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A NEW CLASS OF GENERALIZED APOSTOL-TYPE

FROBENIUS-EULER-HERMITE POLYNOMIALS

M. A. Pathan∗ and Waseem A. Khan

Abstract. In this paper, we introduce a new class of general-
ized Apostol-type Frobenius-Euler-Hermite polynomials and derive
some explicit and implicit summation formulae and symmetric iden-
tities by using different analytical means and applying generating
functions. These results extend some known summations and iden-
tities of generalized Frobenius-Euler type polynomials and Hermite-
based Apostol-Euler and Apostol-Genocchi polynomials studied by
Pathan and Khan, Kurt and Simsek.

1. Introduction

Throughout this presentation, we use the following standard notions
N = {1, 2, · · · }, N0 = {0, 1, 2, · · · } = N ∪ {0}, Z− = {−1,−2, · · · }. Also
as usual Z denotes the set of integers, R denotes the set of real numbers
and C denotes the set of complex numbers. Furthermore, (λ)0 = 1 and

(λ)k = λ(λ+ 1)(λ+ 2) · · · (λ+ k + 1),

where k ∈ N, λ ∈ C.

The classical Frobenius-Euler polynomial H(α)
n (x;u) of order α is de-

fined by means of the following generating function(
1− u
et − u

)α
ext =

∞∑
n=0

H(α)
n (x)

tn

n!
, (1.1)

where u is an algebraic number and α ∈ Z.
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Observe that H(1)
n (x, u) = Hn(x, u), which denotes the Frobenius-

Euler polynomials and H(α)
n (0;u) = H(α)

n (u), which denotes the
Frobenius-Euler numbers of order α. Hn(x;−1) = En(x), which denotes
the Euler polynomials, (see [1-11, 13-16]).

Recently, Kurt and Simsek [6, 7] and Simsek [14, 15] introduced the
Apostol type Frobenius-Euler polynomials defined as follows.

Let a, b, c ∈ R+, a 6= b, x ∈ R. The generalized Apostol type
Frobenius-Euler polynomials are defined by means of the following gen-
erating function:(

at − u
λbt − u

)α
cxt =

∞∑
n=0

H(α)
n (x;u, a, b, c, λ)

tn

n!
. (1.2)

For x = 0 and α = 1 in (1.2), we get

at − u
λbt − u

=

∞∑
n=0

Hn(u, a, b;λ)
tn

n!
, (1.3)

where Hn(u, a, b;λ) denotes the generalized Apostol type Frobenius-
Euler numbers (see [14]).

Pathan and Khan [9] introduced the generalized Hermite-Bernoulli

polynomials of two variables HB
(α)
n (x, y) defined by(

t

et − 1

)α
ext+yt

2
=
∞∑
n=0

HB
(α)
n (x, y)

tn

n!
, (1.4)

which is essentially a generalization of Bernoulli numbers, Bernoulli
polynomials, Hermite polynomials and Hermite-Bernoulli polynomials

HBn(x, y) introduced by Dattoli et al [3, p.386(1.6)] in the form(
t

et − 1

)
ext+yt

2
=
∞∑
n=0

HBn(x, y)
tn

n!
. (1.5)

Definition 1.1. Let c > 0. The generalized 2-variable 1-parameter
Hermite Kampé de Fériet polynomials Hn(x, y; c) polynomials for non-
negative integer n are defined by

cxt+yt
2

=
∞∑
n=0

Hn(x, y; c)
tn

n!
. (1.6)
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This is an extended 2-variable Hermite Kampé de Fériet polynomials
Hn(x, y) (see [1]) defined by

ext+yt
2

=
∞∑
n=0

Hn(x, y)
tn

n!
. (1.7)

Note that

Hn(x, y; e) = Hn(x, y).

In order to collect the powers of t we expand the left hand side of (1.6)
to the representation

Hn(x, y; c) =

[n
2
]∑

j=0

(
n
2j

)
(ln c)n−jxn−2jyj . (1.8)

There are various applications of the classical Euler and Frobenius
numbers in many branches of mathematics,statistics and mathematical
physics. Frobenius-Euler numbers and polynomials appear in number
theory, summability, statistics, control theory, splines and combinatorics
(see [4]). Generating functions for q-Apostol type Frobenius-Euler num-
bers and polynomials, generalized Frobenius Euler polynomials, normal-
ized polynomials, array polynomials, Stirling numbers of the second kind
and functional equation are studied by Kurt and Simsek ([6] and [7]) and
Simsek ([14] and [15]). Janson [4] studied the Frobenius-Euler numbers
and polynomials in detail (with applications to number theory, geomet-
ric formulation, rounding errors and sums of uniform random variables
and the probability distribution). Janson also gave references to earlier
authors as well as historical notes.

In the present paper, we introduce a new class of generalized Apostol-
type Frobenius-Euler-Hermite polynomials which has quite distinct for-
mulation from the work proposed by Kurt and Simsek ([6] and [7]) and
Simsek ([14] and [15]) and derive some explicit and implicit summa-
tion formulae. This paper is organized as follows. We give a brief re-
view of generalized Apostol type Frobenius-Euler-Hermite polynomials

HE
(α)
n (x, y;u, a, b, c;λ) and their properties. Some implicit summation

formulae and general symmetry identities are derived by using different
analytical means and applying generating functions.
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2. Definitions and properties of the generalized Apostol type

Frobenius-Euler-Hermite polynomials HE
(α)
n (x, y;u, a, b, c;λ)

To facilitate the presentation of the material that follows, we present
in this section some background on the generalized Apostol
type Frobenius-Euler-Hermite polynomials and investigate its proper-
ties. First, we present the following definition.

