• Title/Summary/Keyword: gate-induced drain leakage (GIDL)

Search Result 23, Processing Time 0.025 seconds

The Degradation Analysis of Characteristic Parameters by NBTI stress in p-MOS Transistor for High Speed (고속용 p-MOS 트랜지스터에서 NBTI 스트레스에 의한 특성 인자의 열화 분석)

  • Lee, Yong-Jae;Lee, Jong-Hyung;Han, Dae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.80-86
    • /
    • 2010
  • This work has been measured and analyzed the device degradation of NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOS transistors of gate channel length 0.13 [${\mu}m$]. From the relation between the variation of threshold voltage and subthreshold slop by NBTI stress, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. As a results, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress parameters of nanoscale CMOS communication circuit design.

The Characteristics Analysis of GIDL current due to the NBTI stress in High Speed p-MOSFET (고속용 p-MOSFET에서 NBTI 스트레스에 의한 GIDL 전류의 특성 분석)

  • Song, Jae-Ryul;Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.348-354
    • /
    • 2009
  • It has analyzed that the device degradation by NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOSFETs. It is shown that the degradation magnitude, as well as its time, temperature, and field dependence, is govern by interface traps density at the silicon/oxide interface. from the relation between the variation of threshold voltage and subthreshold slope, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. Therefore, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress engineering of nanoscale CMOSFETs.

GIDL current characteristic in nanowire GAA MOSFETs with different channel Width (채널 폭에 따른 나노와이어 GAA MOSFET의 GIDL 전류 특성)

  • Je, Yeong-ju;Shin, Hyuck;Ji, Jung-hoon;Choi, Jin-hyung;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.889-893
    • /
    • 2015
  • In this work, the characteristics of GIDL current in nanowire GAA MOSFET with different channel width and hot carrier stress. When the gate length is fixed as a 250nm the GIDL current with different channel width of 10nm, 50nm, 80nm, and 130nm have been measured and analyzed. From the measurement, the GIDL is increased as the channel width decreaes. However, the derive current is increased as the channel width increases. From measurement results after hot carrier stress, the variation of GIDL current is increased with decreasing channel width. Finally, the reasons for the increase of GIDL current with decreasing channel width and r device. according to hot carrier stress GIDL's variation shows big change when width and the increase of GIDL current after hot carrier stress are confirmed through the device simulation.

  • PDF

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

MOSFET Characteristics and Hot-Carrier Reliability with Sidewall Spacer and Post Gate Oxidation (Sidewall Spacer와 Post Gate Oxidation에 따른 MOSFET 특성 및 Hot Carrier 신뢰성 연구)

  • 이상희;장성근;이선길;김선순;최준기;김용해;한대희;김형덕
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.243-246
    • /
    • 1999
  • We studied the MOSFET characteristics and the hot-carrier reliability with the sidewall spacer composition and the post gate oxidation thickness in 0.20${\mu}{\textrm}{m}$ gate length transistor. The MOSFET with NO(Nitride+Oxide) sidewall spacer exhibits the large degradation of hot-carrier lifetime because there is no buffering oxide against nitride stress. When the post gate oxidation is skipped, the hot-carrier lifetime is improved, but GIDL (Gate Induced Drain Leakage) current is also increased.

  • PDF

Analysis of Passing Word Line Induced Leakage of BCAT Structure in DRAM (BCAT구조 DRAM의 패싱 워드 라인 유도 누설전류 분석)

  • Su Yeon, Kim;Dong Yeong Kim;Je Won Park;Shin Wook Kim;Chae Hyuk Lim;So won Kim;Hyeona Seo;Ju Won Kim;Hye Rin Lee;Jeong Hyeon Yun;Young-Woo Lee;Hyoung-Jin Joe;Myoung Jin Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.644-649
    • /
    • 2023
  • As the cell spacing decreases during the scaling process of DRAM(Dynamic Random Access Memory), the reduction in STI(Shallow Trench Isolation) thickness leads to an increase in sub-threshold leakage due to the passing word line effect. The increase in sub-threshold leakage current caused by the voltage applied to adjacent passing word lines affects the data retention time and increases the number of refresh operations, thereby contributing to higher power consumption in DRAM. In this paper, we identify the causes of the passing word line effect through TCAD Simulation. As a result, we confirm the DRAM operational conditions under which the passing word line effect occurs, and observe that this effect alters the proportion of the total leakage current attributable to different causes. Through this, we recognize the necessity to consider not only leakage currents due to GIDL(Gate Induced Drain Leakage) but also sub-threshold leakage currents, providing guidance for improving DRAM structure.

