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Abstract. In this paper, we study some properties of the generalized Apostol type

Hermite-based polynomials. which extend some known results. We also deduce some

properties of the generalized Apostol-Bernoulli polynomials, the generalized Apostol-Euler

polynomials and the generalized Apostol-Genocchi polynomials of high order. Numer-

ous properties of these polynomials and some relationships between F
(α)
n (x; λ; µ, ν, c) and

HF
(α)
n (x, y; λ; µ, ν, c) are established. Some implicit summation formulae and general sym-

metry identities are derived by using different analytical means and applying generating

functions.

1. Introduction

The generalized Bernoulli polynomials B
(α)
n (x) of order αεC, the generalized

Euler polynomials E
(α)
n (x) of order αεC and the generalized Genocchi polynomials

G
(α)
n (x) of order αεC, each of degree n as well as in α, are defined respectively by

the following generating function (see,[1, vol.3.p.253 et seq.], [23, Section 2.8] and
[16]):

(1.1)
(

t

et − 1

)α

ext =
∞∑

n=0

B(α)
n (x)

tn

n!
, (|t| < 2π, 1α = 1)

(1.2)
(

2
et + 1

)α

ext =
∞∑

n=0

E(α)
n (x)

tn

n!
, (|t| < π, 1α = 1)
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and

(1.3)
(

2t

et + 1

)α

ext =
∞∑

n=0

G(α)
n (x)

tn

n!
, (|t| < π, 1α = 1)

The literature contains a large number of interesting properties and relationships
involving these polynomials [1,4,5,11,12,24]. Q.M. Luo and Srivastava([18,20]) in-
troduced the generalized Apostol-Bernoulli polynomials B

(α)
n (x) of order α, Q.M.

Luo [15] investigated the generalized Apostol-Euler polynomials E
(α)
n (x) of order

α and the generalized Apostol-Genocchi polynomials G
(α)
n (x) of order α (see also

[16,17,19]).

The generalized Apostol-Bernoulli polynomials B
(α)
n (x; λ; ) of order αεC, the

generalized Apostol-Euler polynomials E
(α)
n (x; λ) of order αεC and the generalized

Apostol-Genocchi polynomials G
(α)
n (x; λ) of order αεC, are defined respectively by

the following generating function

(1.4)
(

t

λet − 1

)α

ext =
∞∑

n=0

B(α)
n (x; λ)

tn

n!
, (|t + ln λ| < 2π, 1α = 1)

(1.5)
(

2
λet + 1

)α

ext =
∞∑

n=0

E(α)
n (x; λ)

tn

n!
, (|t + ln λ| < π, 1α = 1)

and

(1.6)
(

2t

λet + 1

)α

ext =
∞∑

n=0

G(α)
n (x; λ)

tn

n!
, (|t + ln λ| < π, 1α = 1)

It is easy to see that

B(α)
n (x) = B(α)

n (x; 1), E(α)
n (x) = E(α)

n (x; 1)andG(α)
n (x) = G(α)

n (x; 1)

In [8,9] Srivastava et al have investigated some new classes of Apostol-Bernoulli,
Apostol-Euler and Apostol-Genocchi polynomials with parameters a,b and c defined
by the following generating functions.

Definition 1.1. Let a, b, cεR+, a 6= b and nεN0. The generalized Apostol-Bernoulli
polynomials B

(α)
n (x; λ; a, b, c) of order α, the generalized Apostol-Euler polynomi-

als E
(α)
n (x;λ; a, b, c) of order α and the generalized generalized Apostol-Genocchi

polynomials G
(α)
n (x; λ; a, b, c) of order α are defined respectively by the following

generating functions

(1.7)
(

t

λbt − at

)α

cxt =
∞∑

n=0

B(α)
n (x; λ; a, b, c)

tn

n!
, (| t ln(

a

b
) + lnλ |< 2π, 1α = 1)
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(1.8)
(

2
λbt + at

)α

cxt =
∞∑

n=0

E(α)
n (x; λ; a, b, c)

tn

n!
, (| t ln(

a

b
) + lnλ |< π, 1α = 1)

and

(1.9)
(

t

λbt + at

)α

cxt =
∞∑

n=0

G(α)
n (x; λ; a, b, c)

tn

n!
, (| t ln(

a

b
) + lnλ |< π, 1α = 1)

If we take a=1, b=c=e in (1.7), (1.8) and (1.9) respectively, we have (1.4), (1.5)
and (1.6). Obviously when we set λ = 1, α = 1, b=c=e in (1.7), (1.8) and (1.9), we
have classical Bernoulli polynomials Bn(x), classical Euler polynomials Gn(x) and
classical Genocchi polynomials Gn(x).

Recently, Luo and Srivastava [2] introduced a unification (and generalization)
of the above-mentioned three families of the generalized Apostol type polynomials.

