J. Appl. Math. & Informatics Vol. 27(2009), No. 3 - 4, pp. 453 - 462
Website: http://www.kcam.biz

CALCULATING ZEROS OF THE GENERALIZED GENOCCHI
POLYNOMIALS
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ABSTRACT. Kim [4] defined the generalized Genocchi numbers Gp . In
this paper, we introduce the generalized Genocchi polynomials Gy, ().
One purpose of this paper is to investigate the zeros of the generalized
Genocchi polynomials G,y (z). We also display the shape of generalized
Genocchi polynomials Gy ().
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1. Introduction

Many mathematicians have studied Genocchi polynomials and Genocchi num-
bers (see [1,2,3,4]). Genocchi polynomials and Genocchi numbers posses many
interesting properties and arising in many areas of mathematics and physics. In
this paper, we introduce the generalized Genocchi polynomials G, ,(z). In or-
der to study the generalized Genocchi polynomials G,, 5 (z), we must understand
the structure of the generalized Genocchi polynomials Gy, , (). Therefore, using
computer, a realistic study for the generalized Genocchi polynomials G, ,(z) is
very interesting.

It is the aim of this paper to observe an interesting phenomenon of ‘scattering’
of the zeros of the generalized Genocchi polynomials G, , () in complex plane.
The outline of this paper is as follows. We introduce the generalized Genocchi
polynomials G, , (z).

In Section 2, we describe the beautiful zeros of the generalized Genocchi
polynomials G, , (x) using a numerical investigation. Finally, we investigate the
roots of the generalized Genocchi polynomials G, , ().
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First, we introduce the Genocchi numbers and Genocchi polynomials. The
Genocchi numbers G, are defined by the generating function:

2t o, t"
— ~7§Gn;l—!,(|tl <), cf. [4] (1)

F(t) =

et

where we use the technique method notation by replacing G™ by Gp(n > 0)
symbolically. Here is the list of the first Genocchi’s numbers.

Gi=1, Gp=-1, G3=0, Gy=-1, G5;=0, Gg=-3,
Gy =0, Gg=17, Gyg=0, Gyp=-155, G131 =0, Giz2=2073,
G1a = —38227 G =929569, Gi1s = —28820619 Goo = 1109652905, --

In general, it satisfies G3 = G5 = G7 = --- = 0, and even coefficients are given

Gn = 2(1 — 22%)B,,, = 2nF,,_1, where B, are Bernoulli numbers and E,, are
2 N

Euler numbers which are defined by —— = Z E,—. For z € R (= the field
et+1 = n!

of real numbers), we consider the Genocchi polynomials G,,(z) as follows:
2t = "
F(z,t) = ot _ (@)= 2
(2,6) = o= e ;)G (@) (2)

n
Note that G,(z) = Z (:) Grz™ *. In the special case z = 0, we define
k=0
Gn(0) = G,.
Let m be odd. Using the multiplication theorem, we obtain

Go(z) = m™! mz_l(-uian (’ ;x) .

i=0
Here is the list of the first Genocchi’s polynomials.

Gi(z) =1, Ga(z)=2z-1, Gi(x)=32>—-3z, Gu(z)=42>+62%—-1
Gs(z) = 5z* — 102% + 52, Gg(z) = 62° — 152* + 1522 — 3, - - -
Next, we introduce the generalized Genocchi polynomials G, ,(z). Let x be

Dirichlet character with conductor f € N (f= odd). In [4], Kim, Jang, and Pak
defined the generalized Genocchi numbers Gy, ,, with character x as follows ([4]):

-1
- > (-1)*x(a)e*2t
" a=0
Z Gnyxm = eft _|_ 1 . (3)

n=0
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If x = x° in (3), then we have the F(t). We introduce the generalized Genocchi
polynomials G, , (z) with character x as follows:

F-1
D S R
. xt a=0
nzz:o Crxle)y = e 1 @)
If x = x% in (4), then we have the F(x,t). Then we obtain

