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q-ADDITION THEOREMS FOR THE q-APPELL

POLYNOMIALS AND THE ASSOCIATED CLASSES OF

q-POLYNOMIALS EXPANSIONS

Patrick Njionou Sadjang

Abstract. Several addition formulas for a general class of q-Appell se-
quences are proved. The q-addition formulas, which are derived, involved

not only the generalized q-Bernoulli, the generalized q-Euler and the gen-

eralized q-Genocchi polynomials, but also the q-Stirling numbers of the
second kind and several general families of hypergeometric polynomials.

Some q-umbral calculus generalizations of the addition formulas are also
investigated.

1. Introduction

Throughout this paper, we adopt the following notations:

N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .} = N ∪ {0}.

The classical q-Bernoulli polynomials Bn(x; q), the classical q-Euler polynomi-
als En(x; q) and the classical q-Genocchi polynomials Gn(x; q) together with

their generalizations B
(α)
n (x; q), E

(α)
n (x; q) and G

(α)
n (x; q) of (real or complex)

order α, are usually defined by means of the following generating functions (see
for details, [11], and the references therein):(

t

eq(t)− 1

)α
eq(xt) =

∞∑
n=0

B(α)
n,q (x)

tn

[n]q!
, (|t| < 2π; 1α := 1),(1.1)

(
2

eq(t) + 1

)α
eq(xt) =

∞∑
n=0

E(α)
n,q (x)

tn

[n]q!
, (|t| < π; 1α := 1),(1.2)

and

(1.3)

(
2t

eq(t) + 1

)α
eq(xt) =

∞∑
n=0

G(α)
n,q(x)

tn

[n]q!
, (|t| < π; 1α := 1),
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so that, obviously, the q-Bernoulli polynomialsBn,q(x), the q-Euler polynomials
En,q(x) and the q-Genocchi polynomials Gn,q(x) are given respectively, by

Bn,q(x) := B(1)
n,q(x), En,q(x) := E(1)

n,q(x), and Gn,q(x) := G(1)
n,q(x), (n ∈ N0).

For the q-Bernoulli numbers Bn,q, the q-Euler numbers En,q and the q-Genocchi
numbers Gn,q of order n, we have

Bn,q = Bn,q(0), En,q = En,q(0), and Gn,q = Gn,q(0), (n ∈ N0),

respectively.
The Roger Szégo polynomials Hn(x; q) (see [3, Eq. (1)]) and the Al-Salam

Carlitz polynomials U
(a)
n (x; q) (see [9, p. 534]) are defined by the generating

functions

(1.4) eq(t)eq(xt) =

∞∑
n=0

Hn(x; q)
tn

[n]q!
,

and

(1.5)
eq(xt)

eq(t)eq(at)
=

∞∑
n=0

U (a)
n (x; q)

tn

[n]q!
,

respectively.
In these definitions, [n]q is the so-called q-number defined by [7, 9]

[n]q =
1− qn

1− q
,

eq is the q-exponential function defined by [7, 9]

(1.6) eq(x) =

∞∑
n=0

xn

[n]q!
,

where [n]q! denotes the so-called q-factorial

[n]q! =

n∏
k=1

[k]q, and [0]q! = 1.

There is another q-exponential function Eq(x) defined by [7, 9]

(1.7) Eq(x) =

∞∑
k=0

q(
n
2)

[n]q!
xn.

Both eq(x) and Eq(x) satisfy the fundamental relation eq(x)Eq(−x) = 1.
The q-analogue of the binomial coefficients are defined by[

n
k

]
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

, 0 ≤ k ≤ n,
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here, (q; q)n is the so-called q-Pochhammer symbol defined by

(a; q)n =

n∏
k=1

(1− aqk) for n ≥ 1, (a; q)0 = 1.

Various interesting and potentially useful properties and relations involving
the Bernoulli, Euler, Genocchi, Roger-Szégo and Al-Salam Carlitz polynomials
have been investigated in the literature.

In [12], the authors gave several addition formulas for a general class of
Appell polynomials. In this work, we extend these results to a general class of
q-Appell sequences.