Definition 1.2. The generalized Apostol type polynomials F
(α)
n (x; λ; µ, ν)

(αεN0, µ, νεC) of order α are defined by means of the following generating function

(1.10)
(

2µtν

λet + 1

)α

ext =
∞∑

n=0

F (α)
n (x;λ; µ, ν)

tn

n!
, (|t| < | log(−λ)|)

where

(1.11) F (α)
n (λ; µ, ν) = F (α)

n (0; λ; µ, ν)

denote the so called Apostol type numbers of order α.
So that by comparing equations (1.4), (1.5) and (1.6), we have

(1.12) B(α)
n (x; λ) = (−1)αF (α)

n (x;−λ; 0, 1)

(1.13) E(α)
n (x;λ) = F (α)

n (x; λ; 1, 0)

(1.14) G(α)
n (x; λ) = F (α)

n (x; λ; 1, 1)

Definition 1.3. Let c > 0. The generalized 2-variable 1-parameter Hermite
Kamp’e de Feriet polynomials Hn(x, y, c) for nonnegative integer n are defined by

(1.15) cxt+yt2 =
∞∑

n=0

Hn(x, y, c)
tn

n!

This is an extended 2-variable Hermite Kamp’e de Feriet polynomials Hn(x, y) (see
[3]) defined by

(1.16) ext+yt2 =
∞∑

n=0

Hn(x, y)
tn

n!
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Note that
Hn(x, y, e) = Hn(x, y)

In order to collect the powers of t we expand the left hand side of (1.15) to get the
representation

(1.17) Hn(x, y, c) =
[ n
2 ]∑

j=0

(
n
j

)
(ln c)n−jxn−2jyj

In this paper, we first give definitions of the generalized Apostol type polynomials
F

(α)
n (x; λ; u, ν, c). which generalize the concepts stated above and then research their

basic properties and relationships with Apostol type polynomials F
(α)
n (x;λ; u, ν, c)

and generalized Apostol type Hermite-Based polynomials
HF

(α)
n (x, y;λ; u, ν, c) of Lu et al [2]. Some implicit summation formulae and general

symmetry identities are derived by using different analytical means and applying
generating functions. These results extend some known summations and identities
of generalized Apostol type Hermite-Bernoulli, Euler and Genocchi polynomials
studied by Dattoli et al [6], Yang et al [22], Pathan[13], Zhang et al [25], Yang [10],
Pathan and Khan [14].

2. Definitions and Properties of the Generalized Apostol Type Hermite-
Based Polynomials HF

(α)
n (x, y;λ; µ, ν, c)

In this section, we present some further definitions and properties for the gen-
eralized Apostol type Hermite-based polynomials HF

(α)
n (x, y;λ; µ, ν, c):

Definition 2.1. The generalized Apostol type polynomials F
(α)
n (x, λ;µ, ν, c)

(αεN0, µ, νεC) for nonnegative integer n are defined by

(2.1)
(

2µtν

λct + 1

)α

cxt =
∞∑

n=0

F (α)
n (x;λ; µ, ν, c)

tn

n!
, (|t| < | log(−λ)|)

Definition 2.2. The generalized Apostol type Hermite-based polynomials HF
(α)
n

(x, y; λ; µ, ν, c) (αεN0, µ, νεC) for nonnegative integer n are defined by

(2.2)
(

2µtν

λct + 1

)α

cxt+yt2 =
∞∑

n=0

HF (α)
n (x, y; λ; µ, ν, c)

tn

n!
, (|t| < | log(−λ)|)

For α = 1, we obtain from (2.2) the generating function

(2.3)
(

2µtν

λct + 1

)
cxt+yt2 =

∞∑
n=0

HFn(x, y;λ; µ, ν, c)
tn

n!
, (|t| < | log(−λ)|)
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whereas for x = 0 gives

(2.4) F (α)
n (0, y; λ, µ, ν, c) =

[ n
2 ]∑

k=0

n!
k!(n− 2k)!

(ln c)kF
(α)
n−2k(λ; µ, ν)yk

Another special case of (2.2) for y = 0 and c = e leads to the extension of the gen-
eralized Apostol type polynomials F

(α)
n (x, λ; µ, ν) for nonnegative integer n defined

by (1.10) in the form

Further setting c = e in (2.2), we get

Definition 2.3. The generalized Apostol type Hermite-based polynomials HF
(α)
n

(x, y;λ, µ, ν, e) (αεN0, µ, νεC) for nonnegative integer n are defined by

(2.5)
(

2µtν

λet + 1

)α

ext+yt2 =
∞∑

n=0

HF (α)
n (x, y; λ;µ, ν, e)

tn

n!
, (|t| < | log(−λ)|)

The generalized Apostol type Hermite-based polynomials HF
(α)
n (x, y;λ; µ, ν, c) de-

fined by (2.2) have the following properties which are stated as theorems below.

