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THE STUDY ON GENERALIZED (p, q)-POLY-GENOCCHI

POLYNOMIALS WITH VARIABLE a†

H.Y. LEE

Abstract. In this paper, the generalized (p, q)-poly-Genocchi polynomials

with variable a is defined by generalizing it more, and various properties

of this polynomial are introduced. To do this, we define a generating
function and use the definition to introduce some interesting properties as

follows: basic properties, relation between Stirling numbers of the second

kind and generalized (p, q)-poly-Genocchi polynomials with variable a and
symmetric properties.
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1. Introduction

Recently, among the various fields of mathematics, one of the researchers’ in-
terests is the applications of following polynomials and numbers : [Bernoulli, Eu-
ler, Genocchi, Tangent, poly-Bernoulli, poly-Euler, poly-Genocchi, poly-Tangent
and so on] numbers and polynomials. Many mathematicians have studied Genoc-
chi numbers and polynomials and focus on expansion and generalization of theirs
with generating function. Specially, it is being studied about poly-Genocchi
numbers and polynomials concerned with polylogarithm function(cf. [1-11]).

The main symbols used in this paper are as follows. N: the set of natural
numbers, Z+: the set of nonnegative integers, Z: the set of integers and C: the
set of complex numbers, respectively.
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As already well known, the classical Genocchi polynomials Gn(x) are given
by the generating function as follows:

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
(cf. [1- 3], [6- 10]). (1.1)

When x = 0, Gn = Gn(0) are called the Genocchi numbers.

Definition 1.1. For a ∈ C \ {0}, we define a generalized Genocchi polynomials
Gn(x; a) with variable a by the following generating function

2t

eat + 1
ext =

∞∑
n=0

Gn(x; a)
tn

n!
, |t| < π

|a|
. (1.2)

When a = 1, it is equal to the classical Genocchi polynomials.

The q-polylogarithm function Lik,q(t) is defined as follows:

Lik,q(t) =

∞∑
n=1

tn

[n]kq
(k ∈ Z) (cf.[4,5,8]), (1.3)

where [n]q = 1−qn

1−q and are called q-numbers.

In this paper, we define extended the q-polylogarithm function Lik,p,q as
belows:

Lik,p,q(t) =

∞∑
n=1

tn

[n]kp,q
(k ∈ Z). (1.4)

For n ∈ Z+ and k ∈ Z, the q-poly-Bernoulli polynomials B
(k)
n,q(x) with variable

a are defined by means of the following generating function

Lik,q(1− e−t)

eat − 1
ext =

∞∑
n=0

B(k)
n,q(x)

tn

n!
.

For n ∈ Z+ and k ∈ Z, the q-poly-Genocchi polynomials G
(k)
n (x) with variable

a are defined by means of the following generating function.

2Lik,q(1− e−t)

eat + 1
ext =

∞∑
n=0

G(k)
n,q(x)

tn

n!
. (1.4)

When k = 1, Li1,q(x) = −log(1− x) and Li1,q(1− e−t) = t. Using the result
of polylogarithm function, we deduce that the poly-Genocchi polynomials is the
Genocchi polynomials when k = 1 and a = 1.

The numbers S2(n,m) are the classical Stirling numbers of the second kind
defined by the following relations:

xn =

n∑
m=0

S2(n,m)(x)m,
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where (x)n = x(x− 1)(x− 2) · · · (x− n+ 1) is falling factorial.

Generally, the Stirling numbers of the second kind is defined as:

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
(cf. [4, 6, 7, 9, 11]). (1.5)

In this paper, we introduce a generalized poly-Genocchi polynomials and num-
bers with variable a. The properties of the Genocchi polynomials with param-
eters were studied in [5, 8]. We define a generalized poly-Genocchi polynomials
with variable a and give various and interesting relations between the gener-
alized poly-Genocchi polynomials and the classical Genocchi polynomials. We
also investigate several identities that are connected with the Stirling numbers
of the second kind. Symmetry is a very important problem in mathematics. In
this paper, we find symmetric properties using special functions and power sum
polynomials.

2. Generalized q-poly-Genocchi polynomials with variable a

In this section, we introduce a generalized (p, q)-poly-Genocchi polynomials

G
(k)
n,p,q(x; a) and numbers G

(k)
n,p,q(a) with variable a by the generating functions.