Definition 1.1 (see [1]). A polynomial sequence {Pn(x)}n∈N0 is said to be a
q-Appell sequence if

(1.8) DqP0(x) = 0 and DqPn(x) = [n]qPn−1(x), (n ∈ N),

or equivalently, if

(1.9) A(t)eq(xt) =

∞∑
n=0

Pn(x)
tn

[n]q!
,

where

A(t) =

∞∑
n=0

an
tn

[n]q!
,

is a formal power series with a0 6= 0.

From this definition, it is clear that the q-Bernoulli polynomials Bn,q(x), the
q-Euler polynomials En,q(x), the q-Genocchi polynomials Gn,q(x), the Roger-

Szégo polynomials Hn(x; q) and the Al-Salam Carlitz polynomials U
(a)
n (x; q)

are q-Appell sequences. Other definitions and notations for q-Appell sequences
can be found in the literature (see for example [20]).

Definition 1.2. Let a and b two real or complex numbers. Then, the Ward
q-addition of a and b is given by

(1.10) (a⊕q b)n :=

n∑
k=0

[
n
k

]
q

akbn−k, n = 0, 1, 3, . . . .

The following q-Stirling numbers will be also needed.

Definition 1.3 (see [4, p. 173]). The q-Stirling numbers of the first kind
sq(n, k) and the q-Stirling numbers of the second kind Sq(n, k) are defined
by

(1.11) (x)n,q :=

n∑
k=0

sq(n, k)xk,
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and

(1.12) xn =

n∑
k=0

Sq(n, k)(x)k,q,

where the polynomial (x)k,q is defined by

(x)k,q =

k−1∏
m=0

(x− [m]q).

2. Some q-addition theorems

Let {f (α)n (x)} (α ∈ C) be the one-parameter q-Appell sequence generated by

(2.1) (f(t))αeq(xt) =

∞∑
n=0

f (α)n (x)
tn

[n]q!
, (f(0) 6= 0; 1α = 1).

It is not difficult to see that comparing to (1.9), we have f
(1)
n (x) = fn(x),

(n ∈ N0). Also, replacing α by 0 in (2.1) and use the series expansion (1.6), we
obtain

f (0)n (x) = xn, n ∈ N0.

Now we state the following important lemma.

Lemma 2.1. For the one-parameter {f (α)n (x)} generated by (2.1), the following
q-addition formula holds:

(2.2) f (α+β)n (x⊕q y) =

n∑
k=0

[
n
k

]
q

f
(α)
k (x)f

(β)
n−k(y).

Proof. Using the generating function (2.1), we have

∞∑
n=0

f (α+β)n (x⊕q y)
tn

[n]q!
= (f(t))α+βeq((x⊕ y)t)

= (f(t))αeq(xt))× (f(t))βeq(yt)

=

( ∞∑
n=0

f (α)n (x)
tn

[n]q!

)( ∞∑
n=0

f (β)n (y)
tn

[n]q!

)

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

f
(α)
k (x)f

(β)
n−k(y)

)
tn

[n]q!
.

This proves the lemma. �

As a direct consequence of this lemma the following proposition holds.
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Proposition 2.2. For the one-parameter {f (α)n (x)} generated by (2.1), the
following q-addition equation applies

(2.3) f (α)n (x⊕q y) =

n∑
k=0

[
n
k

]
q

f
(α)
n−k(y)xk =

n∑
k=0

[
n
k

]
q

f
(α)
k (y)xn−k.

Next, we need the following inversion formulas for the Roger-Szégo and the
Al-Salam Carlitz polynomials.

Proposition 2.3 (see [1, 19]). The following inversion formulas hold for the

Roger-Szégo polynomials Hk(x; q) and the Al-Salam Carlitz polynomials U
(a)
n

(x; q):

xn =

n∑
k=0

(−1)n−k
[
n
k

]
q

q(
n−k

2 )Hk(x; q),(2.4)

(x	 1)nq =

n∑
k=0

an−k
[
n
k

]
q

U
(a)
k (x; q),(2.5)

xn =

n∑
k=0

[
n
k

]
q

(
n−k∑
i=0

[
n− k
i

]
q

ai

)
U

(a)
k (x; q).(2.6)

Proof. From the generating function (1.4), we have

∞∑
n=0

xn
tn

[n]q!
= Eq(−t)eq(t)eq(xt)

=

( ∞∑
n=0

(−1)nq(
n
2)

[n]q!
tn

)( ∞∑
n=0

Hn(x; q)
tn

[n]q!

