q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

Patrick Nuionou Sadjang

Abstract

Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

1. Introduction

Throughout this paper, we adopt the following notations:

$$
\mathbb{N}=\{1,2,3, \ldots\}, \quad \mathbb{N}_{0}=\{0,1,2,3, \ldots\}=\mathbb{N} \cup\{0\}
$$

The classical q-Bernoulli polynomials $B_{n}(x ; q)$, the classical q-Euler polynomials $E_{n}(x ; q)$ and the classical q-Genocchi polynomials $G_{n}(x ; q)$ together with their generalizations $B_{n}^{(\alpha)}(x ; q), E_{n}^{(\alpha)}(x ; q)$ and $G_{n}^{(\alpha)}(x ; q)$ of (real or complex) order α, are usually defined by means of the following generating functions (see for details, [11], and the references therein):

$$
\begin{align*}
& \left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} B_{n, q}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!}, \quad\left(|t|<2 \pi ; \quad 1^{\alpha}:=1\right), \tag{1.1}\\
& \left(\frac{2}{e_{q}(t)+1}\right)^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} E_{n, q}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!}, \quad\left(|t|<\pi ; \quad 1^{\alpha}:=1\right), \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{2 t}{e_{q}(t)+1}\right)^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} G_{n, q}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!}, \quad\left(|t|<\pi ; \quad 1^{\alpha}:=1\right), \tag{1.3}
\end{equation*}
$$

Received September 28, 2017; Revised December 24, 2017; Accepted January 12, 2018. 2010 Mathematics Subject Classification. 33D15, 33D45, 11B68, 11B73, 11B83.
Key words and phrases. q-addition theorem, q-Appell polynomials, q-Bernoulli, q-Euler and q-Genocchi polynomials, generating functions, q-orthogonal polynomials.
so that, obviously, the q-Bernoulli polynomials $B_{n, q}(x)$, the q-Euler polynomials $E_{n, q}(x)$ and the q-Genocchi polynomials $G_{n, q}(x)$ are given respectively, by $B_{n, q}(x):=B_{n, q}^{(1)}(x), \quad E_{n, q}(x):=E_{n, q}^{(1)}(x), \quad$ and $G_{n, q}(x):=G_{n, q}^{(1)}(x), \quad\left(n \in \mathbb{N}_{0}\right)$.
For the q-Bernoulli numbers $B_{n, q}$, the q-Euler numbers $E_{n, q}$ and the q-Genocchi numbers $G_{n, q}$ of order n, we have

$$
B_{n, q}=B_{n, q}(0), \quad E_{n, q}=E_{n, q}(0), \quad \text { and } G_{n, q}=G_{n, q}(0), \quad\left(n \in \mathbb{N}_{0}\right)
$$

respectively.
The Roger Szégo polynomials $H_{n}(x ; q)$ (see [3, Eq. (1)]) and the Al-Salam Carlitz polynomials $U_{n}^{(a)}(x ; q)$ (see [9, p. 534]) are defined by the generating functions

$$
\begin{equation*}
e_{q}(t) e_{q}(x t)=\sum_{n=0}^{\infty} H_{n}(x ; q) \frac{t^{n}}{[n]_{q}!}, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e_{q}(x t)}{e_{q}(t) e_{q}(a t)}=\sum_{n=0}^{\infty} U_{n}^{(a)}(x ; q) \frac{t^{n}}{[n]_{q}!} \tag{1.5}
\end{equation*}
$$

respectively.
In these definitions, $[n]_{q}$ is the so-called q-number defined by $[7,9]$

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

e_{q} is the q-exponential function defined by $[7,9]$

$$
\begin{equation*}
e_{q}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q}!}, \tag{1.6}
\end{equation*}
$$

where $[n]_{q}$! denotes the so-called q-factorial

$$
[n]_{q}!=\prod_{k=1}^{n}[k]_{q}, \quad \text { and } \quad[0]_{q}!=1
$$

There is another q-exponential function $E_{q}(x)$ defined by [7,9]

$$
\begin{equation*}
E_{q}(x)=\sum_{k=0}^{\infty} \frac{q^{\binom{n}{2}}}{[n]_{q}!} x^{n} . \tag{1.7}
\end{equation*}
$$

Both $e_{q}(x)$ and $E_{q}(x)$ satisfy the fundamental relation $e_{q}(x) E_{q}(-x)=1$.
The q-analogue of the binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, \quad 0 \leq k \leq n
$$

here, $(q ; q)_{n}$ is the so-called q-Pochhammer symbol defined by

$$
(a ; q)_{n}=\prod_{k=1}^{n}\left(1-a q^{k}\right) \text { for } n \geq 1, \quad(a ; q)_{0}=1
$$

Various interesting and potentially useful properties and relations involving the Bernoulli, Euler, Genocchi, Roger-Szégo and Al-Salam Carlitz polynomials have been investigated in the literature.

In [12], the authors gave several addition formulas for a general class of Appell polynomials. In this work, we extend these results to a general class of q-Appell sequences.