We provide various identities for the polynomials G
(k)
n,p,q(x; a) and find relations

associated with classical Genocchi polynomials.

Definition 2.1. For n ∈ Z+ and k ∈ Z, the generalized (p, q)-poly-Genocchi

polynomials G
(k)
n,p,q(x; a) with variable a are defined by means of the following

generating function

2Lik,p,q(1− e−t)

eat + 1
ext =

∞∑
n=0

G(k)
n,q(x; a)

tn

n!
. (2.1)

When x = 0, G
(k)
n,p,q(a) = G

(k)
n,p,q(0; a) are called the generalized (p, q)-poly-

Genocchi numbers with variable a. When the condition allow a = 1 and p = 1,
it is trivial that the generalized (p, q)-poly-Genocchi polynomials is reduced to
q-poly-Genocchi polynomials.

From (2.1), we have a relation between the generalized q-poly-Genocchi num-
bers and polynomials.

Theorem 2.1. Let n,m be nonnegative integers and k ∈ Z. We have

G(k)
n,p,q(mx; a) =

n∑
l=0

(
n

l

)
(m− 1)n−lG

(k)
l,p,q(x; a)x

n−l.

proof.
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For n,m ∈ Z+ and k ∈ Z, we get
∞∑

n=0

G(k)
n,p,q(mx; a)

tn

n!
=

2Lik,p,q(1− e−t)

eat + 1
ext × e(m−1)xt

=

∞∑
n=0

Gk
n,p,q(x : a)

tn

n!
×

∞∑
n=1

(m− 1)nxn t
n

n!

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
(m− 1)n−lG

(k)
l,p,q(x; a)x

n−l

)
tn

n!
.

Therefore, we obtain theorem 2.1.

Theorem 2.2. Let n,m be a nonnegative integers and k ∈ Z. We have

G(k)
n,p,q(x; a) =

n∑
i=0

(
n

i

)
(−1)iEn−i(x; a)

∞∑
s=0

1

[s+ 1]kp,q

s+1∑
l=0

(
s+ 1

l

)
(−1)lli.

proof.
For n,m ∈ Z+ and k ∈ Z, we get
∞∑

n=0

G(k)
n,p,q(x; a)

(mt)
n

n!
=

2Lik,p,q(1− e−mt)

eamt + 1
exmt

=
2

eamt + 1
exmt × Lik,p,q(1− e−mt)

=

∞∑
n=0

En(x; a)
(mt)n

n!
×

∞∑
s=0

1

[s+ 1]kp,q

s+1∑
l=0

(
s+ 1

l

)
(−1)l

∞∑
n=0

(−ml)n
tn

n!

=

∞∑
n=0

(
n∑

i=0

(
n

i

)
En−i(x; a)m

n−i
∞∑
s=0

1

[s+ 1]kp,q

s+1∑
l=0

(
s+ 1

l

)
(−1)l+imili

)
tn

n!
.

Comparing the coefficient on both sides, we get:

Gk
n,p,q(x; a)m

n =

n∑
i=0

(
n

i

)
En−i(x; a)m

n−i
∞∑
s=0

1

[s+ 1]kp,q

s+1∑
l=0

(
s+ 1

l

)
(−1)l+imili.

Therefore, eliminating m on both sides gives the Theorem 2.2.
Now let’s look at the change according to the sign.
Using the Definition 2.1, we get some interesting properties from Theorem

2.3 to Theorem 2.4 for the change the sign.

Theorem 2.3. For n ∈ Z+ and k ∈ Z, we have

G(k)
n,p,q(x;−a) =

n∑
l=0

(
n

l

)
G

(k)
l,p,q(x; a)a

n−l

= G(k)
n,p,q(x+ a; a).
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Corollary 2.3.1. For n ∈ Z+ and k ∈ Z, we have

G(k)
n,p,q(x; a) =

n∑
l=0

(
n

l

)
G

(k)
l,p,q(x;−a)(−a)n−l

= G(k)
n,p,q(x− a;−a).

Theorem 2.4. For n ∈ Z+ and k ∈ Z, we have

G(k)
n,p,q(−x;−a) =

n∑
l=0

(
n

l

)
G

(k)
l,p,q(a; a)(−x)n−l

= G(k)
n,p,q(a− x; a).