)

=

∞∑
n=0

(
n∑
k=0

(−1)n−k
[
n
k

]
q

q(
n−k

2 )Hk(x; q)

)
tn

[n]q!
.

This prove the first equation. For the second one, we first remark that [18,
(5.19)]

(x	 y)nq =

n∑
k=0

(−y)n−kq(
n−k

2 )
[
n
k

]
q

xk.

Next, taking into account that eq(x)Eq(−x) = 1 and multiplying the generating
function (1.5) by eq(at), the left-hand side gives

eq(xt)

eq(t)
= eq(xt)Eq(−t)

=

( ∞∑
k=0

xntn

[n]q!

)( ∞∑
k=0

q(
n
2)

[n]q!
(−t)n

)
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=

∞∑
n=0

(
n∑
k=0

(−1)n−kq(
n−k

2 )
[
n
k

]
q

xk

)
tn

[n]q!

=

∞∑
n=0

(x	 1)nq
tn

[n]q!
,

the right-hand side gives

eq(at)

∞∑
n=0

U (a)
n (x; q)

tn

[n]q!
=

( ∞∑
n=0

an
tn

[n]q!

)( ∞∑
n=0

U (a)
n (x; q)

tn

[n]q!

)

=

∞∑
n=0

(
n∑
k=0

an−k
[
n
k

]
q

U
(a)
k (x; q)

)
tn

[n]q!
.

Hence we have
∞∑
n=0

(x	 1)nq
tn

[n]q!
=

∞∑
n=0

(
n∑
k=0

an−k
[
n
k

]
q

U
(a)
k (x; q)

)
tn

[n]q!
.

So (2.5) is proved. Note that this result is proved in [19] using the Verma’s
q-extension [21] of Filds and Wimp inversion formula [5]. �

Lemma 2.4 (q-Analogue of [10, p. 5707, Lemma 2]). The following relation
between the q-Genocchi polynomials and the q-Euler polynomials holds true:

(2.7) E(`)
n,q(x) =

[n]q!

[n+ `]q!
G

(`)
n+`,q(x), n, ` ∈ N0, 0 ≤ ` ≤ n.

Proof. Let ` such that 0 ≤ ` ≤ n. Then, from the generating functions (1.2)
and (1.3), we have

∞∑
n=0

G(`)
n,q(x)

tn

[n]q!
= t`

(
2

eq(t) + 1

)`
eq(xt)

=

∞∑
n=0

E(`)
n,q(x)

tn+`

[n]q!

=

∞∑
n=`

E
(`)
n−`,q(x)

tn

[n− `]q!

=

∞∑
n=0

[n]q!

[n− `]q!
E

(`)
n−`,q(x)

tn

[n]q!
,

where we set E`k,q(x) = 0 for k < 0. Comparing the coefficients of tn provides
the result. �

Lemma 2.5. Each of the following expansion formulas holds true:

xn =
1

[n+ 1]q

n∑
k=0

[
n+ 1
k

]
q

Bk,q(x),(2.8)
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xn =
1

2

[
En,q(x) +

n∑
k=0

[
n
k

]
q

Ek,q(x)

]
,(2.9)

and

(2.10) xn =
1

2[n+ 1]q

[
Gn+1,q(x) +

n∑
k=0

[
n+ 1
k + 1

]
q

Gk+1,q(x)

]
.

Proof. Form the generating function (1.1) with α = 1, we have

∞∑
n=0

xn
tn

[n]q!
=
eq(t)− 1

t

t

eq(t)− 1
eq(xt)

=

( ∞∑
n=0

tn

[n+ 1]q!

)( ∞∑
n=0

Bn,q(x)
tn

[n]q!

)

=

∞∑
n=0

(
n∑
k=0

[n]q!Bk,q(x)

[k]q![n+ 1− k]q!

)
tn

[n]q!

=

∞∑
n=0

(
n∑
k=0

1

[n+ 1]q

[
n+ 1
k

]
q

Bk,q(x)

)
tn

[n]q!
.

This proves the relation for q-Bernoulli polynomials. The other results are
obtained similarly.
A second proof of (2.10). It is easy to see from the generating function (1.3)
that

G(α+β)
n,q (x⊕q y) =

n∑
k=0

[
n
k

]
q

G
(α)
k,q (x)G

(β)
n−k,q(y),

which in the special case when y = 1 and β = 0, yields

(2.11) G(α)
n,q(x⊕q 1) =

n∑
k=0

[
n
k

]
q

Gαk,q(x).