Definition 1.1 (see [1]). A polynomial sequence $\left\{P_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ is said to be a q-Appell sequence if

$$
\begin{equation*}
D_{q} P_{0}(x)=0 \quad \text { and } \quad D_{q} P_{n}(x)=[n]_{q} P_{n-1}(x),(n \in \mathbb{N}) \tag{1.8}
\end{equation*}
$$

or equivalently, if

$$
\begin{equation*}
A(t) e_{q}(x t)=\sum_{n=0}^{\infty} P_{n}(x) \frac{t^{n}}{[n]_{q}!}, \tag{1.9}
\end{equation*}
$$

where

$$
A(t)=\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{[n]_{q}!},
$$

is a formal power series with $a_{0} \neq 0$.
From this definition, it is clear that the q-Bernoulli polynomials $B_{n, q}(x)$, the q-Euler polynomials $E_{n, q}(x)$, the q-Genocchi polynomials $G_{n, q}(x)$, the RogerSzégo polynomials $H_{n}(x ; q)$ and the Al-Salam Carlitz polynomials $U_{n}^{(a)}(x ; q)$ are q-Appell sequences. Other definitions and notations for q-Appell sequences can be found in the literature (see for example [20]).

Definition 1.2. Let a and b two real or complex numbers. Then, the Ward q-addition of a and b is given by

$$
\left(a \oplus_{q} b\right)^{n}:=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.10}\\
k
\end{array}\right]_{q} a^{k} b^{n-k}, \quad n=0,1,3, \ldots
$$

The following q-Stirling numbers will be also needed.
Definition 1.3 (see [4, p. 173]). The q-Stirling numbers of the first kind $s_{q}(n, k)$ and the q-Stirling numbers of the second kind $S_{q}(n, k)$ are defined by

$$
\begin{equation*}
(x)_{n, q}:=\sum_{k=0}^{n} s_{q}(n, k) x^{k}, \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} S_{q}(n, k)(x)_{k, q}, \tag{1.12}
\end{equation*}
$$

where the polynomial $(x)_{k, q}$ is defined by

$$
(x)_{k, q}=\prod_{m=0}^{k-1}\left(x-[m]_{q}\right)
$$

2. Some q-addition theorems

Let $\left\{f_{n}^{(\alpha)}(x)\right\}(\alpha \in \mathbb{C})$ be the one-parameter q-Appell sequence generated by

$$
\begin{equation*}
(f(t))^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} f_{n}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!}, \quad\left(f(0) \neq 0 ; \quad 1^{\alpha}=1\right) \tag{2.1}
\end{equation*}
$$

It is not difficult to see that comparing to (1.9), we have $f_{n}^{(1)}(x)=f_{n}(x)$, $\left(n \in \mathbb{N}_{0}\right)$. Also, replacing α by 0 in (2.1) and use the series expansion (1.6), we obtain

$$
f_{n}^{(0)}(x)=x^{n}, \quad n \in \mathbb{N}_{0}
$$

Now we state the following important lemma.
Lemma 2.1. For the one-parameter $\left\{f_{n}^{(\alpha)}(x)\right\}$ generated by (2.1), the following q-addition formula holds:

$$
f_{n}^{(\alpha+\beta)}\left(x \oplus_{q} y\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.2}\\
k
\end{array}\right]_{q} f_{k}^{(\alpha)}(x) f_{n-k}^{(\beta)}(y)
$$

Proof. Using the generating function (2.1), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} f_{n}^{(\alpha+\beta)}\left(x \oplus_{q} y\right) \frac{t^{n}}{[n]_{q}!} & =(f(t))^{\alpha+\beta} e_{q}((x \oplus y) t) \\
& \left.=(f(t))^{\alpha} e_{q}(x t)\right) \times(f(t))^{\beta} e_{q}(y t) \\
& =\left(\sum_{n=0}^{\infty} f_{n}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} f_{n}^{(\beta)}(y) \frac{t^{n}}{[n]_{q}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} f_{k}^{(\alpha)}(x) f_{n-k}^{(\beta)}(y)\right) \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

This proves the lemma.
As a direct consequence of this lemma the following proposition holds.

Proposition 2.2. For the one-parameter $\left\{f_{n}^{(\alpha)}(x)\right\}$ generated by (2.1), the following q-addition equation applies

$$
f_{n}^{(\alpha)}\left(x \oplus_{q} y\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.3}\\
k
\end{array}\right]_{q} f_{n-k}^{(\alpha)}(y) x^{k}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} f_{k}^{(\alpha)}(y) x^{n-k} .
$$

Next, we need the following inversion formulas for the Roger-Szégo and the Al-Salam Carlitz polynomials.