If x is replaced x+ y in (2.1), we get the next addition theorem.

Theorem 2.5. For n ∈ Z+ and k ∈ Z, we have

G(k)
n,p,q(x+ y; a) =

n∑
l=0

(
n

l

)
G

(k)
l,p,q(x; a)y

n−l

=

n∑
l=0

(
n

l

)
G

(k)
l,p,q(y; a)x

n−l.

proof.
Let n ∈ Z+ and k ∈ Z. Then we get

∞∑
n=0

G(k)
n,p,q(x+ y; a)

tn

n!
=

2Lik,p,q(1− e−t)

eat + 1
e(x+y)t

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
G

(k)
l,p,q(x; a)y

n−l

)
tn

n!
.

Thus, we get the explicit result.

Theorem 2.6. For n ∈ Z+ and k ∈ Z, we have

G(k)
n,p,q(x; a+ b) =

n∑
l=0

(
n

l

)
G

(k)
l,p,q((a+ b)x; a+ b)(1− a− b)n−lxn−l.

Also, if a+ b = α, we get

G(k)
n,p,q(x;α) =

n∑
l=0

(
n

l

)
G

(k)
l,p,q(αx;α)(1− α)n−lxn−l.

proof.
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Let n ∈ Z+ and k ∈ Z. Then we get

∞∑
n=0

G(k)
n,p,q(x; a+ b)

tn

n!

=
2Lik,p,q(1− e−t)

e(a+b)t + 1
ext

=
2Lik,p,q(1− e−t)

e(a+b)t + 1
e(a+b)xt × ext

e(a+b)xt

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
G

(k)
l,p,q((a+ b)x; a+ b)(1− a− b)n−lxn−l

)
tn

n!
.

Thus, we get the explicit result.

Theorem 2.7. For n ≥ 1 and k ∈ Z, we derive

G(k)
n,p,q(x+ 1; a)−G(k)

n,p,q(x; a) =

n−1∑
l=0

(
n

l

)
G

(k)
l,p,q(x; a).

proof.
Let n ∈ Z+, k ∈ Z. From (2.1), we have

∞∑
n=0

G(k)
n,p,q(x+ 1; a)

tn

n!
−

∞∑
n=0

G(k)
n,p,q(x; a)

tn

n!

=
2Lik,p,q(1− e−t)

eat + 1
ext × (et − 1)

=

∞∑
n=1

n−1∑
l=0

(
n

l

)
G

(k)
l,p,q(x; a)

tn

n!
.

Comparing the coefficient on both sides, we obtain the desired result.

Theorem 2.8. For n ≥ 1 and k ∈ Z, we derive

G(k)
n,p,q(x+ a; a) +G(k)

n,p,q(x; a) = 2

∞∑
i=0

1

[i]kp,q

i∑
l=0

(
i

l

)
(−1)l(x− l)n

= G(k)
n,p,q(x;−a) +G(k)

n,p,q(x; a).

proof.
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Let n ∈ Z+, k ∈ Z. From (2.1), we have

∞∑
n=0

G(k)
n,p,q(x+ a; a)

tn

n!
+

∞∑
n=0

G(k)
n,p,q(x; a)

tn

n!

=
2Lik,p,q(1− e−t)

eat + 1
ext × (eat + 1)

=

∞∑
i=1

1

[i]kp,q

i∑
l=0

(
i

l

)
(−1)le(x−l)t

=
∞∑

n=0

(
2

∞∑
i=0

1

[i]kp,q

i∑
l=0

(
i

l

)
(−1)l(x− l)n

)
tn

n!
.

Comparing the coefficient on both sides, we obtain the desired result.
By using the binomials series and the definition of q-polylogarithm function,

we derive the result as below.

Theorem 2.9. For n ∈ Z+ and k ∈ Z, we have

G(k)
n,p,q(x; a) = 2

∞∑
l=0

l∑
m=0

m+1∑
s=0

(−1)l−m+s

[m+ 1]kp,q

(
m+ 1

s

)
(x− s+ al − am)n.

proof.
Let n ∈ Z+, k ∈ Z. From (1.3), we obtain

∞∑
n=0

G(k)
n,p,q(x; a)

tn

n!