Definition 2.1. Let a, b, c > 0 and a 6= b. The generalized Apostol

type Frobenius-Euler-Hermite polynomials HE
(α)
n (x, y;u, a, b, c;λ) for

nonnegative integer n are defined by(
at − u
λbt − u

)α
cxt+yt

2
=
∞∑
n=0

HE
(α)
n (x, y;u, a, b, c;λ)

tn

n!
, (2.1)

so that

HE
(α)
n (x, y;u, a, b, c;λ) =

n∑
m=0

(
n
m

)
H(α)
m (u, a, b;λ)Hn−m(x, y; c).

(2.2)

For α = 1, we obtain from (2.1) the generating function(
at − u
λbt − u

)
cxt+yt

2
=

∞∑
n=0

HEn(x, y;u, a, b, c;λ)
tn

n!
. (2.3)

Special case of (2.1) for y = 0 leads to the extension of the gener-

alized Apostol type Frobenius-Euler polynomials H(α)
n (x;u, a, b, c;λ) for

nonnegative integer n defined by (1.2).

Setting c = e in (2.1), we get

Definition 2.2. Let a, b > 0 and a 6= b. The generalized Apostol

type Frobenius-Euler-Hermite polynomials HE
(α)
n (x, y;u, a, b, e;λ) for

nonnegative integer n are defined by(
at − u
λbt − u

)α
ext+yt

2
=
∞∑
n=0

HE
(α)
n (x, y;u, a, b, e;λ)

tn

n!
. (2.4)

It is easy to prove that

HE
(α+β)
n (x, y;u, a, b, c;λ) =

n∑
m=0

(
n
m

)
HE

(α)
m (x, y;u, a, b, c;λ)
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×HE(β)
n−m(x, y;u, a, b, c;λ).

(2.5)
Further setting λ, a = 1, u = −1, b = e in (2.4), the result reduces to

known result of Pathan and Khan [11].

By using generalized Apostol type Frobenius-Euler-Hermite polyno-

mials HE
(α)
n (x, y;u, a, b, c;λ) defined by (2.1), we have the following

properties which are stated as theorems below.

Theorem 2.3. Let a, b, c > 0 and a 6= b. For x ∈ R and n ≥ 0. Then

HE
(α)
n (0, 0;u, a, b, 1;λ) = H(α)

n (u, a, b;λ), HE
(α)
n (x, y;−1, 1, e, c;λ)

= HE
(α)
n (x, y; c;λ). (2.6)

HE
(α+β)
n (x+ y, z + w;u, a, b, c;λ)

=
n∑

m=0

(
n
m

)
HE

(β)
m (y, w;u, a, b, c;λ)HE

(α)
n−m(x, z;u, a, b, c;λ). (2.7)

HE
(α)
n (x+ z, y;u, a, b, c;λ) =

n∑
m=0

(
n

m

)
H(α)
n−m(x;u, a, b, c;λ)Hm(z, y; c).

(2.8)

Proof. The formula in (2.6)is obvious. Applying definition (2.1), we
have

I =
∞∑
n=0

HE
(α+β)
n (x+ y, z + w; a, b, c;λ)

tn

n!

=
∞∑
n=0

HE
(α)
n (x, z;u, a, b, c;λ)

tn

n!

∞∑
m=0

HE
(β)
m (y, w;u, a, b, c;λ)

tm

m!
.

Replacing n by n−m in above equation, we get

I =

∞∑
n=0

n∑
m=0

(
n
m

)
HE

(β)
m (y, w;u, a, b, c;λ)HE

(α)
n−m(x, z;u, a, b, c;λ).

tn

n!
.

Now equating the coefficients of the like powers of t in the above equa-
tion, we get the result (2.7). Again by definition (2.1) of generalized
Apostol type Frobenius-Euler-Hermite polynomials, we have(

at − u
λbt − u

)α
c(x+z)t+yt

2
=
∞∑
n=0

HE
(α)
n (x+ z, y;u, a, b, c;λ)

tn

n!
, (2.9)
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which can be written as(
at − u
λbt − u

)α
cxtczt+yt

2
=

∞∑
n=0

H(α)
n (x;u, a, b, c;λ)

tn

n!

∞∑
m=0

Hm(z, y, c)
tm

m!
.

(2.10)
Replacing n by n−m in R.H.S of above equation, we have
∞∑
n=0

HE
(α)
n (x+ z, y;u, a, b, c;λ)

tn

n!
=

∞∑
n=0

n∑
m=0

(
n
m

)
H(α)
n−m(x;u, a, b, c;λ)

×Hm(z, y; c)
tn

n!
.

Equating their coefficients of tn leads to formula (2.8).