Proposition 2.3 (see [1,19]). The following inversion formulas hold for the Roger-Szégo polynomials $H_{k}(x ; q)$ and the Al-Salam Carlitz polynomials $U_{n}^{(a)}$ $(x ; q)$:

$$
\begin{align*}
& x^{n}=\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{\left({ }^{(-k}\right)} H_{k}(x ; q), \tag{2.4}\\
& (x \ominus 1)_{q}^{n}=\sum_{k=0}^{n} a^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} U_{k}^{(a)}(x ; q), \tag{2.5}\\
& x^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left(\sum_{i=0}^{n-k}\left[\begin{array}{c}
n-k \\
i
\end{array}\right]_{q} a^{i}\right) U_{k}^{(a)}(x ; q) \text {. } \tag{2.6}
\end{align*}
$$

Proof. From the generating function (1.4), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{[n]_{q}!} & =E_{q}(-t) e_{q}(t) e_{q}(x t) \\
& =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n}{2}}}{[n]_{q}!} t^{n}\right)\left(\sum_{n=0}^{\infty} H_{n}(x ; q) \frac{t^{n}}{[n]_{q}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{(n-k} 2^{(k)} H_{k}(x ; q)\right) \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

This prove the first equation. For the second one, we first remark that [18, (5.19)]

$$
(x \ominus y)_{q}^{n}=\sum_{k=0}^{n}(-y)^{n-k} q^{\binom{n-k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k} .
$$

Next, taking into account that $e_{q}(x) E_{q}(-x)=1$ and multiplying the generating function (1.5) by $e_{q}(a t)$, the left-hand side gives

$$
\begin{aligned}
\frac{e_{q}(x t)}{e_{q}(t)} & =e_{q}(x t) E_{q}(-t) \\
& =\left(\sum_{k=0}^{\infty} \frac{x^{n} t^{n}}{[n]_{q}!}\right)\left(\sum_{k=0}^{\infty} \frac{q^{\binom{n}{2}}}{[n]_{q}!}(-t)^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(-1)^{n-k} q^{\binom{n-k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k}\right) \frac{t^{n}}{[n]_{q}!} \\
& =\sum_{n=0}^{\infty}(x \ominus 1)_{q}^{n} \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

the right-hand side gives

$$
\begin{aligned}
e_{q}(a t) \sum_{n=0}^{\infty} U_{n}^{(a)}(x ; q) \frac{t^{n}}{[n]_{q}!} & =\left(\sum_{n=0}^{\infty} a^{n} \frac{t^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} U_{n}^{(a)}(x ; q) \frac{t^{n}}{[n]_{q}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a^{n-k}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} U_{k}^{(a)}(x ; q)\right) \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

Hence we have

$$
\sum_{n=0}^{\infty}(x \ominus 1)_{q}^{n} \frac{t^{n}}{[n]_{q}!}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} U_{k}^{(a)}(x ; q)\right) \frac{t^{n}}{[n]_{q}!}
$$

So (2.5) is proved. Note that this result is proved in [19] using the Verma's q-extension [21] of Filds and Wimp inversion formula [5].

Lemma 2.4 (q-Analogue of [10, p. 5707, Lemma 2]). The following relation between the q-Genocchi polynomials and the q-Euler polynomials holds true:

$$
\begin{equation*}
E_{n, q}^{(\ell)}(x)=\frac{[n]_{q}!}{[n+\ell]_{q}!} G_{n+\ell, q}^{(\ell)}(x), \quad n, \ell \in \mathbb{N}_{0}, \quad 0 \leq \ell \leq n \tag{2.7}
\end{equation*}
$$

Proof. Let ℓ such that $0 \leq \ell \leq n$. Then, from the generating functions (1.2) and (1.3), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} G_{n, q}^{(\ell)}(x) \frac{t^{n}}{[n]_{q}!} & =t^{\ell}\left(\frac{2}{e_{q}(t)+1}\right)^{\ell} e_{q}(x t) \\
& =\sum_{n=0}^{\infty} E_{n, q}^{(\ell)}(x) \frac{t^{n+\ell}}{[n]_{q}!} \\
& =\sum_{n=\ell}^{\infty} E_{n-\ell, q}^{(\ell)}(x) \frac{t^{n}}{[n-\ell]_{q}!} \\
& =\sum_{n=0}^{\infty} \frac{[n]_{q}!}{[n-\ell]_{q}!} E_{n-\ell, q}^{(\ell)}(x) \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

where we set $E_{k, q}^{\ell}(x)=0$ for $k<0$. Comparing the coefficients of t^{n} provides the result.