Theorem 2.1. For any integral n ≥ 1, x, yεR,λεC and αεN . The following relation
for the generalized Apostol type polynomials HF

(α)
n (x, y;λ; µ, ν, c) holds true:

HF (α)
n (x, y; λ; µ, ν, e) = HF (α)

n (x, y;λ; µ, ν), (−1)α
HF (α)

n (x, y;−λ; 0, 1, e)
= HB(α)

n (x, y; λ),

(2.6) HF (α)
n (x, y; λ; 1, 0, e) = HE(α)

n (x, y; λ), HF (α)
n (x, y;λ; 1, 1, e) = HG(α)

n (x, y; λ)

HF (α+β)
n (x + u, y + z; λ; µ, ν, c)

(2.7) =
n∑

m=0

(
n
m

)
HF (β)

m (u, z; λ;µ, ν, c)HF
(α)
n−m(x, y; λ;µ, ν, c)

(2.8) HF (α)
n (x + z, y; λ; µ, ν, c) =

n∑
m=0

(
n
m

)
F

(α)
n−m(z;λ; µ, ν, c)Hm(x, y; c)

Proof. The formulas in (2.6) are obvious. Applying Definition (2.2), we have

∞∑
n=0

HF (α+β)
n (x + u, y + z; λ; µ, ν, c)

tn

n!
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=
∞∑

n=0

HF (α)
n (x, y; λ;µ, ν, c)

tn

n!

∞∑
m=0

HF (β)
m (u, z; λ; µ, ν, c)

tm

m!

=
∞∑

n=0

n∑
m=0

HF (β)
m (u, z;λ; µ, ν, c)HF

(α)
n−m(x, y;λ; µ, ν, c)

tn

(n−m)!

Now equating the coefficients of the like powers of t in the above equation, we get
the result (2.7). Again by Definition (2.2), we have

(2.9)
(

2µtν

λct + 1

)α

c(x+z)t+yt2 =
∞∑

n=0

HF (α)
n (x + z, y; λ; µ, ν, c)

tn

n!

which can be written as

(2.10)
(

2µtν

λct + 1

)α

cztcxt+yt2 =
∞∑

n=0

F (α)
n (z; λ; µ, ν, c)

tn

n!

∞∑
m=0

Hm(x, y; c)
tn

n!

Replacing n by n-m in (2.10), comparing with (2.9) and equating their coefficients
of tn leads to formula (2.8). 2

3. Implicit Summation Formulae Involving Generalized Apostol Type
Hermite-Based Polynomials

For the derivation of implicit formulae involving generalized Apostol type poly-
nomials F

(α)
n (x, y; λ; µ, ν, c) and generalized Apostol type Hermite-Based polyno-

mials HF
(α)
n (x, y; λ;µ, ν, c) the same considerations as developed for the ordinary

Hermite and related polynomials in Khan et al [21] and Hermite-Bernoulli polyno-
mials in Pathan [13], Pathan and Khan [14] holds as well. First we prove the
following results involving generalized Apostol type Hermite-Based polynomials
HF

(α)
n (x, y;λ; µ, ν, c).

Theorem 3.1. For any integral n ≥ 1, x, yεR, λεC and αεN . Then the following
implicit summation formulae for generalized Apostol type Hermit-based polynomials
HF

(α)
n (x, y;λ; µ, ν, c) holds true:

(3.1)

HF
(α)
k+l(z, y; λ; µ, ν, c) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(z−x)n+m

HF
(α)
k+l−n−m(x, y; λ;µ, ν, c)

Proof. We replace t by t + w and rewrite the generating function (2.2) as

(3.2)
(

2µ(t + w)ν

λct+w + 1

)α

cy(t+w)2 = c−x(t+w)
∞∑

k,l=0

HF
(α)
k+l(x, y; λ; µ, ν, c)

tk

k!
wl

l!



Some Properties of the Generalized Apostol Type Hermite-Based Polynomials 603

Replacing x by z in the above equation and equating the resulting equation to
the above equation, we get

(3.3) c(z−x)(t+w)
∞∑

k,l=0

HF
(α)
k+l(x, y; λ;µ, ν, c)

tk

k!
wl

l!
=

∞∑

k,l=0

HF
(α)
k+l(z, yλ; µ, ν, c)

tk

k!
wl

l!

On expanding exponential function, (3.3) gives

∞∑

N=0

[(z − x)(t + w)]N

N !

∞∑

k,l=0

HF
(α)
k+l(x, y; λ; µ, ν, c)

tk

k!
wl

l!

(3.4) =
∞∑

k,l=0

HF
(α)
k+l(z, y; λ;µ, ν, c)

tk

k!
wl

l!

which on using formula [7,p.52(2)]

(3.5)
∞∑

N=0

f(N)
(x + y)N

N !
=

∞∑
n,m=0

f(n + m)
xn

n!
ym

m!

in the left hand side becomes
∞∑

n,m=0

(z − x)n+mtnwm

n!m!

