• Title/Summary/Keyword: gate leakage

Search Result 401, Processing Time 0.03 seconds

High Temperature Characteristics of submicron GaAs MESFETs (고온 동작 MESFET 의 온도특성 해석)

  • 원창섭;유영한;신훈범;한득영;안형근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.379-382
    • /
    • 2002
  • GaAs has wide band gap, Therefore that malarial can used high Temperature application. in this paper explain to current-voltage characteristics of thermal effect. we experiment on thermal test of current-voltage characteristics and gate leakage current with real device. As a result, we propose a current-volatage characteristics model. that model base on gate leakage current, and gate leakage current influence gate source voltage.

  • PDF

Fabrication of Sputtered Gated Silicon Field Emitter Arrays with Low Gate Leakage Currents by Using Si Dry Etch

  • Cho, Eou Sik;Kwon, Sang Jik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.28-31
    • /
    • 2013
  • A volcano shaped gated Si-FEA (silicon field emitter array) was simply fabricated using sputtering as a gate electrode deposition and lift-off for the removal of the oxide mask, respectively. Due to the limited step coverage of well-controlled sputtering and the high aspect ratio in Si dry etch caused by high RF power, it was possible to obtain Si FEAs with a stable volcano shaped gate structure and to realize the restriction of gate leakage current in field emission characteristics. For 100 tip arrays and 625 tip arrays, gate leakage currents were restricted to less than 1% of the anode current in spite of the volcano-shaped gate structure. It was also possible to keep the emitters stable without any failure between the Si cathode and gate electrode in field emission for a long time.

A Gate Modification Method Using the Input Vector Maximizes the Number of Gates in WLS within the Optimum Range (최적 범위내에서 WLS인 게이트 수가 최대가 되는 입력 벡터를 이용한 게이트 수정 기법)

  • Sung, Bang-Hyun;Park, Hyae-Seong;Kim, Seok-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.745-750
    • /
    • 2007
  • In this paper, we propose a new gate modification method using the input vector maximizes the number of gates in WLS within the optimum range of the minimum leakage power. We prove that MLV is not always the optimal solution, and that the leakage power and area can decrease when modifying the gates using the input vector for which the number of gates in WLS is maximized within the optimum range of the minimum leakage power for the circuits applying the IVC technique and gate modification method. Using the proposed method, the gate-level description circuit can be converted to the modified circuit which reduces the leakage power by chip designer, and the modified circuit can be applied without any modification in design flow.

Modeling negative and positive temperature dependence of the gate leakage current in GaN high-electron mobility transistors

  • Mao, Ling-Feng
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.504-511
    • /
    • 2022
  • Monte Carlo simulations show that, as temperature increases, the average kinetic energy of channel electrons in a GaN transistor first decreases and then increases. According to the calculations, the relative energy change reaches 40%. This change leads to a reduced barrier height due to quantum coupling among the three-dimensional motions of channel electrons. Thus, an analysis and physical model of the gate leakage current that includes drift velocity is proposed. Numerical calculations show that the negative and positive temperature dependence of gate leakage currents decreases across the barrier as the field increases. They also demonstrate that source-drain voltage can have an effect of 1 to 2 orders of magnitude on the gate leakage current. The proposed model agrees well with the experimental results.

Analysis of Failure in Miniature X-ray Tubes with Gated Carbon Nanotube Field Emitters

  • Kang, Jun-Tae;Kim, Jae-Woo;Jeong, Jin-Woo;Choi, Sungyoul;Choi, Jeongyong;Ahn, Seungjoon;Song, Yoon-Ho
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1164-1167
    • /
    • 2013
  • We correlate the failure in miniature X-ray tubes with the field emission gate leakage current of gated carbon nanotube emitters. The miniature X-ray tube, even with a small gate leakage current, exhibits an induced voltage on the gate electrode by the anode bias voltage, resulting in a very unstable operation and finally a failure. The induced gate voltage is apparently caused by charging at the insulating spacer of the miniature X-ray tube through the gate leakage current of the field emission. The gate leakage current could be a criterion for the successful fabrication of miniature X-ray tubes.