Lemma 2.5. Each of the following expansion formulas holds true:

$$
x^{n}=\frac{1}{[n+1]_{q}} \sum_{k=0}^{n}\left[\begin{array}{c}
n+1 \tag{2.8}\\
k
\end{array}\right]_{q} B_{k, q}(x)
$$

$$
x^{n}=\frac{1}{2}\left[E_{n, q}(x)+\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.9}\\
k
\end{array}\right]_{q} E_{k, q}(x)\right],
$$

and

$$
x^{n}=\frac{1}{2[n+1]_{q}}\left[G_{n+1, q}(x)+\sum_{k=0}^{n}\left[\begin{array}{l}
n+1 \tag{2.10}\\
k+1
\end{array}\right]_{q} G_{k+1, q}(x)\right] .
$$

Proof. Form the generating function (1.1) with $\alpha=1$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{[n]_{q}!} & =\frac{e_{q}(t)-1}{t} \frac{t}{e_{q}(t)-1} e_{q}(x t) \\
& =\left(\sum_{n=0}^{\infty} \frac{t^{n}}{[n+1]_{q}!}\right)\left(\sum_{n=0}^{\infty} B_{n, q}(x) \frac{t^{n}}{[n]_{q}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{[n]_{q}!B_{k, q}(x)}{[k]_{q}![n+1-k]_{q}!}\right) \frac{t^{n}}{[n]_{q}!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{[n+1]_{q}}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q} B_{k, q}(x)\right) \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

This proves the relation for q-Bernoulli polynomials. The other results are obtained similarly.
A second proof of (2.10). It is easy to see from the generating function (1.3) that

$$
G_{n, q}^{(\alpha+\beta)}\left(x \oplus_{q} y\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} G_{k, q}^{(\alpha)}(x) G_{n-k, q}^{(\beta)}(y),
$$

which in the special case when $y=1$ and $\beta=0$, yields

$$
G_{n, q}^{(\alpha)}\left(x \oplus_{q} 1\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.11}\\
k
\end{array}\right]_{q} G_{k, q}^{\alpha}(x)
$$

Moreover,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(G_{n, q}\left(x \oplus_{q} 1\right)+G_{n, q}(x)\right) \frac{t^{n}}{[n]_{q}!} & =\frac{2 t}{e_{q}(t)+1}\left(e_{q}\left(\left(x \oplus_{q} 1\right) t\right)+e_{q}(x t)\right) \\
& =2 t e_{q}(x t)=\sum_{n=0}^{\infty} 2[n+1]_{q} x^{n} \frac{t^{n+1}}{[n+1]_{q}!},
\end{aligned}
$$

which implies that

$$
\begin{equation*}
G_{n+1, q}\left(x \oplus_{q} 1\right)+G_{n+1, q}(x)=2[n+1]_{q} x^{n} . \tag{2.12}
\end{equation*}
$$

Combining (2.11) with $\alpha=1$ and (2.12) yields the result.

A third proof of (2.10). Taking $\ell=1$ in (2.7), we obtain

$$
E_{n, q}(x)=\frac{1}{[n+1]_{q}} G_{n+1, q}(x) .
$$

Equation (2.9) becomes

$$
\begin{aligned}
x^{n} & =\frac{1}{2}\left[\frac{1}{[n+1]_{q}} G_{n+1, q}(x)+\sum_{k=0}^{n} \frac{1}{[k+1]_{q}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} G_{k+1, q}(x)\right] \\
& =\frac{1}{2}\left[\frac{1}{[n+1]_{q}} G_{n+1, q}(x)+\frac{1}{[n+1]_{q}} \sum_{k=0}^{n}\left[\begin{array}{l}
n+1 \\
k+1
\end{array}\right]_{q} G_{k+1, q}(x)\right],
\end{aligned}
$$

which is the required result.
Theorem 2.6. Let $\left\{f_{n}^{(\alpha)}(x)\right\}_{n \in \mathbb{N}_{0}}$ be a one-parameter sequence of q-Appell polynomials generated by (2.1). Then each of the following addition formulas holds true:

$$
\begin{aligned}
& f_{n}^{(\alpha)}\left(x \oplus_{q} y\right)=\sum_{j=0}^{n}\left[\sum_{k=j}^{n}(-1)^{k-j}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} q^{\left(k^{k-j}\right)} f_{n-k}^{(\alpha)}(y)\right] H_{j}(x ; q), \\
& f_{n}^{(\alpha)}\left(x \oplus_{q} y\right)=\sum_{j=0}^{n}\left[\sum_{k=j}^{n} \frac{1}{[k+1]_{q}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k+1 \\
j
\end{array}\right]_{q} f_{n-k}^{(\alpha)}(y)\right] B_{j, q}(x), \\
& f_{n}^{(\alpha)}\left(x \oplus_{q} y\right)=\frac{1}{2} \sum_{j=0}^{n}\left[\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q} f_{n-j}^{(\alpha)}(y)+\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} f_{n-k}^{(\alpha)}(y)\right] E_{j, q}(x), \\
& \left.f_{n}^{(\alpha)}\left(x \oplus_{q} y\right)=\frac{1}{2} \sum_{j=0}^{n} \frac{1}{[j+1]_{q}}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} f_{n-j}^{(\alpha)}(y)+\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k+1 \\
j+1
\end{array}\right]_{q}\right] G_{j+1, q}(x), \\
& f_{n}^{(\alpha)}\left(x \oplus_{q} y\right)=\sum_{j=0}^{n}\left[\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} f_{n-k}^{(\alpha)}(y) \sum_{\ell=0}^{k-j}\left[\begin{array}{c}
k-j \\
\ell
\end{array}\right]_{q} a^{\ell}\right] U_{j}^{(a)}(x ; q),
\end{aligned}
$$

and

$$
f_{n}^{(\alpha)}\left(x \oplus_{q} y\right)=\sum_{j=0}^{n}\left[\sum_{k=j}^{n}\left[\begin{array}{l}
n \tag{2.13}\\
k
\end{array}\right]_{q} S_{q}(k, j) f_{n-k}^{(\alpha)}(y)\right](x)_{j, q} .
$$