Theorem 2.4. The following relationship holds true:

(2u− 1)

n∑
k=0

(
n
k

)
Hk(x;u, a, b, c;λ)HEn−k(y, z; 1− u, a, b, c;λ)

= (u− 1)HEn(x+ y, z;u, a, b, c;λ) + uHEn(x+ y, z; 1− u; a, b, c;λ)

+
n∑
k=0

(
n
k

)
(ln a)kHEn−k(x+ y, z;u, a, b, c;λ)−

n∑
k=0

(
n
k

)
(ln a)k

×HEn−k(x+ y, z; 1− u, a, b, c;λ).
(2.11)

Proof. We set

(2u− 1)

(
at − u
λbt − u

)
cxt
(
at − (1− u)

λbt − (1− u)

)
cyt+zt

2

= (at − u)(at − (1− u))c(x+y)t+zt
2

(
1

λbt − u
− 1

λbt − (1− u)

)
.

From the above equation, we see that

(2u− 1)

( ∞∑
k=0

Hk(x;u, a, b, c;λ)
tk

k!

)( ∞∑
n=0

HEn(y, z; 1− u; a, b, c;λ)
tn

n!

)

= (at − 1 + u)
∞∑
n=0

HEn(x+ y, z;u, a, b, c;λ)
tn

n!

−(at − u)
∞∑
n=0

HEn(x+ y, z; 1− u; a, b, c;λ)
tn

n!
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(2u− 1)
∞∑
n=0

∞∑
k=0

Hk(x;u, a, b, c;λ)HEn(y, z; 1− u, a, b, c;λ)
tn+k

n!k!

= (u− 1)

∞∑
n=0

HEn(x+ y, z;u, a, b, c;λ)
tn

n!

+u
∞∑
n=0

HEn(x+ y, z; 1− u, a, b, c;λ)
tn

n!

+
∞∑
n=0

∞∑
k=0

(ln a)kHEn(x+ y, z;u, a, b, c;λ)
tn+k

n!k!

−
∞∑
n=0

∞∑
k=0

(ln a)kHEn(x+y, z; 1−u, a, b, c;λ)
tn+k

n!k!
.

Replacing n by n− k in r.h.s above equation, we get

(2u− 1)
∞∑
n=0

n∑
k=0

(
n
k

)
Hk(x;u, a, b, c;λ)HEn−k(y, z; 1− u, a, b, c;λ)

tn

n!

= (u− 1)
∞∑
n=0

HEn(x+ y, z;u, a, b, c;λ)
tn

n!

+u
∞∑
n=0

HEn(x+ y, z; 1− u, a, b, c;λ)
tn

n!

+
∞∑
n=0

n∑
k=0

(
n
k

)
(ln a)kHEn−k(x+ y, z;u, a, b, c;λ)

tn

n!

−
∞∑
n=0

n∑
k=0

(
n
k

)
(ln a)kHEn−k(x+ y, z; 1− u, a, b, c;λ)

tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we
arrive at the desired result.

Remark 2.5. For z = 0 in equation (2.11), the result reduces to
known result of Kurt and Simsek [6, Eq.9,p.3].

Remark 2.6. By substituting z = 0, a = λ = 1 and b = c = e into
Theorem (2.2), we get Carlitz’s result (for details see [2, Eq.2.19]) as
follows:

(2u− 1)

n∑
k=0

(
n
k

)
Hk(x;u)Hn−k(y; 1− u)
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= (u−1)Hn(x+y;u)+uHn(x+y; 1−u)+Hn(x+y;u)−Hn(x+y; 1−u).
(2.12)

We recall the following generating function of the polynomials Yn(x;λ; a)

t

λat − 1
axt =

∞∑
n=0

Yn(x;λ; a)
tn

n!
, (a ≥ 1) (2.13)

(c.f.[14, 15]). We also note that

Yn(0;λ; a) = Yn(λ; a).

If we substitute x = 0 and a = 1 into (2.13), we see that

Yn(λ; 1) =
1

λ− 1
.

Theorem 2.7. The generalized Apostol type Frobenius Euler-
Hermite polynomials holds true as follows:

n (HEn+1(x, y;u, a, b, b;λ)− ln(bx)HEn(x, y;u, a, b, b;λ))

= ln(a
1
u )

n∑
k=0

(
n
k

)
Yn−k(1;

1

u
, a)HEk(x, y;u, a, b, b;λ)

+ ln(b
λ
u )

n∑
k=0

(
n
k

)
Yn−k(

1

u
; a)HE

(2)
k (x, y;u, a, b, b;λ). (2.14)

Proof. Substituting c = b, α = 1, in equation (2.1) and taking deriv-
ative with respect to t, we obtain

∞∑
n=0

HEn+1(x, y;u; a, b, b;λ)
tn

n!
=
at ln a

at − u

(
at − u
λbt − u

)
bxt+yt

2

+
λbt ln b

at − u

(
at − u
λbt − u

)2

bxt+yt
2

+ ln(bx)

(
at − u
λbt − u

)
bxt+yt

2
.

Using equation (2.13), we have

∞∑
n=0

HEn+1(x, y;u; a, b, b;λ)
tn

n!
=

ln(a
1
u )

t

∞∑
n=0

n∑
k=0

(
n
k

)
Yn−k(1;

1

u
; a)

×HEk(x, y;u; a, b, b;λ)
tn

n!

+
ln(b

λ
u )

t

∞∑
n=0

n∑
k=0

(
n
k

)
Yn−k(

1

u
; a)HE

(2)
k (x, y;u; a, b, b;λ)

tn

n!
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+ ln(bx)
∞∑
n=0

HEn(x, y;u; a, b, c;λ)
tn

n!
.

