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AN EXTENSION OF GENERALIZED EULER POLYNOMIALS

OF THE SECOND KIND

Y. H. KIM, H. Y. JUNG, C. S. RYOO∗

Abstract. Many mathematicians have studied various relations beween

Euler number En, Bernoulli number Bn and Genocchi number Gn (see
[1-18]). They have found numerous important applications in number the-
ory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli

numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim,
M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and
Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our
aim is introducing and investigating an extension term of generalized Eu-

ler polynomials. We also obtain some identities and relations involving
the Euler numbers and the Euler polynomials, the Genocchi numbers and
Genocchi polynomials.
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1. Introduction

The Genocchi number Gn, the Bernoulli number Bn(n ∈ N0 = {0, 1, 2, · · · })
and the Euler number En are defined by the following generating function.
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For a real or complex parameter α, the generalized Bernoulli polynomialsB
(α)
n (x)

of order α ∈ Z, and the generalized Euler polynomials E
(α)
n (x) of order α ∈ Z

are defined by the following generating functions (see, for details, [4, p.253 et
seq.], [14, Section 2.8] and [18, Section 1.6]).(

t

et − 1

)α

ext =
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n=0

B(α)
n (x)

tn

n!
(| t | < 2π ) (1.2)

and (
2

et + 1

)α

ext =

∞∑
n=0

E(α)
n (x)

tn

n!
(| t | < π ). (1.3)

The Genocchi polynomials Gn(x) of order k ∈ N are defined by(
2t

et + 1

)k

ext =
∞∑

n=0

G(k)
n (x)

tn

n!
(| t | < π ). (1.3)

The Euler numbers En and Euler polynomials En(x) are defined by

E0 = 1, En = −
[n2 ]∑
k=1

(
n

2k

)
En−2k (n ≥ 1),

En(x) =
1

2n

[n2 ]∑
k=0

(
n

2k

)
(2x− 1)n−2kE2k (n ≥ 0),

(1.4)

where [x] is the greatest integer not exceeding x (see [6,8,9,10,11,13,15,16]).
By(1.1), we have

G2n+1 = B2n+1 = 0 (n ∈ N), Gn = 2(1− 2n)Bn, (1.5)

where N is the set of positive integers. The Genocchi number Gn satisfy the
recurrence relation

G = 0, G1 = 1, Gn = −1

2

n−1∑
k=1

(
n

k

)
Gk (n ≥ 2). (1.6)

Therefore, we find out that G2 = −1, G4 = 1, G6 = −3, G8 = 17, G10 =
−155, G12 = 2073, G14 = −38227, · · · . That is, G2n+1 = 0(n ≥ 1).

The Stirling number of the first kind s(n, k) can be defined by means of

(x)n = x(x− 1) · · · (x− n+ 1) =
n∑

k=0

s(n, k)xk. (1.7)

or by the generating function

(log(1 + x))
k
= k!

∞∑
n=k

s(n, k)
xn

n!
. (1.8)

We get (1.9) from (1.7) and (1.8)
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s(n, k) = s(n− 1, k − 1)− (n− 1)s(n− 1, k), (1.9)

with s(n, 0) = 0(n > 0), s(n, n) = 1(n ≥ 0), s(n, 1) = (−1)n−1(n − 1)!(n >
0), s(n, k) = 0(k > n or k < 0). Stirling number of the second kind S(n, k) can
be defined by

xn =
n∑

k=0

S(n, k)
xn

n!
, (1.10)

or by the generating function

(ex − 1)k = k!
∞∑

n=k

S(n, k)
xn

n!
. (1.11)

We get (1.12) from (1.10) and (1.11)

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), (1.12)

with S(n, 0) = (n > 0), S(n, n) = 1(n ≥ 0), S(n, 1) = 1(n > 0), S(n, k) = 0
(k > n or k < 0).