Proof. The proof of this theorem uses (2.3), Proposition 2.3, Lemma 2.5 and the summation formula

$$
\begin{equation*}
\sum_{k=0}^{n} A_{k} \sum_{j=0}^{k} B_{j}=\sum_{j=0}^{n}\left(\sum_{k=j}^{n} A_{k}\right) B_{j} . \tag{2.14}
\end{equation*}
$$

3. q-addition formulas involving q-hypergeometric polynomials

The basic hypergeometric or q-hypergeometric function ${ }_{r} \phi_{s}$ is defined by the series

$$
{ }_{r} \phi_{s}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} \right\rvert\, q ; z\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{k}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{1+s-r} \frac{z^{k}}{(q ; q)_{k}},
$$

where

$$
\left(a_{1}, \ldots, a_{r}\right)_{k}:=\left(a_{1} ; q\right)_{k} \cdots\left(a_{r} ; q\right)_{k},
$$

with

$$
\left(a_{i} ; q\right)_{k}= \begin{cases}\prod_{j=0}^{k-1}\left(1-a_{i} q^{j}\right) & \text { if } k=1,2,3, \ldots \\ 1 & \text { if } k=0\end{cases}
$$

For two general families of q-hypergeometric polynomials, Verma [21] derived the following expansion formulas:

$$
\begin{aligned}
{ }_{r+t} \phi_{s+u}\left(\left.\begin{array}{c}
\left(a_{r}\right),\left(c_{t}\right) \\
\left(b_{s}\right),\left(d_{u}\right)
\end{array} \right\rvert\, q ; y \omega\right)= & \sum_{j=0}^{\infty} \frac{\left(\left(c_{t}\right),\left(e_{k}\right) ; q\right)_{j}}{\left(q,\left(d_{u}\right), \gamma q^{j} ; q\right)_{j}} y^{j}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{u+3-t-k} \\
& \cdot{ }_{t+k} \phi_{u+1}\left(\left.\begin{array}{c}
\left(c_{t} q^{j}\right),\left(e_{k} q^{j}\right) \\
\gamma q^{2 j+1},\left(d_{u} q^{j}\right)
\end{array} \right\rvert\, q ; y q^{j(u+2-t-k)}\right) \\
(3.1) \quad & \cdot{ }_{r+2} \phi_{s+k}\left(\left.\begin{array}{c}
q^{-j}, \gamma q^{j},\left(a_{r}\right) \\
\left(b_{s}\right),\left(e_{k}\right)
\end{array} \right\rvert\, q ; \omega q\right)
\end{aligned}
$$

in powers of $y \omega$ as given in [6, (3.7.9)] to find the solution of the inversion problem for polynomials of the Askey scheme and its q-analogue. Here, the notation $\left(a_{r}\right)$ means r parameters of the type $a_{1}, a_{2}, \ldots, a_{r}$ and the notation $\left(a_{r} q^{j}\right)$ means r parameters of the form $a_{1} q^{j}, a_{2} q^{j}, \ldots, a_{r} q^{j}$. The method is the following.

We choose $u=t=0$, and $k=1$ in (3.1). Then for $\omega=x$ and $\gamma=0$, we obtain

$$
\begin{aligned}
{ }_{r} \phi_{s}\left(\left.\begin{array}{c}
\left(a_{r}\right) \\
\left(b_{s}\right)
\end{array} \right\rvert\, q ; y x\right)= & \sum_{j=0}^{\infty} \frac{\left[(-1)^{j} q^{\left(\frac{j}{2}\right)}\right]^{2}}{(q ; q)_{j}} y^{j}{ }_{1} \phi_{1}\left(\left.\begin{array}{c}
0 \\
0
\end{array} \right\rvert\, q ; q^{j} y\right) \\
& \cdot{ }_{r+1} \phi_{s}\left(\left.\begin{array}{c}
q^{-j},\left(a_{r}\right) \\
\left(b_{s}\right)
\end{array} \right\rvert\, q ; q x\right) .
\end{aligned}
$$

Expanding the left-hand side, the coefficient of y^{n} is

$$
\begin{equation*}
\frac{\left(\left(a_{r}\right) ; q\right)_{n}}{(q ; q)_{n}\left(\left(b_{s}\right) ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{s-r+1} x^{n} . \tag{3.2}
\end{equation*}
$$