Thus after some elementary calculations, we arrive at (2.14).

Remark 2.8. For y=0 in equation (2.14), the result reduces to a
known result of Kurt and Simsek [6, Eq.11.,p.14].

Theorem 2.9. Let α ∈ N. Then we have
α∑
k=0

(
α
k

)(
n
m

)
(−u)α−k(k ln a)mHn−m(x, y; c)

=
α∑
k=0

(
α
k

)(
n
m

)
λk(−u)α−k(k ln b)mHEn−m(x, y;u.a, b, c;λ).

(2.15)

Proof. From (2.1), we have(
at − u
λbt − u

)α
cxt+yt

2
=
∞∑
n=0

HE
(α)
n (x, y;u, a, b, c;λ)

tn

n!

(at − u)αcxt+yt
2

= (λbt − u)α
∞∑
n=0

HE
(α)
n (x, y;u, a, b, c;λ)

tn

n!
. (2.16)

L.H.S =

α∑
k=0

(
α
k

)
(−u)α−katkcxt+yt

2

=

∞∑
n=0

(
α∑
k=0

(
α
k

)(
n
m

)
(−u)α−k(k ln a)mHn−m(x, y; c)

)
tn

n!
. (2.17)

R.H.S =

α∑
k=0

(
α
k

)
(−u)α−kλkbtk

∞∑
n=0

HE
(α)
n (x, y;u, a, b, c;λ)

tn

n!

=
∞∑
n=0

(
α∑
k=0

(
α

k

)(
n

m

)
λk(−u)α−k(k ln b)mHEn−m(x, y;u.a, b, c;λ)

)
tn

n!
.

(2.18)
From equations (2.17) and (2.18), we get (2.15).
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Theorem 2.10. For n ≥ 0, p, q ∈ R, the following formula for gen-
eralized Apostol type Frobenius-Euler-Hermite polynomials holds true:

HE
(α)
n (px, qy;u, a, b, c;λ)

= n!
n∑
k=0

[ k
2
]∑

j=0

HE
(α)
n−k(x, y;u, a, b, c;λ)((p− 1)x ln c)k−2j((q − 1)y ln c)j

× tn

(n− k − 2j)!j!k!
. (2.19)

Proof. Rewriting the generating function (2.1), we have

∞∑
n=0

HE
(α)
n (px, qy;u, a, b, c;λ)

tn

n!
=

(
at − u
λbt − u

)α
cxt+yt

2
c(p−1)xtc(q−1)yt

2

=

( ∞∑
n=0

HE
(α)
n (x, y;u, a, b, c;λ)

tn

n!

)( ∞∑
k=0

((p− 1)x ln c)k
tk

k!

)

×

 ∞∑
j=0

((q − 1)y ln c)j
t2j

j!


=

( ∞∑
n=0

HE
(α)
n (x, y;u, a, b, c;λ)

tn

n!

)

×

 ∞∑
k=0

∞∑
j=0

((p− 1)x ln c)k((q − 1)y ln c)j
tk+2j

n!k!j!

 .

Replacing k by k − 2j in above equation, we have

L.H.S. =

( ∞∑
n=0

HE
(α)
n (x, y;u, a, b, c;λ)

tn

n!

)

×

 ∞∑
k=2j

((p− 1)x ln c)k−2j((q − 1)y ln c)j
tk

(k − 2j)!j!


=

∞∑
n=0

∞∑
k=2j

HE
(α)
n (x, y;u, a, b, c;λ)((p− 1)x ln c)k−2j

((q − 1)y ln c)j
tn+k

(k − 2j)!j!n!
.
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Again replacing n by n− k in above equation, we have

L.H.S. =

∞∑
n=0

n∑
k=0

[ k
2
]∑

j=0

HE
(α)
n−k(x, y;u, a, b, c;λ)((p− 1)x ln c)k−2j

×((q − 1)y ln c)j
tn

(n− k − 2j)!j!k!
.

Finally, equating the coefficients of tn on both sides, we acquire the
result (2.19).

Remark 2.11. By taking c = e in (2.19), we get the following corol-
lary.

Corollary 2.12. For p, q ∈ R, x, y ∈ C and n ≥ 0, we have

HE
(α)
n (px, qy;u, a, b;λ)

= n!
n∑
k=0

[ k
2
]∑

j=0

HE
(α)
n−k(x, y;u, a, b;λ)((p− 1)x)k−2j

((q − 1)y)j
tn

(n− k − 2j)!j!k!
. (2.20)

Theorem 2.13. For n ≥ 0, p, q ∈ R and x, y ∈ C. Then we have

HE
(α)
n (px, qy;u, a, b, c;λ)

=

n∑
k=0

(
n
k

)
HE

(α)
n−k(x, y;u, a, b, c;λ)Hk((p− 1)x, (q − 1)y; c). (2.21)

3. Summation formulae for generalized Apostol type
Frobenius-Euler-Hermite polynomials

We give here implicit formulae for generalized Apostol type Frobenius-

Euler-Hermite polynomials HE
(α)
n (x, y;u, a, b, c;λ). First, we begin with

the following theorem.