=
2Lik,p,q(1− e−t)

eat + 1
ext

= 2Lik,q(1− e−t)
∞∑

m=0

(−1)mematext

= 2

( ∞∑
m=0

(−1)me(ma+x)t

)( ∞∑
l=0

(1− e−t)l+1

[l + 1]kp,q

)

= 2

∞∑
l=0

l∑
m=0

(−1)l−me(al−am+x)t (1− e−t)m+1

[m+ 1]kp,q

=

∞∑
n=0

(
2

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m+ 1

r

)
(−1)l−m+r(x− r + al − am)n

[m+ 1]kp,q

)
tn

n!
.

Similarly, we find next result that is related with the generalized Genocchi
polynomials with variable a.
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Theorem 2.10. Let n ∈ Z+ and k ∈ Z. Then we have

G(k)
n,p,q(x; a) =

∞∑
l=0

l+1∑
r=0

(
l + 1

r

)
(−1)r

[l + 1]kp,q
En,a(x− r).

proof.
For n ∈ Z+ and k ∈ Z, we have

∞∑
n=0

G(k)
n,p,q(x; a)

tn

n!
=

2Lik,p,q(1− e−t)

eat + 1
ext

=
∞∑
l=1

(1− e−t)l

[l]kp,q
× 2ext

eat + 1

=

∞∑
l=0

1

[l + 1]kp,q

l∑
r=0

(
l

r

)
(−1)r ×

∞∑
n=0

En,a(x− r)
tn

n!

=

∞∑
n=0

( ∞∑
l=0

l+1∑
r=0

(
l + 1

r

)
(−1)r

[l + 1]kp,q
En,a(x− r)

)
tn

n!
.

3. Relation between Stirling numbers of the second kind and
generalized q-poly-Genocchi polynomials with variable a

In this section, by using the generationg function of the Stirling numbers of
the second kind, we obtain some interesting relations that is associated with
the generalized q-poly-Genocchi polynomials with variable a. Recall that the
Stirling numbers of the second kind are given by

(et − 1)m

m!
=

∞∑
n=m

S2(n,m)
tn

n!
.

By the definitions of the q-polylogarithm function Lik,q(x) and the Stirling num-
bers of the second kind, we get the following result.

Lik,q(1− e−t) =

∞∑
n=1

n∑
l=1

(−1)l+n

[l]kq
l!S2(n, l)

tn

n!
. (3.1)

From the Equation (3.1), we have the next theorem which is connected with
the Stirling numbers.

Theorem 3.1. For n ∈ Z+ and k ∈ Z, we have

Lik,p,q(1− e−t) =

∞∑
n=1

n∑
l=0

(−1)n+l

[l]kp,q
l!S2(n, l)

tn

n!
.

proof.
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Let n ∈ Z+, k ∈ Z. From (1.3), we obtain

Lik,p,q(1− e−t) =

∞∑
n=1

(1− e−t)n

[n]kp,q

=

∞∑
n=1

(−1)n

[n]kp,q
n!

∞∑
l=n

S2(l, n)
(−t)l

l!

=

∞∑
n=1

∞∑
l=n

(−1)n+l

[n]kp,q
n!S2(l, n)

tl

l1

=

∞∑
n=1

n∑
l=1

(−1)n+1

[l]kp,q
l!S2(n, l)

tn

n!
.

Theorem 3.2. For n ∈ (Z+) and k ∈ Z, we have

G(k)
n,p,q(x; a) =

n−1∑
m=0

n−m∑
l=1

(
n

m

)
l!Em(x; a)

(−1)l+n−m

[l]kp,q
S2(n−m, l).

Proof. Let n ∈ Z+, k ∈ Z. From (1.3), we obtain
∞∑

n=0

G(k)
n,p,q(x; a)

tn

n!
=

2Lik,p,q(1− e−t)

eat + 1
ext

=
2

eat + 1
ext × Lik,p,q(1− e−t)

=

∞∑
n=1

n−1∑
m=0

n−m∑
l=1

(
n

m

)
l!Em(x; a)

(−1)l+n−m

[l]kp,q
S2(n−m, l)

tn

n!
.