Moreover, the right-hand side can be rewritten as

$$
\sum_{j=0}^{\infty} \sum_{h=0}^{\infty}\left(\frac{q^{j h}}{(q ; q)_{j}}\left[(-1)^{j} q^{\binom{j}{2}}\right]^{2} \frac{\left[(-1)^{h} q^{\binom{h}{2}}\right]}{(q ; q)_{h}} y^{h+j}\right){ }_{r+1} \phi_{s}\left(\begin{array}{c}
q^{-j},\left(a_{r}\right) \\
\left(b_{s}\right)
\end{array} q ; q x\right)
$$

so that the coefficient of y^{n} in this expression is now

$$
\sum_{\ell=0}^{n} \frac{(-1)^{n-\ell} q^{2\binom{\ell}{2}} q^{\binom{n-\ell}{2}} q^{(n-\ell) \ell}}{(q ; q)_{\ell}(q ; q)_{n-\ell}} r+1 \phi_{s}\left(\left.\begin{array}{c}
q^{-\ell},\left(a_{r}\right) \tag{3.3}\\
\left(b_{s}\right)
\end{array} \right\rvert\, q ; q x\right)
$$

From (3.2) and (3.3) we get

$$
\begin{align*}
& \frac{\left((-1)^{n} q^{\binom{n}{2}}\right)^{s-r}\left(a_{2}, \ldots, a_{r+1} ; q\right)_{n}}{\left(b_{1}, b_{2}, \ldots, b_{s} ; q\right)_{n}} x^{n} \\
= & \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} q^{\binom{k}{2}_{r+1} \phi_{s}}\left(\left.\begin{array}{c}
q^{-k}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} \right\rvert\, q ; q x\right), \tag{3.4}
\end{align*}
$$

already given in $[2,(3.3)]$.
It should be mentioned that until now, the coefficients a_{R} and b_{S} appearing in (3.3) are independent of the summation index k. However, in some families belonging to the Askey scheme and its q-analogue, one of the numerator parameters depends on k in the form $a_{2}+k$ (Askey scheme) or $a_{2} q^{k}$ (q-analogue). In these situations and in case of polynomials belonging to the q-analogue of the Askey scheme, the following formula (see [2, (3.5)]) should be used:

$$
\begin{aligned}
& \frac{\left((-1)^{n} q^{\binom{n}{2}}\right)^{s-r}\left(a_{3}, \ldots, a_{r+1}\right)_{n}}{\left(b_{1}, b_{2}, \ldots, b_{s} ; q\right)_{n}} x^{n} \\
(3.5)= & \sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} \frac{(-1)^{k} q^{\binom{k}{2}}}{\left(a_{2} q^{k}, a_{2} q^{2 k+1} ; q\right)_{k}} r+1 \phi_{s}\left(\left.\begin{array}{c}
q^{-k}, a_{2} q^{k}, a_{3}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} \right\rvert\, q ; q x\right) .
\end{aligned}
$$

By applying the expansion formula (2.3) and using relation (2.14), it is not difficult to prove the following theorem.

Theorem 3.1. Let $\left\{f_{n}^{(\mu)}(x)\right\}_{n \in \mathbb{N}_{0}}$ be a one-parameter sequence of q-Appell polynomials generated by (2.1) with the parameter α replaced by μ. Then each of the following q-addition formulas holds true.

$$
\begin{align*}
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)= & \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} \frac{\left((-1)^{k} q^{\binom{k}{2}}\right)^{r-s} \prod_{\ell=1}^{s}\left(b_{\ell} ; q\right)_{k}}{\prod_{\ell=2}^{r+1}\left(a_{\ell} ; q\right)_{k}} f_{n-k}^{(\mu)}(y)\right) \\
& \times(-1)^{j} q^{\binom{j}{2}}{ }_{r+1} \phi_{s}\left(\left.\begin{array}{c}
q^{-j}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} \right\rvert\, q ; q x\right) \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)= & \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} \frac{\left((-1)^{k} q^{\binom{k}{2}}\right)^{r-s} \prod_{\ell=1}^{s}\left(b_{\ell} ; q\right)_{k}}{\prod_{\ell=3}^{r+1}\left(a_{\ell} ; q\right)_{k}} f_{n-k}^{(\mu)}(y)\right) \\
& \times \frac{(-1)^{j} q^{\binom{j}{2}}}{\left(a_{2} q^{j}, a_{2} q^{2 j+1} ; q\right)_{j}}{ }^{r+1} \phi_{s}\left(\left.\begin{array}{c}
q^{-j}, a_{2} q^{j}, a_{3}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} \right\rvert\, q ; q x\right) . \tag{3.7}
\end{align*}
$$

Remark 3.2. Corollary 3.3 below, which involves such classical q-orthogonal polynomials as the Little q-Laguerre, the Little q-Legendre, the Little q-Laguerre, the q-Laguerre, the q-Bessel and the Stieltjes-Wigert polynomials, can be deduced by suitably specializing Theorem 3.1 or (alternatively) by directly applying (2.1) in conjunction with the following known polynomial expansions (see [19]):