Moreover,

∞∑
n=0

(Gn,q(x⊕q 1) +Gn,q(x))
tn

[n]q!
=

2t

eq(t) + 1
(eq((x⊕q 1)t) + eq(xt))

= 2teq(xt) =

∞∑
n=0

2[n+ 1]qx
n tn+1

[n+ 1]q!
,

which implies that

(2.12) Gn+1,q(x⊕q 1) +Gn+1,q(x) = 2[n+ 1]qx
n.

Combining (2.11) with α = 1 and (2.12) yields the result.
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A third proof of (2.10). Taking ` = 1 in (2.7), we obtain

En,q(x) =
1

[n+ 1]q
Gn+1,q(x).

Equation (2.9) becomes

xn =
1

2

[
1

[n+ 1]q
Gn+1,q(x) +

n∑
k=0

1

[k + 1]q

[
n
k

]
q

Gk+1,q(x)

]

=
1

2

[
1

[n+ 1]q
Gn+1,q(x) +

1

[n+ 1]q

n∑
k=0

[
n+ 1
k + 1

]
q

Gk+1,q(x)

]
,

which is the required result. �

Theorem 2.6. Let {f (α)n (x)}n∈N0
be a one-parameter sequence of q-Appell

polynomials generated by (2.1). Then each of the following addition formulas
holds true:

f (α)n (x⊕q y) =
n∑
j=0

 n∑
k=j

(−1)k−j
[
n
k

]
q

[
k
j

]
q

q(
k−j
2 )f

(α)
n−k(y)

Hj(x; q),

f (α)n (x⊕q y) =

n∑
j=0

 n∑
k=j

1

[k + 1]q

[
n
k

]
q

[
k + 1
j

]
q

f
(α)
n−k(y)

Bj,q(x),

f (α)n (x⊕q y) =
1

2

n∑
j=0

[n
j

]
q

f
(α)
n−j(y) +

n∑
k=j

[
n
k

]
q

[
k
j

]
q

f
(α)
n−k(y)

Ej,q(x),

f (α)n (x⊕q y) =
1

2

n∑
j=0

1

[j + 1]q

[n
j

]
q

f
(α)
n−j(y) +

n∑
k=j

[
n
k

]
q

[
k + 1
j + 1

]
q

Gj+1,q(x),

f (α)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

f
(α)
n−k(y)

k−j∑
`=0

[
k − j
`

]
q

a`

U (a)
j (x; q),

and

f (α)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

Sq(k, j)f
(α)
n−k(y)

 (x)j,q.(2.13)

Proof. The proof of this theorem uses (2.3), Proposition 2.3, Lemma 2.5 and
the summation formula

(2.14)

n∑
k=0

Ak

k∑
j=0

Bj =

n∑
j=0

 n∑
k=j

Ak

Bj .

�
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3. q-addition formulas involving q-hypergeometric polynomials

The basic hypergeometric or q-hypergeometric function rφs is defined by the
series

rφs

(
a1, . . ., ar

b1, . . ., bs

∣∣∣∣∣ q; z
)

:=

∞∑
k=0

(a1, . . ., ar; q)k
(b1, . . ., bs; q)k

(
(−1)kq(

k
2)
)1+s−r zk

(q; q)k
,

where

(a1, . . ., ar)k := (a1; q)k· · ·(ar; q)k,

with

(ai; q)k =


k−1∏
j=0

(1− aiqj) if k = 1, 2, 3, . . .

1 if k = 0.

For two general families of q-hypergeometric polynomials, Verma [21] derived
the following expansion formulas:

r+tφs+u

(
(ar), (ct)

(bs), (du)

∣∣∣∣∣ q; yω
)

=

∞∑
j=0

((ct), (ek); q)j
(q, (du), γqj ; q)j

yj
[
(−1)jq(

j
2)
]u+3−t−k

· t+kφu+1

(
(ctq

j), (ekq
j)

γq2j+1, (duq
j)

∣∣∣∣∣ q;yqj(u+2−t−k)

)

· r+2φs+k

(
q−j , γqj , (ar)

(bs), (ek)

∣∣∣∣∣ q;ωq
)