∞∑

k,l=0

HF
(α)
k+l(x, y; λ; µ, ν, c)

tk

k!
wl

l!

(3.6) =
∞∑

k,l=0

HF
(α)
k+l(z, y; λ;µ, ν, c)

tk

k!
wl

l!

Now replacing k by k-n, l by l-m in the left hand side of (3.6), we get

∞∑
n,m=0

∞∑

k,l=0

(z − x)n+m

n!m! HF
(α)
k+l−n−m(x, y; λ;µ, ν, c)

tk

(k − n)!
wl

(l −m)!

(3.7) =
∞∑

k,l=0

HF
(α)
k+l(z, y; λ;µ, ν, c)

tk

k!
wl

l!

Finally on equating the coefficients of the like powers of t and u in the above
equation, we get the required result. 2

By setting λ = −λ, µ = 0 and ν = 1 in Theorem (3.1) and then multiplying
(−1)α on both sides of the result, we have the following corollary
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Corollary 1. The following implicit summation formula for Apostol Hermite-
Bernoulli polynomials HB

(α)
n (x, y; λ; c) holds true:

(3.8) HB
(α)
k+l(z, y;λ; c) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(z − x)n+m

HB
(α)
k+l−n−m(x, y; λ; c)

Remark. For λ = 1, c = e in (3.8), the result reduces to known result of Pathan
and Khan [14, Theorem 3.1].

By setting µ = 1 and ν = 0 in Theorem (3.1), we have the following corollary

Corollary 2. The following implicit summation formula for Apostol Hermite-Euler
polynomials HE

(α)
n (x, y; λ; c) holds true:

(3.9) HE
(α)
k+l(z, y; λ; c) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(z − x)n+m

HE
(α)
k+l−n−m(x, y; λ; c)

By setting µ = 1 and ν = 1 in Theorem (3.1), we have the following corollary

Corollary 3. The following implicit summation formula for Apostol Hermite-
Genocchi polynomials HG

(α)
n (x, y; λ; c) holds true:

(3.10) HG
(α)
k+l(z, y; λ; c) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(z−x)n+m

HG
(α)
k+l−n−m(x, y; λ; c)

Theorem 3.2. For any integral n ≥ 1, x, yεR and αεN . Then

(3.11) HF (α)
n (x, y;λ; µ, ν, c) =

n∑
m=0

(
n
m

)
F

(α)
n−m(λ; µ, ν, c)Hm(x, y, c)

Proof. By the definition of generalized Apostol type polynomials and the definition
(1.10), we have

(
2µtν

λct + 1

)α

cxt+yt2 =
∞∑

n=0

HF (α)
n (x, y;λ; µ, ν, c)

tn

n!

=

( ∞∑
n=0

F (α)
n (λ; µ, ν, c)

tn

n!

)( ∞∑
m=0

Hm(x, y; c)
tm

m!

)

Now replacing n by n-m and comparing the coefficients of tn, we get the result
(3.11). 2

Remark. For c = e, (3.11) yields

HF (α)
n (x, y;λ; µ, ν, e) =

n∑
m=0

(
n
m

)
Fα

n−m(λ;µ, ν)Hm(x, y)
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By setting λ = −λ, µ = 0 and ν = 1 in Theorem (3.2) and then multiplying
(−1)α on both sides of the result, we have the following corollary

Corollary 1. For any integral n ≥ 1, x, yεR and αεN . Then

(3.12) HB(α)
n (x, y;λ; c) =

n∑
m=0

(
n
m

)
B

(α)
n−m(λ; c)Hm(x, y, c)

By setting µ = 1 and ν = 0 in Theorem (3.2), we have the following corollary

Corollary 2. For any integral n ≥ 1, x, yεR and αεN . Then

(3.13) HE(α)
n (x, y; λ; c) =

n∑
m=0

(
n
m

)
E

(α)
n−m(λ; c)Hm(x, y, c)

By setting µ = 1 and ν = 1 in Theorem (3.2), we have the following corollary

Corollary 3. For any integral n ≥ 1, x, yεR and αεN . Then

(3.14) HG(α)
n (x, y;λ; c) =

n∑
m=0

(
n
m

)
G

(α)
n−m(λ; c)Hm(x, y; c)

Theorem 3.3. For any integral n ≥ 1, x, yεR and αεN . Then
(3.15)

HF (α)
n (x, y;λ; µ, ν, c) =

n−2j∑

k=0

[ n
2 ]∑

j=0

(
n− 2j
k

)
(ln c)n−k−jxn−k−2jyjF

(α)
k (λ; µ, ν, c)

Proof. Applying the definition (2.2) to the term
(

2µtν

λct+1

)α

and expanding the ex-

ponential function cxt+yt2 at t = 0 yields
(

2µtν

λct + 1

)α

cxt+yt2

=

( ∞∑

k=0

F
(α)
k (λ; µ, ν, c)

tk

k!