Design Consideration of Bulk FinFETs with Locally-Separated-Channel Structures for Sub-50 nm DRAM Cell Transistors

  • Jung, Han-A-Reum;Park, Ki-Heung;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.156-163
    • /
    • 2008
  • We proposed a new $p^+/n^+$ gate locally-separated-channel (LSC) bulk FinFET which has vertically formed oxide region in the center of fin body, and device characteristics were optimized and compared with that of normal channel (NC) FinFET. Key device characteristics were investigated by changing length of $n^+$ poly-Si gate ($L_s$), the material filling the trench, and the width and length of the trench at a given gate length ($L_g$). Using 3-dimensional simulations, we confirmed that short-channel effects were properly suppressed although the fin width was the same as that of NC device. The LSC device having the trench non-overlapped with the source/drain diffusion region showed excellent $I_{off}$ suitable for sub-50 nm DRAM cell transistors. Design of the LSC devices were performed to get reasonable $L_s/L_g$ and channel fin width ($W_{cfin}$) at given $L_gs$ of 30 nm, 40 nm, and 50 nm.

The GIDL Current Characteristics of P-Type Poly-Si TFT Aged by Off-State Stress (오프 상태 스트레스에 의한 에이징된 P형 Poly-Si TFT에서의 GIDL 전류의 특성)

  • Shin, Donggi;Jang, Kyungsoo;Phu, Nguyen Thi Cam;Park, Heejun;Kim, Jeongsoo;Park, Joonghyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.372-376
    • /
    • 2018
  • The effects of off-state bias stress on the characteristics of p-type poly-Si TFT were investigated. To reduce the gate-induced drain leakage (GIDL) current, the off-state bias stress was changed by varying Vgs and Vds. After application of the off-state bias stress, the Vgs causing GIDL current was dramatically increased from 1 to 10 V, and thus, the Vgs margin to turn off the TFT was improved. The on-current and subthreshold swing in the aged TFT was maintained. We performed a technology computer-aided design (TCAD) simulation to describe the aged characteristics. The aged-transfer characteristics were well described by the local charge trapping. The activation energy of the GIDL current was measured for the pristine and aged characteristics. The reduced GIDL current was mainly a thermionic field-emission current.

The impact of substrate bias on the Z-RAM characteristics in n-channel junctionless MuGFETs (기판 전압이 n-채널 무접합 MuGFET 의 Z-RAM 특성에 미치는 영향)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1657-1662
    • /
    • 2014
  • In this paper, the impact of substrate bias($V_{BS}$) on the zero capacitor RAM(Z-RAM) in n-channel junctionless multiple gate MOSFET(MuGFET) has been analyzed experimentally. Junctionless transistors with fin width of 50nm and 1 fin exhibits a memory window of 0.34V and a sensing margin of $1.8{\times}10^4$ at $V_{DS}=3.5V$ and $V_{BS}=0V$. As the positive $V_{BS}$ is applied, the memory window and sensing margin were improved due to an increase of impact ionization. When $V_{BS}$ is increased from 0V to 10V, not only the memory window is increased from 0.34V to 0.96V but also sensing margin is increased slightly. The sensitivity of memory window with different $V_{BS}$ in junctionless transistor was larger than that of inversion-mode transistor. A retention time of junctionless transistor is better than that of inversion-mode transistor due to low Gate Induced Drain Leakage(GIDL) current. To evaluate the device reliability of Z-RAM, the shifts in the Set/Reset voltages and current were measured.

A study of 1T-DRAM on thin film transistor (박막트랜지스터를 이용한 1T-DRAM에 관한 연구)

  • Kim, Min-Soo;Jung, Seung-Min;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.345-345
    • /
    • 2010
  • 1T-DRAM cell with solid phase (SPC) crystallized poly-Si thin film transistor was fabricated and electrical characteristics were evaluated. The fabricated device showed kink effect by negative back bias. Kink current is due to the floating body effect and it can be used to memory operation. Current difference between "1" state and "0" state was defined and the memory properties can be improved by using gate induced drain leakage (GIDL) current.

  • PDF