Theorem 3.1. The following implicit summation formulae for gen-

eralized Apostol type Frobenius-Euler-Hermite polynomials HE
(α)
n (x, y;

u, a, b, c;λ) holds true:

HE
(α)
k+l(z, y;u, a, b, c;λ)
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=

k,l∑
n,m=0

(
l

m

)(
k

n

)
(ln c)n+m(z − x)n+mHE

(α)
k+l−n−m(x, y;u, a, b, c;λ).

(3.1)

Proof. We replace t by t+w and rewrite the generating function (2.1)
as, (see [5, 10, 11])(

at+w − u
λbt+w − u

)α
cy(t+w)

2
= c−x(t+w)

∞∑
k,l=0

HE
(α)
k+l(x, y;u, a, b, c;λ)

tk

k!

wl

l!
.

(3.2)

Replacing x by z in the above equation and equating the resulting
equation to the above equation, we get

c(z−x)(t+w)
∞∑

k,l=0

HE
(α)
k+l(x, y;u, a, b, c;λ)

tk

k!

wl

l!

=
∞∑

k,l=0

HE
(α)
k+l(z, y;u, a, b, c;λ)

tk

k!

wl

l!
. (3.3)

On expanding exponential function (3.3) gives

∞∑
N=0

[(z − x)(t+ w)]N

N !

∞∑
k,l=0

HE
(α)
k+l(x, y;u, a, b, c;λ)

tk

k!

wl

l!

=
∞∑

k,l=0

HE
(α)
k+l(z, y;u, a, b, c;λ)

tk

k!

wl

l!
, (3.4)

which on using formula [9]

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
, (3.5)

in the left hand side becomes
∞∑

n,m=0

(ln c)m+n(z − x)n+mtnwm

n!m!

∞∑
k,l=0

HE
(α)
k+l(x, y;u, a, b, c;λ)

tk

k!

wl

l!

=
∞∑

k,l=0

HE
(α)
k+l(z, y;u, a, b, c;λ)

tk

k!

wl

l!
. (3.6)
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Now replacing k by k − n, and l by l −m in the left hand side of (3.6),
we get

∞∑
k,l=0

k,l∑
n,m=0

(ln c)m+n(z − x)n+m

n!m!

HE
(α)
k+l−n−m(x, y;u, a, b, c;λ)

tk

(k − n)!

wl

(l −m)!

=
∞∑

k,l=0

HE
(α)
k+l(z, y;u, a, b, c;λ)

tk

k!

wl

l!
. (3.7)

Finally on equating the coefficients of the like powers of t and w in the
above equation, we get the required result.

Remark 3.2. By taking l = 0 in Eq. (3.1), we immediately deduce
the following result.

Corollary 3.3. The following implicit summation formula for Apos-

tol type Frobenius-Euler-Hermite polynomials HH
(α)
n (x, y;u, a, b, c;λ)

holds true:

HE
(α)
k+l(z, y;u, a, b, c;λ)

=

k∑
n=0

(
k
n

)
(ln c)n(z − x)nHE

(α)
k−n(x, y;u, a, b, c;λ). (3.8)

Remark 3.4. On replacing z by z+x and setting y = 0 in Theorem
(3.1), we get the following result involving Apostol type Frobenius-Euler-
Hermite polynomials of one variable

HE
(α)
k+l(z + x;u, a, b, c;λ)

=

k,l∑
n,m=0

(
l
m

)(
k
n

)
(ln c)n+mzn+mHE

(α)
k+l−n−m(x;u, a, b, c;λ),

(3.9)
whereas by setting z = 0 in Theorem 3.1, we get another result involv-
ing Apostol type Frobenius-Euler-Hermite polynomials of one and two
variables

HE
(α)
k+l(y;u, a, b, c;λ)

=

k,l∑
n,m=0

(
l
m

)(
k
n

)
(ln c)n+m(−x)n+mHE

(α)
k+l−n−m(x, y;u, a, b, c;λ).

(3.10)
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Theorem 3.5. Let a, b, c > 0 and a 6= b. Then for x, y ∈ R and
n ≥ 0, we have

HE
(α)
n (x, y;u; a, b, c;λ) =

n−2j∑
k=0

[n
2
]∑

j=0

(
n− 2j
k

)
(ln c)n−k−j

×H(α)
k (u; a, b;λ)xn−k−2jyj . (3.11)

Proof. Applying the definition (2.1) to the term
(
at−u
λbt−u

)α
and ex-

panding the exponential function cxt+yt
2

at t = 0 yields(
at − u
λbt − u

)α
cxt+yt

2
=

( ∞∑
k=0

H(α)
k (u; a, b;λ)

tk

k!

)( ∞∑
n=0

xn(ln c)n
tn

n!

)

×

 ∞∑
j=0

yj(ln c)j
t2j

j!


=
∞∑
n=0

(
n∑
k=0

(
n
k

)
(ln c)n−kH(α)

k (u; a, b;λ)xn−k

)
tn

n!

 ∞∑
j=0

yj(ln c)j
t2j

j!

 .

Replacing n by n− 2j, we have

∞∑
n=0

HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!

=

∞∑
n=0

n−2j∑
k=0

[n
2
]∑

j=0

(
n− 2j
k

)
(ln c)n−k−jH(α)

k (u; a, b;λ)xn−k−2jyj

 tn

n!
.