We begin with discussing Euler numbers, Genocchi numbers, Bernoulli num-
bers, Stirling numbers of the first kind, Stirling numbers of the second kind.
In the paper, we organized the entire contents as follows. In Section 2, we de-
fine the extension term of generalized Euler polynomials of the second kind and

prove them. We also study some interesting relations about Ẽn(x) and Ẽ(α)
n (x), a

polynomial of x and α with integers coefficients. In Section3, the extension term
of generalized Euler polynomials of the second kind will be used to induce the
main results of this paper. We also obtain some identities involving the Genoc-
chi numbers, Genocchi polynomials, the Euler numbers, Euler polynomials and
prove them.

2. Some relations within the an extension terms of the generalized
Euler polynomials of the second kind

In this section, we study some relations of the extension term of generalized

Euler polynomials of the second kind and research for properties between Ẽn(x)
and Ẽ(α)

n (x). First of all, we define the generalized Euler polynomials Ẽn(x) of
the second kind as follows. In [7], we introduced the generalized Euler polyno-

mials Ẽn(x) of the second kind and investigate their properties. First of all, we

introduce the generalized Euler polynomials Ẽn(x) of the second kind as follows.

This completes with the usual convention of replacing Ẽ(x)
n by Ẽn(x)(see, for

details, [7]).

Definition 2.1. Let x be a real or complex parameter, n ≥ k(n, k ∈ N). Then
we define (

2et

e2t + 1

)x

=
∞∑

n=0

Ẽn(x)
tn

n!
(| t |< π

2
), (2.1)
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We derive that

Ẽn(x) =
n∑

k=0

c(n, k)xk, (2.2)

where

c(n, k) =
k∑

j=0

(
n

j

)
(−1)k−j

n−j∑
l=k−j

s(l, k − j)S(n− j, l)2n−j−l. (2.3)

For a real and complex parameter α, the generalized Euler polynomials Ẽ(α)
n (x),

each of degree n in x as well as in α, are defined by means of the generating
function.

Definition 2.2. Let α be a real or complex parameter. Then we define(
2et

e2t + 1

)α

ext =

∞∑
n=0

Ẽ(α)
n (x)

tn

n!
(| t |< π

2
). (2.4)

By using Definition 2.2, we have the addition theorem of polynomials Ẽ(α)
n (x)

and the relation of polynomials Ẽ(α)
n (x) and numbers Ẽ(α)

n .

Theorem 2.3. (Addition theorem) Let α, x, y ∈ C and n be non-negative inte-
gers. Then we get

Ẽ(α)
n (x+ y) =

n∑
k=0

(
n

k

)
Ẽ(α)
n−k(x)y

k.

Proof. For n be non-negative integers, we have
∞∑

n=0

Ẽ(α)
n (x+ y)

tn

n!
=

(
2et

e2t + 1

)α

e(x+y)t =
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n=0

Ẽ(α)
n (x)

tn

n!
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n=0

yn
tn

n!

=
∞∑

n=0

n∑
k=0

(
n

k

)
Ẽ(α)
n−k(x)y

k t
n

n!
.

By comparing the coefficients of both side, we complete the proof of the Theorem
2.3. �

By using the Definition 2.2, we have the following Theorem 2.4.

Theorem 2.4. Let n ≥ k(n, k, l ∈ N). Then we derive that

Ẽ(α)
n (x) =

n∑
l=0

ρ(α)(n, l)xl, (2.5)

where

ρ(α)(n, l) =

(
n

l

) n−l∑
k=0

c(n− l, k)αk. (2.6)
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Proof. By (2.1) and (2.2), we easily have(
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2
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By Definition 2.2, (1.4) and (1.8) we have
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n!
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which readily yields

Ẽ(α)
n (x) =

n∑
l=0

ρ(α)(n, l)xl.

