all $x \in {}_{A}\mathcal{H}$, then the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is a projection.

Proof. By the assumption,

$$T(x) = \lim_{n \to \infty} \frac{F(3^n x)}{3^n} = F(x)$$

for all $x \in {}_{A}\mathcal{H}$, where the operator $T : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is given in the proof of Lemma 3. So the A-linear operator $T : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$ is the mapping $F : {}_{A}\mathcal{H} \to {}_{A}\mathcal{H}$.

(1) By the assumption,

$$||F(3^nx) - F^*(3^nx)|| < \varphi(3^nx, 3^nx)$$

for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Thus $3^{-n} || F(3^{n}x) - F^{*}(3^{n}x) || \to 0$ as $n \to \infty$ for all $x \in {}_{A}\mathcal{H}$. Hence

$$F(x) = \lim_{n \to \infty} \frac{F(3^n x)}{3^n} = \lim_{n \to \infty} \frac{F^*(3^n x)}{3^n} = F^*(x)$$

for all $x \in {}_{A}\mathcal{H}$. So the A-linear mapping F is a self-adjoint operator.

(2) By the assumption,

$$||F \circ F^*(3^n x) - F^* \circ F(3^n x)|| \le \varphi(3^n x, 3^n x)$$

for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Thus $3^{-n} || F \circ F^*(3^n x) - F^* \circ F(3^n x) || \to 0$ as $n \to \infty$ for all $x \in {}_{A}\mathcal{H}$. Hence

$$F \circ F^*(x) = \lim_{n \to \infty} \frac{F \circ F^*(3^n x)}{3^n} = \lim_{n \to \infty} \frac{F^* \circ F(3^n x)}{3^n} = F^* \circ F(x)$$

for all $x \in {}_{A}\mathcal{H}$. So the A-linear mapping F is a normal operator.

(3) By the assumption,

$$||F \circ F^*(3^n x) - 3^n x|| \le \varphi(3^n x, 3^n x),$$

$$||F^* \circ F(3^n x) - 3^n x|| \le \varphi(3^n x, 3^n x)$$

for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Thus

$$3^{-n} || F \circ F^*(3^n x) - 3^n x || \to 0,$$

 $3^{-n} || F^* \circ F(3^n x) - 3^n x || \to 0$

as $n \to \infty$ for all $x \in {}_{A}\mathcal{H}$. Hence

$$F \circ F^*(x) = \lim_{n \to \infty} \frac{F \circ F^*(3^n x)}{3^n} = x,$$

$$F^* \circ F(x) = \lim_{n \to \infty} \frac{F^* \circ F(3^n x)}{3^n} = x$$

for all $x \in {}_{A}\mathcal{H}$. So the A-linear mapping F is a unitary operator.

(4) By the assumption,

$$||F \circ F(3^n x) - F(3^n x)|| \le \varphi(3^n x, 3^n x),$$

$$||F^*(3^n x) - F(3^n x)|| \le \varphi(3^n x, 3^n x)$$

for all positive integers n and all $x \in {}_{A}\mathcal{H}$. Thus

$$3^{-n} || F \circ F(3^n x) - F(3^n x) || \to 0,$$

$$3^{-n} || F^*(3^n x) - F(3^n x) || \to 0$$

as $n \to \infty$ for all $x \in {}_{A}\mathcal{H}$. Hence

$$F \circ F(x) = \lim_{n \to \infty} \frac{F \circ F(3^n x)}{3^n} = \lim_{n \to \infty} \frac{F(3^n x)}{3^n} = F(x),$$
$$F^*(x) = \lim_{n \to \infty} \frac{F^*(3^n x)}{3^n} = \lim_{n \to \infty} \frac{F(3^n x)}{3^n} = F(x)$$

for all $x \in {}_{A}\mathcal{H}$. So the A-linear mapping F is a projection.

REMARK. When the inequalities

$$||2F(\frac{ax+ay}{2}) - aF(x) - aF(y)|| \le \varphi(x,y)$$

in the statements of the above results are replaced by the inequalities

$$\|2aF(\frac{x+y}{2}) - F(ax) - F(ay)\| \le \varphi(x,y)$$

or the inequalities

$$||2F(\frac{x+y}{2}) - F(x) - F(y)|| \le \varphi(x,y),$$
$$||F(ax) - aF(x)|| \le \varphi(x,x),$$

the results do also hold. The proofs are similar to the proofs of the results.

References

- F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
- [2] Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
- [3] P. S. Muhly and B. Solel, *Hilbert modules over operator algebras*, Mem. Amer. Math. Soc. **117** (1995), no. 559.
- [4] C. Park and W. Park, On the stability of the Jensen's equation in Banach modules over a Banach algebra, Taiwanese J. Math. 6 (2002) (to appear).
- [5] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [6] H. Schröder, K-Theory for real C*-algebras and applications, Pitman Research Notes in Math. Ser., vol. 290, Longman Sci. Tech., Harlow, 1993.

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, DAEJEON 305-764, KOREA

 $\begin{array}{ll} \textit{E-mail:} & \texttt{cgpark@math.cnu.ac.kr} \\ & \texttt{wgpark@math.cnu.ac.kr} \end{array}$