- the Little q-Jacobi polynomials

$$
x^{k}=\sum_{j=0}^{k}\left[\begin{array}{c}
k \tag{3.8}\\
j
\end{array}\right]_{q} \frac{(-1)^{j} q^{\binom{j}{2}}(a q ; q)_{k}}{\left(a b q^{j+1} ; q\right)_{j}\left(a b q^{2 j+2} ; q\right)_{k-j}} p_{j}(x ; a, b \mid q) .
$$

- the Little q-Legendre polynomials

$$
x^{k}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{c}
k \tag{3.9}\\
j
\end{array}\right]_{q} \frac{(-1)^{j} q^{\binom{j}{2}}(q ; q)_{k}}{\left(q^{j+1} ; q\right)_{j}\left(q^{2 j+2} ; q\right)_{k-j}} P_{j}(x \mid q) .
$$

- the Little q-Laguerre polynomials

$$
x^{k}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{l}
k \tag{3.10}\\
j
\end{array}\right]_{q} q^{\binom{j}{2}}(a q ; q)_{k} p_{j}(x ; a \mid q) .
$$

- the q-Laguerre polynomials

$$
x^{k}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{c}
k \tag{3.11}\\
j
\end{array}\right]_{q} q^{\frac{(j-k)(2 \alpha+3 j+k+1)}{2}} \frac{(q ; q)_{j}}{q^{j(j+\alpha)}}\left(q^{j+\alpha+1} ; q\right)_{k-j} L_{j}^{(\alpha)}(x ; q)
$$

- the q-Bessel polynomials

$$
x^{k}=\sum_{j=0}^{k}\left[\begin{array}{c}
k \tag{3.12}\\
j
\end{array}\right]_{q} \frac{(-1)^{j} q^{\binom{j}{2}}}{\left(-a q^{j} ; q\right)_{j}\left(-a q^{2 j+1} ; q\right)_{k-j}} y_{j}(x ; a \mid q) .
$$

- the Stieltjes-Wigert polynomials

$$
x^{k}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{l}
k \tag{3.13}\\
j
\end{array}\right]_{q} q^{\frac{(j-k)(3 j+k+1)}{2}-j^{2}}(q ; q)_{j} S_{j}(x ; q) .
$$

Corollary 3.3. Let $\left\{f_{n}^{(\mu)}(x)\right\}_{n \in \mathbb{N}_{0}}$ be a one-parameter sequence of q-Appell polynomials generated by (2.1) with the parameter α replaced by μ. Then each
of the following q-addition formulas holds true.

$$
\begin{aligned}
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)= & \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} \frac{(-1)^{j} q^{\binom{j}{2}}(a q ; q)_{k} f^{(\mu)}(y)}{\left(a b q^{j+1} ; q\right)_{j}\left(a b q^{2 j+2} ; q\right)_{k-j}}\right) p_{j}(x ; a, b \mid q), \\
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)= & \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} \frac{(-1)^{j} q^{\binom{j}{2}}(q ; q)_{k} f^{(\mu)}(y)}{\left(q^{j+1} ; q\right)_{j}\left(q^{2 j+2} ; q\right)_{k-j}}\right) P_{j}(x \mid q), \\
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)= & \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q}(-1)^{j} q^{\left.\left(\frac{j}{2}\right)(a q ; q)_{k} f^{(\mu)}(y)\right) p_{j}(x ; a \mid q),}\right. \\
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)= & \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} q^{\frac{(j-k)(2 \alpha+3 j+k+1)}{2}} \frac{(q ; q)_{j}}{q^{j(j+\alpha)}}\left(q^{j+\alpha+1} ; q\right)_{k-j}\right) \\
& \cdot L_{j}^{(\alpha)}(x ; q), \\
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)= & \sum_{j=0}^{n}\left(\sum_{k=j}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{l}
k \\
j
\end{array}\right]_{q} \frac{(-1)^{j} q^{\left(\frac{j}{2}\right)}}{\left(-a q^{j} ; q\right)_{j}\left(-a q^{2 j+1} ; q\right)_{k-j}}\right) y_{j}(x ; a \mid q),
\end{aligned}
$$

and

$$
f_{n}^{(\mu)}\left(x \oplus_{q} y\right)=\sum_{j=0}^{n}\left(\sum_{k=j}^{n}(-1)^{j}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q} q^{\frac{(j-k)(3 j+k+1)}{2}-j^{2}}(q ; q)_{j}\right) S_{j}(x ; q)
$$

4. A \boldsymbol{q}-umbral-calculus generalization of the addition theorems

In 1978, Roman and Rota vewed the classical umbral calculus from a new perspective and proposed an interesting approach based on a simple but innovative indication for effect of linear functional on polynomials, which Roman later called it the modern umbral calculus [17]. Roman, also, proposed a similar approach under the area of nonclassical umbral calculus which is called q-umbral calculus, [13-16]. In what follows, we adopt the notations of [8].