Therefore, we complete the proof of Theorem 2.4 �

Remark 2.1. From (2.3) and Theorem 2.4, we find out that

ρ(α)(0, 0) = 1,

ρ(α)(1.0) = 0, ρ(α)(1, 1) = 1,

ρ(α)(2, 0) = −α, ρ(α)(2, 1) = 0, ρ(α)(2, 2) = 1,

ρ(α)(3, 0) = 0, ρ(α)(3, 1) = −3α, ρ(α)(3, 2) = 0, ρ(α)(3, 3) = 1,

ρ(α)(4, 0) = 2α+ 3α2, ρ(α)(4, 1) = 0, ρ(α)(4, 2) = −6α, ρ(α)(4, 3) = 0, ρ(α)(4, 4) = 1,

· · ·

Thus, we know that Ẽ(α)
n (x) is a polynomial of x. Setting n = 1, 2, 3, 4, 5 in

Theorem 2.4, we get to

Ẽ(α)
0 (x) = 1, Ẽ(α)

1 (x) = x,

Ẽ(α)
2 (x) = x2 − α, Ẽ(α)

3 (x) = x3 − 3αx,

Ẽ(α)
4 (x) = x4 − 6αx2 + 3α2 + 2α, Ẽ(α)

5 (x) = x5 − 10αx3 + (15α2 + 10α)x.

We also find out an extension terms of the generalized Euler polynomials that
can be represented by c(n, k) with Stirling numbers of the first kind, Stirling
numbers of the second kind.

Since
∞∑
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Ẽ(α)
n (−x)

tn
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)α
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Ẽ(α)
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n!
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(−1)nxn t
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n!
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n∑
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(
n

l

) n−l∑
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c(n− l, k)αk(−1)lxl t
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n!
,
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we have the following theorem.

Theorem 2.5. Let n, k ∈ N, then by (1.1) and Definition 2.2, we have

Ẽ(α)
n (x) = (−1)nẼ(α)

n (−x).

3. Some relations between an extension of the generalized Euler
polynomials and Euler numbers, Genocchi numbers and

themselves

In this section, we access some relations between an extension terms of gen-
eralized Euler polynomials and Euler numbers, Euler polynomials, Genocchi
numbers, Genocchi polynomials of order k. We construct relations among an
extension terms of generalized Euler polynomials themselves.

Theorem 3.1. Let n ≥ k(n, k ∈ N). Relation between Ẽ(α)
n (x) and Genocchi

numbers Gn, we have

Ẽ(α)
n (x) =

n∑
k=0

(
n

k

)
(n− k)!

∑
v1+···+vα=n−k

0≤vi

G∗(v1)G
∗(v2) · · ·G∗(vα)

(v1!v2! · · · vα!)
xk

(3.1)

where

G∗(n) =
n∑

k=0

(
n

k

)
Gk+1

2k

k + 1
. (3.2)

Proof. By (1.1), we have

2

e2t + 1
=

∞∑
n=0

Gn+1
2n

n+ 1

tn

n!
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Let us that

G∗(n) =
n∑

k=0

(
n

k
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.

Therefore, we have

2et

e2t + 1
=
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G∗(n)
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n!
. (3.3)

And we expand to degree of α, we obtain(
2et

e2t + 1

)α

=
∞∑

n=0

∑
v1+···+vα=n

0≤vi

G∗(v1)G
∗(v2) · · ·G∗(vα)

(v1!v2! · · · vα!)
tn (3.4)
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We deduce that by the generalized Euler polynomials(
2et

e2t + 1

)α

ext =
∞∑

n=0

n∑
k=0

(
n

k

)
(n− k)!

∑
v1+···+vα=n−k

0≤vi

G∗(v1)G
∗(v2) · · ·G∗(vα)

(v1!v2! · · · vα!)
xk t

n

n!

By (2.4), we may immediately obtain Theorem 3.1. This completes the proof
of Theorem 3.1. �

We find out that G∗(0) = 1, G∗(1) = 0, G∗(2) = −1, G∗(3) = 0, G∗(4) =
5, G∗(5) = 0, G∗(6) = −61, · · · .

Remark 3.1. Let n ≥ k(n, k ∈ N). Then we have

ρ(α)(n, k) =

(
n

k

)
(n− k)!

∑
v1+···+vα=n−k

0≤vi

G∗(v1)G
∗(v2) · · ·G∗(vα)

(v1!v2! · · · vα!)
,

(3.5)

where

G∗(n) =
n∑

k=0

(
n

k

)
Gk+1

2k

k + 1
, ρ(α)(n, l) =

(
n

l

) n−l∑
k=0

c(n− l, k)αk.