(3.1)

in powers of yω as given in [6, (3.7.9)] to find the solution of the inversion
problem for polynomials of the Askey scheme and its q-analogue. Here, the
notation (ar) means r parameters of the type a1, a2,. . ., ar and the notation
(arq

j) means r parameters of the form a1q
j , a2q

j ,. . ., arq
j . The method is the

following.
We choose u = t = 0, and k = 1 in (3.1). Then for ω = x and γ = 0, we

obtain

rφs

(
(ar)

(bs)

∣∣∣∣∣ q; yx
)

=

∞∑
j=0

[(−1)jq(
j
2)]2

(q; q)j
yj1φ1

(
0

0

∣∣∣∣∣ q; qjy
)

· r+1φs

(
q−j , (ar)

(bs)

∣∣∣∣∣ q; qx
)
.

Expanding the left-hand side, the coefficient of yn is

(3.2)
((ar); q)n

(q; q)n((bs); q)n

[
(−1)nq(

n
2)
]s−r+1

xn.
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Moreover, the right-hand side can be rewritten as

∞∑
j=0

∞∑
h=0

 qjh

(q; q)j

[
(−1)jq(

j
2)
]2 [(−1)hq(

h
2)
]

(q; q)h
yh+j


r+1φs

(
q−j , (ar)

(bs)

∣∣∣∣∣ q; qx
)
,

so that the coefficient of yn in this expression is now

(3.3)

n∑
`=0

(−1)n−`q2(
`
2)q(

n−`
2 )q(n−`)`

(q; q)`(q; q)n−`
r+1φs

(
q−`, (ar)

(bs)

∣∣∣∣∣ q; qx
)
.

From (3.2) and (3.3) we get

((−1)nq(
n
2))s−r(a2, . . . , ar+1; q)n

(b1, b2, . . . , bs; q)n
xn

=

n∑
k=0

(−1)k
[
n
k

]
q

q(
k
2)r+1φs

(
q−k, a2, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣ q; qx
)
,(3.4)

already given in [2, (3.3)].
It should be mentioned that until now, the coefficients aR and bS appearing

in (3.3) are independent of the summation index k. However, in some families
belonging to the Askey scheme and its q-analogue, one of the numerator pa-
rameters depends on k in the form a2 +k (Askey scheme) or a2q

k (q-analogue).
In these situations and in case of polynomials belonging to the q-analogue of
the Askey scheme, the following formula (see [2, (3.5)]) should be used:

((−1)nq(
n
2))s−r(a3, . . . , ar+1)n

(b1, b2, . . . , bs; q)n
xn

=

n∑
k=0

[
n
k

]
q

(−1)kq(
k
2)

(a2qk, a2q2k+1; q)k
r+1φs

(
q−k, a2q

k, a3, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣ q; qx
)
.(3.5)

By applying the expansion formula (2.3) and using relation (2.14), it is not
difficult to prove the following theorem.

Theorem 3.1. Let {f (µ)n (x)}n∈N0
be a one-parameter sequence of q-Appell

polynomials generated by (2.1) with the parameter α replaced by µ. Then each
of the following q-addition formulas holds true.

f (µ)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

((−1)kq(
k
2))r−s

∏s
`=1(b`; q)k∏r+1

`=2(a`; q)k
f
(µ)
n−k(y)


× (−1)jq(

j
2)r+1φs

(
q−j , a2, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣ q; qx
)

(3.6)
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and

f (µ)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

((−1)kq(
k
2))r−s

∏s
`=1(b`; q)k∏r+1

`=3(a`; q)k
f
(µ)
n−k(y)


× (−1)jq(

j
2)

(a2qj , a2q2j+1; q)j
r+1φs

(
q−j , a2q

j , a3, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣ q; qx
)
.(3.7)

Remark 3.2. Corollary 3.3 below, which involves such classical q-orthogonal
polynomials as the Little q-Laguerre, the Little q-Legendre, the Little q-Lagu-
erre, the q-Laguerre, the q-Bessel and the Stieltjes-Wigert polynomials, can
be deduced by suitably specializing Theorem 3.1 or (alternatively) by directly
applying (2.1) in conjunction with the following known polynomial expansions
(see [19]):

• the Little q-Jacobi polynomials

(3.8) xk =

k∑
j=0

[
k
j

]
q

(−1)jq(
j
2)(aq; q)k

(abqj+1; q)j(abq2j+2; q)k−j
pj(x; a, b|q).