)( ∞∑
n=0

xn(ln c)n tn

n!

)


∞∑

j=0

yj(ln c)j t2j

j!




=
∞∑

n=0

(
n∑

k=0

(
n
k

)
(ln c)n−kF

(α)
k (λ; µ, ν, c)xn−k

)
tn

n!




∞∑

j=0

yj(ln c)j t2j

j!




Replacing n by n-2j, we have

∞∑
n=0

HF (α)
n (x, y; λ;µ, ν, c)

tn

n!
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(3.16) =
∞∑

n=0




n−2j∑

k=0

[ n
2 ]∑

j=0

(
n− 2j
k

)
(ln c)n−k−jxn−k−2jyjF

(α)
k (λ;µ, ν, c)


 tn

Combining (3.16) and (2.2) and equating their coefficients of tn produce the
formula (3.15). 2

By setting λ = −λ, µ = 0 and ν = 1 in Theorem (3.3) and then multiplying
(−1)α on both sides of the result, we have the following corollary

Corollary 1. For any integral n ≥ 1, x, yεR and αεN . Then

(3.17) HB(α)
n (x, y; λ; c) =

n−2j∑

k=0

[ n
2 ]∑

j=0

(
n− 2j
k

)
(ln c)n−k−jxn−k−2jyjB

(α)
k (λ; c)

By setting µ = 1 and ν = 0 in Theorem (3.3), we have the following corollary

Corollary 2. For any integral n ≥ 1, x, yεR and αεN . Then

(3.18) HE(α)
n (x, y; λ; c) =

n−2j∑

k=0

[ n
2 ]∑

j=0

(
n− 2j
k

)
(ln c)n−k−jxn−k−2jyjE

(α)
k (λ; c)

By setting µ = 1 and ν = 1 in Theorem (3.3), we have the following corollary

Corollary 3. For any integral n ≥ 1, x, yεR and αεN . Then

(3.19) HG(α)
n (x, y; λ; c) =

n−2j∑

k=0

[ n
2 ]∑

j=0

(
n− 2j
k

)
(ln c)n−k−jxn−k−2jyjG

(α)
k (λ; c)

Theorem 3.4. For any integral n ≥ 1, x, yεR and αεN . Then
(3.20)

HF (α)
n (x + 1, y;λ; µ, ν, c) =

[ n
2 ]∑

j=0

n−2j∑

k=0

(
n− 2j
k

)
(ln c)n−k−jyjF

(α)
k (x; λ;µ, ν, c)

Proof. By the definition of generalized Apostol type Hermite-based polynomials,
we have

(3.21)
(

2µtν

λct + 1

)α

c(x+1)t+yt2 =
∞∑

n=0

HF (α)
n (x + 1, y; λ;µ, ν, c)

tn

n!

=

( ∞∑

k=0

F
(α)
k (x; λ;µ, ν, c)

tk

k!

)( ∞∑
n=0

(ln c)n tn

n!

) 


∞∑

j=0

yj(ln c)j t2j

j!



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(3.22) =
∞∑

n=0

n∑

k=0

(
n
k

)
(ln c)n−kF

(α)
k (x; λ;µ, ν, c)

tn

n!




∞∑

j=0

yj(ln c)j t2j

j!




=
∞∑

n=0

∞∑

j=0

n∑

k=0

(
n
k

)
(ln c)n−k+jyjF

(α)
k (x; λ;µ, ν, c)

tn+2j

n!j!

Replacing n by n-2j, we have

(3.23)
∞∑

n=0

HF (α)
n (x + 1, y;λ; µ, ν, c)

tn

n!

=
∞∑

n=0

[ n
2 ]∑

j=0

n−2j∑

k=0

(
n− 2j
k

)
(ln c)n−k−jyjF

(α)
k (x; λ;µ, ν, c)tn

Combining (3.21) and (3.23) and equating their coefficients of tn leads to formula
(3.20). 2

By setting λ = −λ, µ = 0 and ν = 1 in Theorem (3.4) and then multiplying
(−1)α on both sides of the result, we have the following corollary

Corollary 1. For any integral n ≥ 1, x, yεR and αεN . Then

(3.24) HB(α)
n (x + 1, y; λ; c) =

[ n
2 ]∑

j=0

n−2j∑

k=0

(
n− 2j
k

)
(ln c)n−k−jyjB

(α)
k (x;λ; c)

By setting µ = 1 and ν = 0 in Theorem (3.4), we have the following corollary

Corollary 2. For any integral n ≥ 1, x, yεR and αεN . Then

(3.25) HE(α)
n (x + 1, y; λ; c) =

[ n
2 ]∑

j=0

n−2j∑

k=0

(
n− 2j
k

)
(ln c)n−k−jyjE

(α)
k (x;λ; c)