Theorem 3.2. Let n ≥ k(n, k ∈ N). Then we obtain

k!ρ(α)(n, k) = Ẽ(α)
n−k

n!

(n− k)!
. (3.6)

Proof. By applying Theorem 2.4, we have

k!ρ(α)(n, k) =
dk

dxk
Ẽ(α)
n (x) |x=0 (3.7)

It follows from Definition 2.2 that(
2et

e2t + 1

)α

tk =
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n=0

dk

dxk

(
Ẽ(α)
n (x) |x=0

) tn

n!
= k!

∞∑
n=k

ρ(α)(n, k)
tn

n!
(3.8)

On the other hand, we have from (2.1)(
2et

e2t + 1

)α

tk =
∞∑

n=0

Ẽ(α)
n

tn

n!
tk (3.9)

Substituting (3.9) in (3.8) we get

k!
∞∑

n=k

ρ(α)(n, k)
tn

n!
=

∞∑
n=k

Ẽ(α)
n−k

n!

(n− k)!

tn

n!
(3.10)

By (3.10), we may immediately obtain Theorem 3.2. This completes the proof
of Theorem 3.2. �
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Theorem 3.3. Let n ≥ k(n, k ∈ N). Relation between Ẽ(α)
n (x) and Euler num-

bers En, we have

Ẽ(α)
n (x) =

n∑
k=0

(
n

k

)
(n− k)!

∑
v1+···+vα=n−k

0≤vi

E∗(v1)E
∗(v2) · · ·E∗(vα)

(v1!v2! · · · vα!)
xk

(3.11)

where

E∗(n) =

n∑
k=0

(
n

k

)
Ek2

k. (3.12)

Proof. By definition (1.1)

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
=

∞∑
n=0

En
tn+1

n!
=

∞∑
n=0

nEn−1
tn

n!
(| t | < π),

Therefore, according to (3.1), (3.2), we have

G∗(n) =
n∑

k=0

(
n

k

)
Gk+1

2k

k + 1
=

n∑
k=0

(
n

k

)
Ek2

k = E∗(n).

By Theorem 3.1, we may immediately obtain Theorem 3.3. �
We find out that E∗(0) = 1, E∗(1) = 0, E∗(2) = −1, E∗(3) = 0, E∗(4) =

5, E∗(5) = 0, E∗(6) = −61, · · · . Thus, we easily see that G∗(n) = E∗(n).
By Definition 2.2, we have

∞∑
n=0

Ẽ(α)
n (x)

tn

n!
=

(
2et

e2t + 1

)α

ext =

(
2

e2t + 1

)α

e(α+x)t

=
∞∑

n=0

2nE(α)
n (

x

2
+

α

2
)
tn

n!
.

Therefore, we have the following theorem.

Theorem 3.4. Let α be a real or complex parameter. Relation between Ẽ(α)
n (x)

and Euler polynomials E
(α)
n (x), we have

Ẽ(α)
n (x) = 2nE(α)

n (
x

2
+

α

2
) (3.13)

For α = 1 in (3.13), we have the following corollary.

Corollary 3.5. For α = 1, we have

Ẽn(x) = 2nEn(
x

2
+

1

2
)

Theorem 3.6. Let n, α ∈ N. Relation between Ẽ(α)
n (x) and Genocchi polynomi-

als G
(α)
n (x), we have

1

2n

(
α+ n

α

)
α!Ẽ(α)

n (x) = G
(α)
α+n(

x

2
+

α

2
) (3.14)
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Proof. By Definition 2.2,

∞∑
n=0

Ẽ(α)
n (x)

tn

n!
=

(
2et

e2t + 1

)α

ext =
1

(2t)α

(
4t

e2t + 1

)α

e(α+x)t

=
1

2α

∞∑
n=0

2α+nG
(α)
α+n(

x
2 + α

2 )(
α+n
α

)
α!

tn

n!

=
∞∑

n=0

2nG
(α)
α+n(

x
2 + α

2 )(
α+n
α

)
α!

tn

n!
.

(3.15)

Therefore, we may immediately obtain Theorem 3.6. This completes the proof
of Theorem 3.6. �
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