F-1
Z(—l)“x(a)e‘”%

- " ta=0
E— T =
T;Gn,x(x)n' =€ eft—|~1

For n > 0, we have

!
a+t+x
Gy (x) = o1 ~1)%x(a)Gy, ) (5)
> (1x() ( f)

When z = 0, we write G, , = G} ,(0), which are called the generalized Genocchi
numbers. By definition of the generalized Genocchi polynomials G, y(x) with
character y, we obtain

G = 7! §<—1>ax<a>en ()

By above definition, we obtain
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, : ot .
By using comparing coefficients ik we have the following theorem.

Theorem 1. For any positive integer n, we have

nax(T) = i( )Gk,xf'f

Let x be Dirichlet character with conductor f = 3. We obtain the first value

of the generalized Genocchi numbers Gy, :

Gix=1, Ga2y=3, Gsz,=-6, Gsy=-39, G5, =110, Gs, = 1089,

G7x = —4214, Gg, = —b55743, Gy, = 276678, G,y = 4576065,

G11,x = —27753022, Gy, = —550835487, G113,y = 3948004606,

G1a,x = 91419220641, G5, = —756031185030, G16,, = —20007447302271,

G17,x = 187521633674294, G13, = 5582849109900417,

G1g,x = —58481734930175438, Gap, = —1934560218174688095, - - -

With f =5 we have

Gix =2, Goy, =10, G3, = —18, Gq, = —310, G5, = 810, G, = 23430,
Gr,, = —84882, (g, = —3320270, Gy, = 15454098, G, = 756835550,
Gii,x = —4305202506, Ghg, = —253051752630, Gi3, = 1701175877466,
Gha,x = 116659545802870, G5, = —904914918671490,

Gre,x = —70920486447871390, G117, = 623471780847860514,

Ghs,x = 54970968246387909390, G, = —540111169018279765434,

Gao,x = —52912373781201449500550,

Since
—a—z\ ()" _(f-a-=z _ T2 (fmammyy
ZG( > n! _F(——T_’—t>_e—t+1e
a+x > a+z\ "
() =L ()

Hence we have the following theorem.

Theorem 2. Forn >0, we have

o (757) e (5).
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By using (5), we have,

f—1 P
Gl f =2a=2) = f""1 Y (~1)"x(a)Ch (gﬁ’}ﬂ’i)
a=0

= -1 g(-l)“x(a)an (»_f.;,}ﬁ:_ﬂﬁ)

By (6) and Theorem 1, we obtain

f—1
Gun(@) = £ 3 (=1 x ()G | 255
(2 ;} x(a ( ; )

-1
_  (_1yn+len—1 _1\e f-a-z
= T x(a)Gn( - )

Hence we have the following theorem.

Theorem 3. For n > 0, we have
Gry() = (=1)""1Gy y (f — 20 — ).

We also obtain the following corollary.

Corollary 4. If G, (x) =0, then G (f —2a —) = 0.

2. Zeros of the generalized Genocchi polynomials G, (z)
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Ficure 1. Conductor f = 3,5
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In this section, we display the shapes of the generalized Genocchi polynomials
Gr () and we investigate the zeros of the generalized Genocchi polynomials
Gny(z) . Forn =1,---,10, we can draw a plot of the generalized Genocchi
polynomials G, ,(z), respectively. This shows the ten plots combined into one.
We display the shape of G, 4 (z), —10 < = < 10. (Figures 1).

We investigate the beautiful zeros of the G, ,(z) by using a computer. We
plot the zeros of the generalized Genocchi polynomials Gy, ,(z) for n = 40, f =
3,5,7,9and z € C. (Figure 2).
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FiGURrE 2. Conductor f = 3,5,7,9

We plot the zeros of the generalized Genocchi polynomials Gy, , (x) with con-
ductor f = 3 for n = 10, 20, 30,40 and z € C. (Figure 3).