By setting µ = 1 and ν = 1 in Theorem (3.4), we have the following corollary

Corollary 3. For any integral n ≥ 1, x, yεR and αεN . Then

(3.26) HG(α)
n (x + 1, y; λ; c) =

[ n
2 ]∑

j=0

n−2j∑

k=0

(
n− 2j
k

)
(ln c)n−k−jyjG

(α)
k (x; λ; c)

Theorem 3.5. For any integral n ≥ 1, x, yεR and αεN . Then

(3.27) HF (α)
n (x, y;λ; µ, ν, e) =

n∑
m=0

(
n
m

)
F

(α−1)
n−m (λ; µ, ν)HF (α)

m (x, y; λ;µ, ν, e)
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Proof. By the definition of generalized Apostol type Hermite-based polynomials,
we have

2µtν

λet + 1

(
2µtν

λet + 1

)α

ext+yt2 =
2µtν

λet + 1

∞∑
n=0

HF (α)
n (x, y; λ;µ, ν, e)

tn

n!

(
2µtν

λet + 1

)α

ext+yt2 =
2µtν

λet + 1

∞∑
m=0

HF (α)
m (x, y;λ; µ, ν, e)

tm

m!

Now replacing n by n-m and equating the coefficients of tn leads to formula (3.27).
2

By setting λ = −λ, µ = 0 and ν = 1 in Theorem (3.5) and then multiplying
(−1)α on both sides of the result, we have the following corollary

Corollary 1. For any integral n ≥ 1, x, yεR and αεN . Then

(3.28) HB(α)
n (x, y; λ; e) =

n∑
m=0

(
n
m

)
B

(α−1)
n−m (λ)HB(α)

m (x, y;λ; e)

By setting µ = 1 and ν = 0 in Theorem (3.5), we have the following corollary

Corollary 2. For any integral n ≥ 1, x, yεR and αεN . Then

(3.29) HE(α)
n (x, y;λ; e) =

n∑
m=0

(
n
m

)
E

(α−1)
n−m (λ)HE(α)

m (x, y; λ; e)

By setting µ = 1 and ν = 1 in Theorem (3.5), we have the following corollary

Corollary 3. For any integral n ≥ 1, x, yεR and αεN . Then

(3.30) HG(α)
n (x, y; λ; e) =

n∑
m=0

(
n
m

)
G

(α−1)
n−m (λ)HG(α)

m (x, y; λ; e)

Theorem 3.6. For arbitrary real or complex parameter α, the following implicit
summation formula involving generalized Apostol type polynomials
HF

(α)
n (x, y;λ; µ, ν, c) holds true:

(3.31) HF (α)
n (x + 1, y; λ; µ, ν, c) =

n∑

k=0

(
n
k

)
(ln c)n−k

HF
(α)
k (x, y;λ; µ, ν, c)

Proof. By the definition of generalized Apostol type Hermite-based polynomials,
we have

∞∑
n=0

HF (α)
n (x + 1, y; λ;µ, ν, c)

tn

n!
−

∞∑
n=0

HF (α)
n (x, y;λ; µ, ν, c)

tn

n!
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=
(

2µtν

λct + 1

)α

cxt+yt2(ct − 1)

=

( ∞∑

k=0

HF
(α)
k (x, y; λ;µ, ν, c)

tk

k!

)( ∞∑
n=0

(ln c)n tn

n!

)
−

∞∑
n=0

HF (α)
n (x, y;λ; µ, ν, c)

tn

n!

=
∞∑

n=0

n∑

k=0

(ln c)n−k
HF

(α)
k (x, y;λ; µ, ν, c)

tn

(n− k)!
−

∞∑
n=0

HF (α)
n (x, y; λ;µ, ν, c)

tn

n!

Finally, equating the coefficients of the like powers of tn, we get (3.31). 2

By setting λ = −λ, µ = 0 and ν = 1 in Theorem (3.6) and then multiplying
(−1)α on both sides of the result, we have the following corollary

Corollary 1. For any integral n ≥ 1, x, yεR and αεN . Then

(3.32) HB(α)
n (x + 1, y;λ; c) =

n∑

k=0

(
n
k

)
(ln c)n−k

HB
(α)
k (x, y; λ; c)

By setting µ = 1 and ν = 0 in Theorem (3.6), we have the following corollary

Corollary 2. For any integral n ≥ 1, x, yεR and αεN . Then

(3.33) HE(α)
n (x + 1, y;λ; c) =

n∑

k=0

(
n
k

)
(ln c)n−k

HE
(α)
k (x, y; λ; c)

By setting µ = 1 and ν = 1 in Theorem (3.6), we have the following corollary

Corollary 3. For any integral n ≥ 1, x, yεR and αεN . Then

(3.34) HG(α)
n (x + 1, y;λ; c) =

n∑

k=0

(
n
k

)
(ln c)n−k

HG
(α)
k (x, y;λ; c)

4. Identities

In this section, we give general symmetry identities for the generalized Apostol
type polynomials F

(α)
n (x;λ; µ, ν, c) and the generalized Apostol type Hermite-based

polynomials HF
(α)
n (x, y;λ; µ, ν, c) by applying the generating functions (2.1) and

(2.2). The results extend some known identities of Zhang et al [25], Yang et al [22],
Lu et al [2], Pathan [13], Yang [10] and Pathan and Khan [14]. Throughout this
section α will taken as an arbitrary real or complex parameter.