□

Theorem 3.3. For n ∈ (Z+) and k ∈ Z, we have

G(k)
n,p,q(x; a) =

n∑
m=0

m+1∑
l=1

(
n

m

)
l!Gn−m(s; a)

(−1)l+n+m

[l]kp,q

S2(m+ 1, l)

m+ 1
.

Proof. Let n ∈ Z+ and k ∈ Z. From (1.3), we obtain
∞∑

n=0

G(k)
n,p,q(x; a)

tn

n!
=

2Lik,p,q(1− e−t)

eat + 1
ext

=
2t

eat + 1
ext × Lik,p,q(1− e−t)

t

=

∞∑
n=0

n∑
m=0

m+1∑
l=1

(
n

m

)
l!Gn−m(x; a)

(−1)1+n+m

[l]kp,q

S2(m+ 1, l)

m+ 1

tn

n!
.

□
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By Theorem 2.12 and Theorem 2.13, we get the following corollary

Corollary 3.3.1. For n ∈ (Z+) and k ∈ Z, we have

n−1∑
m=0

n−m∑
l=1

(
n

m

)
l!Em(x; a)

(−1)l+n−m

[l]kp,q
S2(n−m, l)

=

n∑
m=0

m+1∑
l=1

(
n

m

)
l!Gn−m(s; a)

(−1)l+n+m

[l]kp,q

S2(m+ 1, l)

m+ 1
.

Theorem 3.4. For n ∈ (Z+) and k ∈ Z, we have

G(k)
n,p,q(x+2a; a)−G(k)

n,p,q(x : a) = 2

∞∑
m=1

1

[m]kp,q

m∑
l=0

(
m

l

)
(−1)l((x+a−l)n−(x−l)n).

proof. Let n ∈ Z+ and k ∈ Z. From (1.3), we obtain

∞∑
n=0

G(k)
n,p,q(x+ 2a; a)−G(k)

n,p,q(x : a)
tn

n!

=
2Lik,p,q(1− e−t)

eat + 1
ext(e2at − 1)

= 2Lik,p,q(1− e−t)ext(eat − 1)

=

∞∑
n=0

2

∞∑
m=1

1

[m]kp,q

m∑
l=0

(
m

l

)
(−1)l((x+ a− l)n − (x− l)n)

tn

n!
.

4. Symmetric properties of the generalized (p, q)-Genocchi
polynomials involving special functions

In this section, we consider several special functions and investigate some
symmetric properties of the generalized (p, q)-Genocchi polynomials with vari-
able a.

Theorem 4.1. Let n ∈ Z+, k ∈ Z, m1,m2 > 0 with m1 ̸= m2. Then we obtain

Type 1:

n∑
l=0

(
n

l

)
ml

1m
n−l
2 G

(k)
l,p,q(m2x; a)G

(k)
n−l,p,q(m1x; a)

=

n∑
l=0

(
n

l

)
mn−l

1 ml
2G

(k)
n−l,p,q(m2x; a)G

(k)
l,p,q(m1x; a)

and
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Type 2:

n∑
l=0

(
n

l

)
ml

1m
n−l
2 G

(k)
l,p,q(m2x;

m2

m1
a)G

(k)
n−l,p,q(m1x;

m1

m2
a)

=

n∑
l=0

(
n

l

)
mn−l

1 ml
2G

(k)
n−l,p,q(m2x;

m2

m1
a)G

(k)
l,p,q(m1x;

m1

m2
a).

Proof. For n ∈ Z+, k ∈ Z and m1,m2 > 0(m1 ̸= m2), we consider a special
function as follows

F (t) =
4Lik,p,q(1− e−m1t)Lik,p,q(1− e−m2t)

(eam1t + 1)(eam2t + 1)
e2m1m2xt. (4.1)

The Equation (4.1) is appeared by

F (t) =
2Lik,p,q(1− e−m1t)

(eam1t + 1)
em1m2xt

2Lik,p,q(1− e−m2t)

(eam2t + 1)
em1m2xt

=

∞∑
n=0

G(k)
n,p,q(m2x; a)

(m1t)
n

n!

∞∑
n=0

G(k)
n,p,q(m1x; a)

(m2t)
n

n!