Mo-tip Field Emitter Array having Modified Gate Insulator Geometry (변형된 게이트 절연막 구조를 갖는 몰리브덴 팁 전계 방출 소자)

  • Ju, Byeong-Kwon;Kim, Hoon;Lee, Nam-Yang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.59-63
    • /
    • 2000
  • For the Mo-tip field emitter array, the method by which the geometrical structure of the gate insulator wall could be modified in order to improve field emission properties(turn-on voltage and gate leakage current). The device having a gate insulator of complex shape, which means the combined geometrical structure with round shape made by wet etching and vertical shape made by dry etching processes, was fabricated and the field emission properties of the three kinds of devices were compared. As a result, the electric field applied to tip apex could be increased and gate leakage current could be decreased by employing the gate insulator having geometrical wall structure of mixed shape. Finally, the obtained empirical results were analyzed by simulation of electric field distribution at/near the tip apex and gate insulator using SNU-FEAT simulator.

  • PDF

Degradation of Gate Induced Drain Leakage(GIDL) Current of p-MOSFET along to Analysis Condition (분석 조건에 따른 p-MOSFET의 게이트에 유기된 드레인 누설전류의 열화)

  • 배지철;이용재
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.26-32
    • /
    • 1997
  • The gate induced drain leakage(GIDL) current under the stress of worse case in -MOSFET's with ultrathin gate oxides has been measured and characterized. The GIDL current was shown that P-MOSFET's of the thicker gate oxide is smaller than that of the thinner gate oxide. It was the results that the this cur-rent is decreased with the increamental stress time at the same devices.It is analyzed that the formation components of GIDL current are both energy band to band tunneling at high gate-drain voltage and energy band to defect tunneling at low drain-gate voltage. The degradations of GIDL current was analyzed the mechanism of major role in the hot carriers trapping in gate oxide by on-state stress.

  • PDF

Gate Leakage Current Characteristics of GaAs MESFETS′ with different Temperature (GaAs MESFET의 온도변화에 다른 게이트 누설전류 특성)

  • 원창섭;김시한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.50-53
    • /
    • 2001
  • In this study, gate leakage current mechanism has been analyzed for GaAs MESFET with different temperatures ranging from 27$^{\circ}C$ to 300$^{\circ}C$ . It is expected that the thermionic and field emission at the MS contact will dominate the current flow. Thermal cycle is applied to test the reliability of the device. From the results, it is proved that thermal stress gradually increases the gate leakage current at the same bias conditions and leads to the breakdown and failure mechanism which is critical in the field equipment. Finally the gate contact under the repeated thermal shock has been tested to check the quality of Schottky barrier and the current will be expressed in the analytical from to associate with the electrical characteristics of the device.

  • PDF

A study on the GaAs MESFET′s noise characteristics with temperature dependency (온도변화에 따른 GaAs MESFET′s 노이즈 특성 연구)

  • 김시한;이명수;박지홍;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.322-325
    • /
    • 2002
  • In this study, noise figures of 0.3 $\mu\textrm{m}$-GaAs MESFETs are predicted experimentally with different temperatures. Both the noise figure and the gate leakage current are obtained with wide range of temperatures(27$^{\circ}C$∼300$^{\circ}C$). From the results, gate leakage current increases with temperatures. It is expected that gate leakage current contributes directly to the increase of shot noise current. It is therefore highly recommended to apply an accurate noise analysis to the design of the devices and modules at high temperatures. Fini,Uy the relation between the gate currents resulting in the increase of noise and the noise figures of submicron GaAs MESFETs are traced with different temperatures

  • PDF

Gate Leakage Current of Power GaAs MESFET's at High Temperature

  • Won Chang-sub;Ahn Hyungkeun;Han Deuk-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.44-46
    • /
    • 2001
  • Increase of gate leakage current causes decrease of gain and increase of noise. In this paper, gate leakage current of GaAs MESEFTs' has been traced with different temperatures from $27^{\circ}C\;to\;350^{\circ}C$ to obtain the zero voltage saturation current $J_s$ which is critical to the temperature dependency of total current. From the results, thermal leakage current coefficient has been proposed to compensate for the total current due to the thermionic emission, tunneling, generation and/or hole injection.

  • PDF