Theorem 4.1. For any integral n ≥ 1, x, yεR and αεN . Then the following identity
holds true:

n∑

k=0

(
n
k

)
bkan−k

HF
(α)
n−k(bx, b2y; λ; µ, ν, c)HF

(α)
k (ax, a2y;λ; µ, ν, c)
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(4.1) =
n∑

k=0

(
n
k

)
akbn−k

HF
(α)
n−k(ax, a2y; λ; µ, ν, c)HF

(α)
k (bx, b2y;λ; µ, ν, c)

Proof. Start with

(4.2) g(t) =
(

(ab)ν22µt2ν

(λcat + 1)(λcbt + 1)

)α

cabxt+a2b2yt2

Then the expression for g(t) is symmetric in a and b and we can expand g(t) into
series in two ways to obtain

g(t) =
∞∑

n=0

HF (α)
n (bx, b2y; λ;µ, ν, c)

(at)n

n!

∞∑

k=0

HF
(α)
k (ax, a2y; λ;µ, ν, c)

(bt)k

k!

=
∞∑

n=0

n∑

k=0

HF
(α)
n−k(bx, b2y; λ; µ, ν, c)an−kbk

HF
(α)
k (ax, a2y;λ; µ, ν, c)

tn

(n− k)!

On the similar lines we can show that

g(t) =
∞∑

n=0

HF (α)
n (ax, a2y; λ;µ.ν, c)

(bt)n

n!

∞∑

k=0

HF
(α)
k (bx, b2y; λ;µ, ν, c)

(at)k

k!

=
∞∑

n=0

n∑

k=0

HF
(α)
n−k(ax, a2y; λ; µ, ν, c)akbn−k

HF
(α)
k (bx, b2y;λ; µ, ν, c)

tn

(n− k)!

By comparing the coefficients of tn on the right hand sides of the last two equations
we arrive the desired result. 2

By setting λ = −λ, µ = 0 and ν = 1 in Theorem (4.1) and then multiplying
(−1)α on both sides of the result, we have the following corollary

Corollary 1. For any integral n ≥ 1, x, yεR and αεN . Then

n∑

k=0

(
n
k

)
bkan−k

HB
(α)
n−k(bx, b2y;λ; c)HB

(α)
k (ax, a2y; λ; c)

(4.3) =
n∑

k=0

(
n
k

)
akbn−k

HB
(α)
n−k(ax, a2y; λ; c)HB

(α)
k (bx, b2y; λ; c)

Remark. For λ = 1, c = e in (4.3), the result reduces to known result of Pathan
and Khan [14, Theorem 4.1].

By setting µ = 1 and ν = 0 in Theorem (4.1), we have the following corollary
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Corollary 2. For any integral n ≥ 1, x, yεR and αεN . Then

n∑

k=0

(
n
k

)
bkan−k

HE
(α)
n−k(bx, b2y; λ; c)HE

(α)
k (ax, a2y; λ; c)

(4.4) =
n∑

k=0

(
n
k

)
akbn−k

HE
(α)
n−k(ax, a2y; λ; c)HE

(α)
k (bx, b2y;λ; c)

By setting µ = 1 and ν = 1 in Theorem (4.1), we have the following corollary

Corollary 3. For any integral n ≥ 1, x, yεR and αεN . Then

n∑

k=0

(
n
k

)
bkan−k

HG
(α)
n−k(bx, b2y; λ; c)HG

(α)
k (ax, a2y; λ; c)

(4.5) =
n∑

k=0

(
n
k

)
akbn−k

HG
(α)
n−k(ax, a2y;λ; c)HG

(α)
k (bx, b2y; λ; c)

Theorem 4.2. For any integral n ≥ 1, x, yεR and αεN . Then the following identity
holds true:

n∑

k=0

(
n
k

) a−1∑

i=0

b−1∑

j=0

(−λ)i+jan−kbk
HF

(α)
n−k

(
bx +

b

a
i + j, b2z; λ; µ, ν, c

)
F

(α)
k (ay; λ;µ, ν, c)

=
n∑

k=0

(
n
k

) b−1∑

i=0

a−1∑

j=0

(−λ)i+jakbn−k
HF

(α)
n−k

(4.6)
(
ax +

a

b
i + j, a2z; λ;µ, ν, c

)
F

(α)
k (by; λ; µ, ν, c)

Proof. Let

g(t) =
(

(ab)ν22µt2ν

(λcat + 1)(λcbt + 1)