(3.12)
Combining (3.12) and (2.1) and equating their coefficients of tn pro-

duce the formula (3.11).

Theorem 3.6. Let a, b, c > 0 and a 6= b. Then for x, y ∈ R and
n ≥ 0, we have

HE
(α)
n (x+ 1, y;u; a, b, c;λ) =

[n
2
]∑

j=0

n−2j∑
k=0

(
n− 2j
k

)
yj(ln c)n−k−j

×H(α)
k (x;u; a, b, c;λ). (3.13)
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Proof. By the Definition of generalized Apostol type Frobenius-Euler-
Hermite polynomials, we have(

at − u
λbt − u

)α
c(x+1)t+yt2 =

∞∑
n=0

HE
(α)
n (x+ 1, y;u; a, b, c;λ)

tn

n!
, (3.14)

which can be written as( ∞∑
k=0

H(α)
k (x;u; a, b, c;λ)

tk

k!

)( ∞∑
n=0

(ln c)n
tn

n!

) ∞∑
j=0

yj(ln c)j
t2j

j!


=

∞∑
n=0

n∑
k=0

(
n
k

)
(ln c)n−kH(α)

k (x;u; a, b, c;λ)
tn

n!

 ∞∑
j=0

yj(ln c)j
t2j

j!


=
∞∑
n=0

∞∑
j=0

n∑
k=0

(
n
k

)
yj(ln c)n−k+jH(α)

k (x;u; a, b, c;λ)
tn+2j

n!j!
.

Replacing n by n− 2j, we have

∞∑
n=0

HE
(α)
n (x+ 1, y;u; a, b, c;λ)

tn

n!
=

∞∑
n=0

[n
2
]∑

j=0

n−2j∑
k=0

(
n− 2j

k

)
yj(ln c)n−k−j

×H(α)
k (x;u; a, b, c;λ)

tn

n!
. (3.15)

Combining (3.14) and (3.15) and equating their coefficients of tn leads
to formula (3.13).

Theorem 3.7. Let a, b, c > 0 and a 6= b. Then for x, y ∈ R and
n ≥ 0,

HE
(α+1)
n (x, y;u; a, b, c;λ) =

n∑
m=0

(
n
m

)
Hn−m(u; a, b;λ)

×HE(α)
m (x, y;u; a, b, c;λ). (3.16)

Proof. By the Definition of generalized Apostol type Frobenius-Euler-
Hermite polynomials, we have

at − u
λbt − u

(
at − u
λbt − u

)α
cxt+yt

2
=

at − u
λbt − u

∞∑
m=0

HE
(α)
m (x, y;u; a, b, c;λ)

tm

m!(
at − u
λbt − u

)α+1

cxt+yt
2

=
at − u
λbt − u

∞∑
m=0

HE
(α)
m (x, y;u; a, b, c;λ)

tm

m!
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=
∞∑
n=0

Hn(u; a, b;λ)
tn

n!

∞∑
m=0

HE
(α)
m (x, y;u; a, b, c;λ)

tm

m!
.

Now replacing n by n −m and equating the coefficients of tn leads to
formula (3.16).

Theorem 3.8. For arbitrary real or complex parameter α, the fol-
lowing implicit summation formula involving generalized Apostol type

Frobenius-Euler-Hermite polynomials HH
(α)
n (x, y;u; a, b, c;λ) holds true:

HE
(α)
n (x+1, y;u; a, b, c;λ) =

n∑
k=0

(
n
k

)
(ln c)n−kHE

(α)
k (x, y;u; a, b, c;λ).

(3.17).

Proof. By the definition of generalized Apostol type Frobenius-Euler-
Hermite polynomials, we have

∞∑
n=0

HE
(α)
n (x+ 1, y;u; a, b, c;λ)

tn

n!
−
∞∑
n=0

HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!

=

(
at − u
λbt − u

)α
cxt+yt

2
(ct − 1)

=

( ∞∑
k=0

HE
(α)
k (x, y;u; a, b, c;λ)

tk

k!

)( ∞∑
n=0

(ln c)n
tn

n!

)

−
∞∑
n=0

HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!

=
∞∑
n=0

n∑
k=0

(ln c)n−kHE
(α)
k (x, y;u; a, b, c;λ)

tn

(n− k)!

−
∞∑
n=0

HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
.

Finally, equating the coefficients of the like powers of tn, we get (3.17).

Theorem 3.9. For arbitrary real or complex parameter α, the fol-
lowing implicit summation formula involving generalized Apostol type

Frobenius-Euler-Hermite polynomials HE
(α)
n (x, y;u; a, b, c;λ) holds true:

n∑
m=0

(
n
m

)
(ln ab)m(α)mHE

(α)
n−m(−x, y;u; a, b, c;λ)
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= (−1)nHE
(α)
n (x, y;u; a, b, c;λ) (3.18)

HE
(α)
n (α− x, y;u;

c

b
,
c

a
, c;λ) = (−1)nHE

(α)
n (x, y;u; a, b, c;λ). (3.19)

Proof. We replace t by −t in (2.1) and then subtract the result from
(2.1) itself finding

cyt
2

[(
at − u
λbt − u

)α
(cxt − (ab)αtc−xt)

]
=
∞∑
n=0

[1− (−1)n]HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
, (3.20)

which is equivalent to
∞∑
n=0

HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
−

( ∞∑
m=0

(α)m(ln ab)m
tm

m!