Calculating zeros of the generalized Genocchi polynomials 459

Table 1. Numbers of real and complex zeros of G, 5 ()

f=3 f=5
degree n || real zeros complex zeros | real zeros complex zeros
2 1 0 1 0
3 2 0 2 0
4 3 0 3 0
5 4 0 4 0
6 5 0 5 0
7 4 2 4 2
8 3 4 3 4
9 4 4 4 4
10 5 4 5 4
11 6 4 6 4

Table 2. Approximate solutions of G.(z,x) =0,f =3,z € R

degree n ”

x

—1.50000000

—3.56155281, 0.56155281

—5.2861239, —1.02078010, 1.80690401

—6.8522587, —2.3501657, 0.50679203, 2.69563238

—9.8058479, —4.0009315, —2.5186445, 0.50075600

—11.2551632, —1.00025214, 1.9992757

3
4
5
6 —8.3446779, —3.3660605, —1.00227267, 2.0175678, 3.1954433
7
8
9

~12.7003785, —2.4991238, 0.50008403, 3.4259981

10 —14.1442442, —3.942989, —1.00002801, 1.9999792, 4.464600

11 —15.5876528, —5.069919, —2.5000125, 0.50000934, 3.5074228, 5.085502

Stacks of zeros of Gy, (x) for 1 < n < 40 from a 3-D structure are presented.
(Figure 4). Our numerical results for approximate solutions of real zeros of

Gn x(z) are displayed. (Tables 1, 2, 3).

We observe a remarkably regular structure of the complex roots of the gener-
alized Genocchi polynomials. We hope to verify a remarkably regular structure
of the complex roots of the generalized Genocchi polynomials Gy, (). (Table
1). Next, we calculated an approximate solution satisfying Gy, (z),z € R. The
results are given in Table 2 and Table 3.

3. Directions for further research

Finally, we shall consider the more general problems. Prove that G, ,(z) =0
has n — 1 distinct solutions. Find the numbers of complex zeros Ca, .\ (x) Of

Grx(z), Im(zx) #£ 0.
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FIGURE 3. Zeros of G, , (z) for n = 10,20,30,40, f =3

Since n — 1 is the degree of the polynomial G, ,(z), the number of real
zeros Rg, () lying on the real plane Im(z) = 0 is then Rg, ,(z) = n— 1~
Ca, ,(z), Where Ca,, ,(z) denotes complex zeros. See Table 1 for tabulated values
of R, ,(z) and Cg, . (). Find the equation of envelope curves bounding the
real zeros lying on the plane.

We prove that G, (z),z € C, has Re(z) = % reflection symmetry in addition
to the usual Im(z) = 0 reflection symmetry analytic complex functions. The
question is: what happens with the reflection symmetry, when one considers the
generalized Genocchi polynomials G, ,(z)? ( Figures 2, 3). The author has no
doubt that investigation along this line will lead to a new approach employing
numerical method in the field of research of the generalized Genocchi polynomials
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FIGURE 4. Stacks of zeros of Gy, ,(z),1 <n <40, f=3,5

G x(z) to appear in mathematics and physics. For related topics the interested
reader is referred to [5,6,7].

Table 3. Approximate solutions of Gn(z,x) =0,f =5,z € R

degree n || x

2 —2.50000000

3 —5.5413813, 0.54138127

4 —8.0197391, —1.9535803, 2.4733194

5 —10.1983296, —4.1327431, 0.5018939, 3.8291788

6 —12.227536, —5.798466, —2.0003922, 3.1345942, 4.391800
7

8

9

-14.199741, —6.721783, —4.638162, 0.5000773
—16.162163, —1.9999772, 2.9963465
—18.130871, —4.489063, 0.5000031, 5.268329

10 —20.107497, —6.794130, —1.9999994, 3.0000825, 6.821727
11 —22.089840, —8.520678, —4.500647, 0.5000001, 5.534728, 7.689807
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