)α 1 + λ(−1)a+1cabt

(λcat + 1)(λcbt + 1)
cab(x+y)t+a2b2zt2

g(t) =
(

2µ(at)ν

(λcat + 1

)α

cabxt+a2b2zt2
(

1− λ(c−bt)a

λcbt + 1

)(
2µ(bt)ν

λcbt + 1

)α

cabyt

(
1− λ(c−at)b

λcat + 1

)

(4.7) =
(

2µ(at)ν

(λcat + 1

)α

cabxt+a2b2zt2
a−1∑

i=0

(−λ)icbti

(
2µ(bt)ν

λcbt + 1

)α

cabyt
b−1∑

j=0

(−λ)jcatj
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=
(

2µ(at)ν

(λcat + 1

)α

ca2b2zt2
a−1∑

i=0

b−1∑

j=0

(−λ)i+jc(bx+ b
a i+j)at

∞∑

k=0

F
(α)
k (ay; λ;µ, ν, c)

(bt)k

k!

=
∞∑

n=0

a−1∑

i=0

b−1∑

j=0

(−λ)i+j
HF (α)

n

(
bx +

b

a
i + j, b2z; λ; µ, ν, c

)
(at)n

n!

∞∑

k=0

F
(α)
k (ay; λ; µ, ν, c)

(bt)k

(k)!

=
∞∑

n=0

n∑

k=0

(
n
k

) a−1∑

i=0

b−1∑

j=0

(−λ)i+jan−kbk
HF

(α)
n−k

(4.8)
(

bx +
b

a
i + j, b2z; λ;µ, ν, c

)
F

(α)
k (ay;λ; µ, ν, c)

Since (−1)a+1 = (−1)b+1, the expression for

g(t) =
(

(ab)ν22µt2ν

(λcat + 1)(λcbt + 1)

)α 1 + λ(−1)a+1cabt

(λcat + 1)(λcbt + 1)
cab(x+y)t+a2b2zt2

is symmetric in a and b. Therefore, by symmetry we obtain the following power
series expansion for g(t)

g(t) =
∞∑

n=0

n∑

k=0

(
n
k

) b−1∑

i=0

a−1∑

j=0

(−λ)i+jbn−kak
HF

(α)
n−k

(4.9)
(
ax +

a

b
i + j, a2z;λ; µ, ν, c

)
F

(α)
k (by; λ;µ, ν, c)

By comparing the coefficients of tn on the right hand sides of the last two equa-
tions,we arrive at the desired result. 2

By setting λ = −λ, µ = 0 and ν = 1 in Theorem (4.2) and then multiplying
(−1)α on both sides of the result, we have the following corollary

Corollary 1. For any integral n ≥ 1, x, yεR and αεN . Then

n∑

k=0

(
n
k

) a−1∑

i=0

b−1∑

j=0

(−λ)i+jan−kbk
HB

(α)
n−k

(
bx +

b

a
i + j, b2z;λ; c

)
B

(α)
k (ay; λ; c)

(4.10)

=
n∑

k=0

(
n
k

) b−1∑

i=0

a−1∑

j=0

(−λ)i+jakbn−k
HB

(α)
n−k

(
ax +

a

b
i + j, a2z;λ; c

)
B

(α)
k (by; λ; c)
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Remark. For λ = 1, c = e in equation (4.10), the result reduces to known result of
Pathan and Khan [14] and further by taking c = e, λ = 1, α = 1 in equation (4.10),
the result reduces to another known result of Pathan [13].

By setting µ = 1 and ν = 0 in Theorem (4.2), we have the following corollary

Corollary 2. For any integral n ≥ 1, x, yεR and αεN . Then

n∑

k=0

(
n
k

) a−1∑

i=0

b−1∑

j=0

(−λ)i+jan−kbk
HE

(α)
n−k

(
bx +

b

a
i + j, b2z; λ; c

)
E

(α)
k (ay; λ; c)

(4.11)

=
n∑

k=0

(
n
k

) b−1∑

i=0

a−1∑

j=0

(−λ)i+jakbn−k
HE

(α)
n−k

(
ax +

a

b
i + j, a2z; λ; c

)
E

(α)
k (by; λ; c)

By setting µ = 1 and ν = 1 in Theorem (4.2), we have the following corollary

Corollary 3.For any integral n ≥ 1, x, yεR and αεN . Then

n∑

k=0

(
n
k

) a−1∑

i=0

b−1∑

j=0

(−λ)i+jan−kbk
HG

(α)
n−k

(
bx +

b

a
i + j, b2z; λ; c

)
G

(α)
k (ay; λ; c)

(4.12)

=
n∑

k=0

(
n
k

) b−1∑

i=0

a−1∑

j=0

(−λ)i+jakbn−k
HG

(α)
n−k

(
ax +

a

b
i + j, a2z; λ; c

)
G

(α)
k (by; λ; c)
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