)

×
∞∑
n=0

HE
(α)
n (−x, y;u; a, b, c;λ)

tn

n!

∞∑
n=0

HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
−

( ∞∑
n=0

n∑
m=0

(α)m(ln ab)m

)

×HE(α)
n−m(−x, y;u; a, b, c;λ)

tn

(n−m)!

=
∞∑
n=0

[1− (−1)n]HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
,

and thus by equating coefficients of like powers of tn, we get (3.18). In
order to get (3.19), we write (3.20) in the form

cyt
2

[(
at − u
λbt − u

)α
cxt −

(
( ca)t − u
λ( cb)

t − u

)α
(c(α−x)t)

]

=
∞∑
n=0

[1− (−1)n]HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
, (3.21)

which is equivalent to
∞∑
n=0

HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
−
∞∑
n=0

HE
(α)
n (α− x, y;

c

b
,
c

a
, c;λ)

tn

n!

=
∞∑
n=0

[1− (−1)n]HE
(α)
n (x, y;u; a, b, c;λ)

tn

n!
. (3.22)
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Now comparing the coefficients of tn in above equation, we get the
result (3.19).

4. Identities for Apostol type Frobenius-Euler-Hermite
polynomials

In this section, we give general symmetry identities for the Apos-

tol type Frobenius-Euler polynomials H(α)
n (u; a, b, c;λ) and generalized

Apostol type Frobenius-Euler-Hermite polynomials HE
(α)
n (x, y;u; a, b, c;

λ) by applying the generating functions (1.2) and (2.1).

Theorem 4.1. Let a, b, c > 0 and a 6= b. For x, y ∈ R and n ≥ 0.
Then the following identity holds true:

n∑
k=0

(
n
k

)
bkan−kHE

(α)
n−k(bx, b

2y;A,B, c;λ)HE
(α)
k (ax, a2y;u;A,B, c;λ)

=

n∑
k=0

(
n
k

)
akbn−kHE

(α)
n−k(ax, a

2y;u;A,B, c;λ)

×HE(α)
k (bx, b2y;u;A,B, c;λ). (4.1)

Proof. Start with

A(t) =

((
Aat − u
λBat − u

)(
Abt − u
λBbt − u

))α
cabxt+a

2b2yt2 . (4.2)

Then the expression for A(t) is symmetric in a and b and we can expand
A(t) into series in two ways to obtain

A(t) =
∞∑
n=0

HE
(α)
n (bx, b2y;u;A,B, c;λ)

(at)n

n!

×
∞∑
k=0

HE
(α)
k (ax, a2y;u;A,B, c;λ)

(bt)k

k!

=

∞∑
n=0

(
n∑
k=0

(
n
k

)
bkan−kHE

(α)
n−k(bx, b

2y;u;A,B, c;λ)

HE
(α)
k (ax, a2y;u;A,B, c;λ)

) tn
n!
.
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On the similar lines we can show that

A(t) =
∞∑
n=0

HE
(α)
n (ax, a2x;u;A,B, c;λ)

(bt)n

n!

×
∞∑
k=0

HE
(α)
k (bx, b2y;u;A,B, c;λ)

(at)k

k!

=

∞∑
n=0

(
n∑
k=0

(
n
k

)
akbn−kHE

(α)
n−k(ax, a

2y;u;A,B, c;λ)

HE
(α)
k (bx, b2y;u;A,B, c;λ)

) tn
n!
.

By comparing the coefficients of tn on the right hand sides of the last
two equations, we arrive at the desired result (4.1).

Remark 4.2. For α = 1, the above result reduces to

n∑
k=0

(
n

k

)
bkan−kHEn−k(bx, b

2y;A,B, c;λ)HEk(ax, a
2y;u;A,B, c;λ)

=

n∑
k=0

(
n

k

)
akbn−kHEn−k(ax, a

2y;u;A,B, c;λ)HEk(bx, b
2y;u;A,B, c;λ).

(4.3)
Further by taking c = e in Theorem 4.1, we immediately deduce

the following result involving generalized Apostol type Frobenius-Euler-

Hermite polynomials HE
(α)
n (x, y;u;A,B, e;λ) for nonnegative integer n.

n∑
k=0

(
n
k

)
bkan−kHE

(α)
n−k(bx, b

2y;A,B, e;λ)HE
(α)
k (ax, a2y;u;A,B, e;λ)

=
n∑
k=0

(
n
k

)
akbn−kHE

(α)
n−k(ax, a

2y;u;A,B, e;λ)

×HE(α)
k (bx, b2y;u;A,B, e;λ). (4.4)

Remark 4.3. By setting b = 1 in Theorem 4.1, we immediately
following result

n∑
k=0

(
n
k

)
an−kHE

(α)
n−k(x, y;A,B, c;λ)HE

(α)
k (ax, a2y;u;A,B, c;λ)
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=
n∑
k=0

(
n
k

)
akHE

(α)
n−k(ax, a

2y;u;A,B, c;λ)HE
(α)
k (x, y;u;A,B, c;λ).

