• 제목/요약/키워드: generalized Genocchi polynomials

검색결과 8건 처리시간 0.021초

CALCULATING ZEROS OF THE GENERALIZED GENOCCHI POLYNOMIALS

  • Agarwal, R.P.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.453-462
    • /
    • 2009
  • Kim [4] defined the generalized Genocchi numbers $G_{n,x}$. In this paper, we introduce the generalized Genocchi polynomials $G_{n,x}(x)$. One purpose of this paper is to investigate the zeros of the generalized Genocchi polynomials $G_{n,x}(x)$. We also display the shape of generalized Genocchi polynomials $G_{n,x}(x)$.

  • PDF

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.

THE STUDY ON GENERALIZED (p, q)-POLY-GENOCCHI POLYNOMIALS WITH VARIABLE a

  • H.Y. LEE
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권3_4호
    • /
    • pp.197-209
    • /
    • 2023
  • In this paper, the generalized (p, q)-poly-Genocchi polynomials with variable a is defined by generalizing it more, and various properties of this polynomial are introduced. To do this, we define a generating function and use the definition to introduce some interesting properties as follows: basic properties, relation between Stirling numbers of the second kind and generalized (p, q)-poly-Genocchi polynomials with variable a and symmetric properties.

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

SYMMETRY PROPERTIES FOR A UNIFIED CLASS OF POLYNOMIALS ATTACHED TO χ

  • Gaboury, S.;Tremblay, R.;Fugere, J.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.119-130
    • /
    • 2013
  • In this paper, we obtain some generalized symmetry identities involving a unified class of polynomials related to the generalized Bernoulli, Euler and Genocchi polynomials of higher-order attached to a Dirichlet character. In particular, we prove a relation between a generalized X version of the power sum polynomials and this unified class of polynomials.

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

Some Properties of the Generalized Apostol Type Hermite-Based Polynomials

  • KHAN, WASEEM AHMAD
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.597-614
    • /
    • 2015
  • In this paper, we study some properties of the generalized Apostol type Hermite-based polynomials. which extend some known results. We also deduce some properties of the generalized Apostol-Bernoulli polynomials, the generalized Apostol-Euler polynomials and the generalized Apostol-Genocchi polynomials of high order. Numerous properties of these polynomials and some relationships between $F_n{^{({\alpha})}}(x;{\lambda};{\mu};{\nu};c)$ and $_HF_n{^{({\alpha})}}(x;{\lambda};{\mu};{\nu};c)$ are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions.

A NEW CLASS OF GENERALIZED APOSTOL-TYPE FROBENIUS-EULER-HERMITE POLYNOMIALS

  • Pathan, M.A.;Khan, Waseem A.
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.477-499
    • /
    • 2020
  • In this paper, we introduce a new class of generalized Apostol-type Frobenius-Euler-Hermite polynomials and derive some explicit and implicit summation formulae and symmetric identities by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Frobenius-Euler type polynomials and Hermite-based Apostol-Euler and Apostol-Genocchi polynomials studied by Pathan and Khan, Kurt and Simsek.