• the Little q-Legendre polynomials

(3.9) xk =

k∑
j=0

(−1)j
[
k
j

]
q

(−1)jq(
j
2)(q; q)k

(qj+1; q)j(q2j+2; q)k−j
Pj(x|q).

• the Little q-Laguerre polynomials

(3.10) xk =

k∑
j=0

(−1)j
[
k
j

]
q

q(
j
2)(aq; q)kpj(x; a|q).

• the q-Laguerre polynomials

(3.11) xk =

k∑
j=0

(−1)j
[
k
j

]
q

q
(j−k)(2α+3j+k+1)

2
(q; q)j
qj(j+α)

(qj+α+1; q)k−jL
(α)
j (x; q).

• the q-Bessel polynomials

(3.12) xk =

k∑
j=0

[
k
j

]
q

(−1)jq(
j
2)

(−aqj ; q)j(−aq2j+1; q)k−j
yj(x; a|q).

• the Stieltjes-Wigert polynomials

(3.13) xk =

k∑
j=0

(−1)j
[
k
j

]
q

q
(j−k)(3j+k+1)

2 −j2(q; q)jSj(x; q).

Corollary 3.3. Let {f (µ)n (x)}n∈N0
be a one-parameter sequence of q-Appell

polynomials generated by (2.1) with the parameter α replaced by µ. Then each
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of the following q-addition formulas holds true.

f (µ)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

(−1)jq(
j
2)(aq; q)kf

(µ)(y)

(abqj+1; q)j(abq2j+2; q)k−j

 pj(x; a, b|q),

f (µ)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

(−1)jq(
j
2)(q; q)kf

(µ)(y)

(qj+1; q)j(q2j+2; q)k−j

Pj(x|q),

f (µ)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

(−1)jq(
j
2)(aq; q)kf

(µ)(y)

 pj(x; a|q),

f (µ)n (x⊕q y) =

n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

q
(j−k)(2α+3j+k+1)

2
(q; q)j
qj(j+α)

(qj+α+1; q)k−j


· L(α)

j (x; q),

f (µ)n (x⊕q y) =
n∑
j=0

 n∑
k=j

[
n
k

]
q

[
k
j

]
q

(−1)jq(
j
2)

(−aqj ; q)j(−aq2j+1; q)k−j

 yj(x; a|q),

and

f (µ)n (x⊕q y) =

n∑
j=0

 n∑
k=j

(−1)j
[
n
k

]
q

[
k
j

]
q

q
(j−k)(3j+k+1)

2 −j2(q; q)j

Sj(x; q).

4. A q-umbral-calculus generalization of the addition theorems

In 1978, Roman and Rota vewed the classical umbral calculus from a new
perspective and proposed an interesting approach based on a simple but inno-
vative indication for effect of linear functional on polynomials, which Roman
later called it the modern umbral calculus [17]. Roman, also, proposed a sim-
ilar approach under the area of nonclassical umbral calculus which is called
q-umbral calculus, [13–16]. In what follows, we adopt the notations of [8].

Let C be the field of complex numbers and F the set of all formal power
q-series in the variable t over C. In other words, f(t) in an element of F if

(4.1) f(t) =

∞∑
k=0

ak
[k]q!

tk,

where ak ∈ C. Let P be the algebra of all polynomials in the variable x over
C and P? be the vector space of all linear functionals on P. The formal power
series (4.1) defines a linear functional on P? by setting

(4.2) 〈f(t)|xn〉 = an (n ∈ N0).
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Lemma 4.1 (see [8]). Let {hn(x)}n∈N0
be a q-Appell sequence for the function

h(t). Then, for any polynomial p(x),

(4.3) p(x) =
∑
j≥0

〈h(t)|p(j)(x)〉
[j]q!

hj(x),

where p(j)(x) denotes the q-derivative of p(x) of order j.

Theorem 4.2. Let {fn(x)}n∈N0
and {gn(x)}n∈N be the q-Appell sequences

corresponding to the functions f(t) and g(t), respectively. Then

(4.4) fn(x⊕q y) =

n∑
k=0

[
n
k

]
q

fk(y)

n−k∑
j=0

〈g(t)|Dj
q[x

n−j ]〉
[j]q!

gj(x).

Proof. The proof follows directly from Lemma 4.1 and Proposition 2.2. �
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