=

∞∑
n=0

n∑
l=0

(
n

l

)
mn−l

1 ml
2G

(k)
l,p,q(m1x; a)G

(k)
n−l,p,q(m2x; a)

tn

n!
.

(4.2)

Similarly, we can see that

F (t) =

∞∑
n=0

n∑
l=0

(
n

l

)
ml

1m
n−l
2 G

(k)
n−l,p,q(m1x; a)G

(k)
l,p,q(m2x; a)

tn

n!
. (4.3)

Comparing the coefficient of Equation (4.2) and (4.3), it is clear to get Theorem
4.1. □

Type 2 can be obtained in a similar way if we think of it as follows:

2Lik,p,q(1− e−m1t)

eam1t + 1
em1m2xt

=
2Lik,p,q(1− e−m1t)

e
m2
m1

a×m1t + 1
em2x×m1t.

Let m be an odd number. Then we have

emt + 1

et + 1
=

∞∑
m=0

Ak(m)
tk

k!
(4.4)

where Ak(m) =
∑m−1

i=1 (−1)
i
ik is called the alternating power sum polynomi-

als(cf, [4, 6, 11]).
Using Equation (4.4), we have the symmetric identity of the generalized q-

poly-Genocchi polynomials.
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Theorem 4.2. Let m1 and m2 be odd numbers. For n ∈ Z+ and k ∈ Z, we
have

n∑
r=0

r∑
s=0

s∑
l=0

(
n

r

)(
r

s

)(
s

l

)
an−sml+r−s+1

1 mn+s−r−l
2

×G
(k)
l,p,q(a)G

(k)
s−l,p,q(a)Ar−s(m2)Gn−r(m1x)

=

n∑
r=0

r∑
s=0

s∑
l=0

(
n

r

)(
r

s

)(
s

l

)
an−sml+n−r

1 mr−l+1
2

×G
(k)
l,p,q(a)G

(k)
s−l,p,q(a)Ar−s(m1)Gn−r−l(m2x).

proof. Let n ∈ Z+, k ∈ Z and m1,m2 > 0 withm1 ̸= m2. Then we consider
the generating function as follows:

F (t) =
8Lik,p,q(1− e−m1t)Lik,p,q(1− e−m2t)(eam1m2t + 1)(eam1m2xt)t

(eam1t + 1)
2
(eam2t + 1)

2 .

From the generating function F (t) and Equation (4.4), we get

F (t) =
2Lik,p,q(1− e−m1t)2Lik,p,q(1− e−m2t)(eam1m2t + 1)2t(eam1m2xt)

(eam1t + 1)
2
(eam2t + 1)

2

=

∞∑
n=0

G(k)
n,p,q(a)

(m1t)
n

n!

∞∑
n=0

G(k)
n,p,q(a)

(m2t)
n

n!

×
∞∑

n=0

An(m2)
(am1t)

n

n!

∞∑
n=0

Gn(m1x)
(am2t)

n

n!

=

∞∑
n=0

n∑
r=0

r∑
s=0

s∑
l=0

(
n

r

)(
r

s

)(
s

l

)
an−s−1ml+r−s

1 mn+s−r−l−1
2

×G
(k)
l,p,q(a)G

(k)
s−l,p,q(a)Ar−s(m2)Gn−r(m1x)

tn

n!
.

In similar method, F (t) is expressed by

F (t) =
2Lik,p,q(1− e−m1t)2Lik,p,q(1− e−m2t)(eam1m2t + 1)2t(eam1m2xt)

(eam1t + 1)
2
(eam2t + 1)

2

=

∞∑
n=0

G(k)
n,p,q(a)

(m1t)
n

n!

∞∑
n=0

G(k)
n,p,q(a)

(m2t)
n

n!

×
∞∑
r=0

An(m1)
(am2t)

n

n!

∞∑
n=0

Gn(m2x)
(am1t)

n

n!

=

∞∑
n=0

n∑
r=0

r∑
s=0

s∑
l=0

(
n

r

)(
r

s

)(
s

l

)
an−s−1ml+n−r−1

1 mr−l
2

×G
(k)
l,p,q(a)G

(k)
s−l,p,q(a)Ar−s(m1)Gn−r(m2x)

tn

n!
.
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Comparing the coefficient of tn

n! , we get the symmetric identity Theorem 4.2.
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