(4.5)

Theorem 4.4. Let a, b, c > 0 and a 6= b. For x, y ∈ R and n ≥ 0.
Then the following identity holds true:

n∑
k=0

(
n

k

) a−1∑
i=0

b−1∑
j=0

(−λ)i+jan−kbkHE
(α)
n−k

(
bx+

b

a
i+ j, b2z;u;A,B, c;λ

)
×H(α)

k (ay;u;A,B, c;λ)

=
n∑
k=0

(
n

k

) b−1∑
i=0

a−1∑
j=0

(−λ)i+jbn−kakHE
(α)
n−k

(
ax+

a

b
i+ j, a2z;u;A,B, c;λ

)
×H(α)

k (by;u;A,B, c;λ). (4.6)

Proof. Let

B(t)=

((
Aat − u
λBat − u

)(
Abt − u
λBbt − u

))α
1 + λ(−1)a+1cabt

(λcat + 1)(λcbt + 1)
cab(x+y)t+a

2b2zt2

B(t) =

(
Aat − u
λBat − u

)α
cabxt+a

2b2zt2
(

1− λ(−c−bt)a

λcbt + 1

)(
Abt − u
λBbt − u

)α
×cabyt

(
1− λ(−c−at)b

λcat + 1

)
=

(
Aat−u
λBat−u

)α
cabxt+a

2b2zt2
a−1∑
i=0

(−λ)icbti
(
Abt−u
λBbt−u

)α
cabyt

b−1∑
j=0

(−λ)jcatj

=

(
Aat − u
λBat − u

)α
ca

2b2zt2
a−1∑
i=0

b−1∑
j=0

(−λ)i+jc(bx+
b
a
i+j)at

×
∞∑
k=0

H(α)
k (ay;u;A,B, c;λ)

(bt)k

k!

=

∞∑
n=0

a−1∑
i=0

b−1∑
j=0

(−λ)i+jHE
(α)
n

(
bx+

b

a
i+ j, b2z;u;A,B, c;λ

)
(at)n

n!

×
∞∑
k=0

Hα
k (ay;u;A,B, c;λ)

(bt)k

(k)!
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=
∞∑
n=0

n∑
k=0

(
n
k

) a−1∑
i=0

b−1∑
j=0

(−λ)i+jan−kbk

×HE(α)
n−k

(
bx+

b

a
i+ j, b2z;u;A,B, c;λ

)
H(α)
k (ay;u;A,B, c;λ)

tn

n!
.

(4.7)
On the other hand

B(t) =
∞∑
n=0

n∑
k=0

(
n
k

) b−1∑
i=0

a−1∑
j=0

(−λ)i+jbn−kak

×HE(α)
n−k

(
ax+

a

b
i+ j, a2z;u;A,B, c;λ

)
H(α)
k (by;u;A,B, c;λ)

tn

n!
. (4.8)

By comparing the coefficients of tn on the right hand sides of the last
two equations, we arrive at the desired result (4.6).

5. Conclusion

In the previous sections we have touched on the problem of recog-
nizing the algebraic structure underlying the generalized Apostol type
Frobenius-Euler-Hermite polynomials as given by the definition (2.1).
The analysis is aimed at accounting for the wealth of the properties ex-
hibited by these polynomials within the context of the Frobenius-Euler
numbers and polynomials which provides a unifying formalism where
the theory of special functions can be framed in a natural way.

Some analogies with the theory of Frobenius-Euler numbers and poly-
nomials can be recognized and usefully exploited to infer further prop-
erties of these polynomials and links with other special functions. Let us
stress that the scheme suggested by the following properties of Frobenius-
Euler numbers and polynomials θn,ρ(x) studied in details by Janson [4]
can be applied to connect other special functions of relevance in mathe-
matical physics, for instance, Laguerre and hypergeometric functions in
place of Hermite polynomials considered in this paper.

Let us briefly comment on the following general polynomials θn,ρ(x)
which were perhaps first introduced by Carlitz (see [2] and [4]) in the
form

eρt

1− xt
=
∞∑
n=0

θn,ρ(x)

(1− t)n+1

tn

n!
, (5.1)
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or, equivalently
∞∑
n=0

θn,ρ(x)
tn

n!
=

(1− x)eρt(1−x)

1− xet(1−x)
.

More generally, we can obtain [4]

∞∑
n=0

θn,1−ρ(x)

(x− 1)n
tn

n!
= etρ

(1− x)

et − x
.

This gives an advantage that (5.1) (for all x, since we deal with polyno-
mials) can be differentiated in ρ termwise for all (ρ ∈ C ), which for all
n ≥ 1, is

∂

∂ρ

θn,ρ(x)

(1− x)n+1
=

∞∑
j=0

n(j + ρ)n−1xj =
nθn−1,ρ(x)

(1− x)n
. (5.2)

Furthermore in a classical case ρ = 1 and x = i, i2 = −1, θn,1 has a
connection with the Bernoulli numbers B2n [3]

θn,1(i) = (−2i)m
(2n+1 − 1)

n+ 1
Bn+1, n = 2m+ 1.

It is interesting to notice that (5.1) can be written as a Rodrigues formula

θn,ρ(x) = (1− x)n+1

(
ρ+ x

d

dx

)n 1

1− x
, (5.3)

which yields the recursion formula after expansion. Here ρ is a parame-
ter that can be any complex number.

Many other combinatorial numbers and polynomials satisfy recursion
and other formulas similar to (5.2) and (5.3), (see [16]) for a general
version. This, however, will be the topic of future investigations.
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