Let \mathbb{C} be the field of complex numbers and \mathcal{F} the set of all formal power q-series in the variable t over \mathbb{C}. In other words, $f(t)$ in an element of \mathcal{F} if

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} \frac{a_{k}}{[k]_{q}!} t^{k} \tag{4.1}
\end{equation*}
$$

where $a_{k} \in \mathbb{C}$. Let \mathcal{P} be the algebra of all polynomials in the variable x over \mathbb{C} and \mathcal{P}^{\star} be the vector space of all linear functionals on \mathcal{P}. The formal power series (4.1) defines a linear functional on \mathcal{P}^{\star} by setting

$$
\begin{equation*}
\left\langle f(t) \mid x^{n}\right\rangle=a_{n} \quad\left(n \in \mathbb{N}_{0}\right) \tag{4.2}
\end{equation*}
$$

Lemma 4.1 (see [8]). Let $\left\{h_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ be a q-Appell sequence for the function $h(t)$. Then, for any polynomial $\mathfrak{p}(x)$,

$$
\begin{equation*}
\mathfrak{p}(x)=\sum_{j \geq 0} \frac{\left\langle h(t) \mid \mathfrak{p}^{(j)}(x)\right\rangle}{[j]_{q}!} h_{j}(x) \tag{4.3}
\end{equation*}
$$

where $\mathfrak{p}^{(j)}(x)$ denotes the q-derivative of $\mathfrak{p}(x)$ of order j.
Theorem 4.2. Let $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{g_{n}(x)\right\}_{n \in \mathbb{N}}$ be the q-Appell sequences corresponding to the functions $f(t)$ and $g(t)$, respectively. Then

$$
f_{n}\left(x \oplus_{q} y\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{4.4}\\
k
\end{array}\right]_{q} f_{k}(y) \sum_{j=0}^{n-k} \frac{\left\langle g(t) \mid D_{q}^{j}\left[x^{n-j}\right]\right\rangle}{[j]_{q}!} g_{j}(x) .
$$

Proof. The proof follows directly from Lemma 4.1 and Proposition 2.2.
Acknowledgments. This work was supported by the Institute of Mathematics of the University of Kassel to whom I am very grateful. I also thank very much the anonymous referee for his valuable comments that improve considerably the quality of this paper.

References

[1] W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl. (4) 77 (1967), 31-45.
[2] I. Area, E. Godoy, A. Ronveaux, and A. Zarzo, Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas, J. Comput. Appl. Math. 133 (2001), no. 1-2, 151-162.
[3] N. M. Atakishiyev and Sh. M. Nagiyev, On the Rogers-Szegő polynomials, J. Phys. A 27 (1994), no. 17, L611-L615.
[4] T. Ernst, A Comprehensive Treatment of q-Calculus, Birkhäuser/Springer Basel AG, Basel, 2012.
[5] J. L. Fields and J. Wimp, Expansions of hypergeometric functions in hypergeometric functions, Math. Comp. 15 (1961), 390-395.
[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990.
[7] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[8] M. E. Keleshteri and N. I. Mahmudov, A q-umbral approach to q-Appell polynomials, https://arxiv.org/abs/1505.05067.
[9] R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and their q-Analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
[10] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput. 217 (2011), no. 12, 5702-5728.
[11] N. I. Mahmudov, A new class of generalized Bernoulli polynomials and Euler polynomials. https://arxiv.org/abs/1201.6633.
[12] Á. Pintér and H. M. Srivastava, Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math. 85 (2013), no. 3, 483495.
[13] S. Roman, The theory of the umbral calculus. I, J. Math. Anal. Appl. 87 (1982), no. 1, 58-115.
[14] , 290-314.
[15] , The theory of the umbral calculus. III, J. Math. Anal. Appl. 95 (1983), no. 2, 528-563.
[16] , More on the umbral calculus, with emphasis on the q-umbral calculus, J. Math. Anal. Appl. 107 (1985), no. 1, 222-254.
[17] S. M. Roman and G.-C. Rota, The Umbral Calculus, Advances in Math. 27 (1978), no. 2, 95-188.
[18] P. Njionou Sadjang, Moments of classical orthogonal polynomials, Ph.D thesis, Universität Kassel, 2013; Available at http://nbn-resolving.de/urn:nbn:de:hebis:342013102244291.
[19] P. Njionou Sadjang, W. Koepf, and M. Foupouagnigni, On moments of classical orthogonal polynomials, J. Math. Anal. Appl. 424 (2015), no. 1, 122-151.
[20] A. Sharma and A. M. Chak, The basic analogue of a class of polynomials, Riv. Mat. Univ. Parma 5 (1954), 325-337.
[21] A. Verma, Certain expansions of the basic hypergeometric functions, Math. Comp. 20 (1966), 151-157.

Patrick Njionou Sadjang
Faculty of Industrial Engineering
University of Douala
Douala, Cameroon
Email address: pnjionou@yahoo.fr

