DOI QR코드

DOI QR Code

Modeling negative and positive temperature dependence of the gate leakage current in GaN high-electron mobility transistors

  • Mao, Ling-Feng (School of Computer & Communication Engineering, University of Science & Technology Beijing)
  • Received : 2021.02.24
  • Accepted : 2021.07.01
  • Published : 2022.06.10

Abstract

Monte Carlo simulations show that, as temperature increases, the average kinetic energy of channel electrons in a GaN transistor first decreases and then increases. According to the calculations, the relative energy change reaches 40%. This change leads to a reduced barrier height due to quantum coupling among the three-dimensional motions of channel electrons. Thus, an analysis and physical model of the gate leakage current that includes drift velocity is proposed. Numerical calculations show that the negative and positive temperature dependence of gate leakage currents decreases across the barrier as the field increases. They also demonstrate that source-drain voltage can have an effect of 1 to 2 orders of magnitude on the gate leakage current. The proposed model agrees well with the experimental results.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China under Grant 61774014.

References

  1. T. Palacios et al., AlGaN/GaN high electron mobility transistors with InGaN back-barriers, IEEE Electron. Device Lett. 27 (2006), no. 1, 13-15. https://doi.org/10.1109/LED.2005.860882
  2. P. Murugapandiyan et al., Performance analysis of HfO2/InAlN/AlN/GaN HEMT with AlN buffer layer for high power microwave applications, J. Sci.: Adv. Mater. Devices 5 (2020), no. 2, 192-198. https://doi.org/10.1016/j.jsamd.2020.04.007
  3. K. Narang et al., Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT, J. Alloys Compd. 815 (2020), article no. 152283.
  4. S. Saadaoui, O. Fathallah, and H. Maaref, Effects of current transportation and deep traps on leakage current and capacitance hysteresis of AlGaN/GaN HEMT, Mater. Sci. Semicond. Process. 115 (2020), article no. 105100.
  5. L. F. Mao, H. S. Ning, and J. Y. Wang, The current collapse in AlGaN/GaN high-electron mobility transistors can originate from the energy relaxation of channel electrons?, PLoS ONE 10 (2015), no. 6, article no. e0128438.
  6. L. F. Mao, Current reduction caused by the quantum coupling of hot electrons in AlGaN/GaN transistors, Phys. Status Solidi A 215 (2018), article no. 1701035.
  7. L. F. Mao, Electrical double-layer modeling of different Al-Content on the performance of AlGaN/GaN HEMTs, ECS J. Solid State Sci. Technol. 7 (2018), no. 9, P496-P500. https://doi.org/10.1149/2.0251809jss
  8. L. F. Mao, Electrochemical modeling of the effects of F ions in the AlGaN layer on the two-dimensional electron density in AlGaN/GaN HEMTs, ECS J. Solid State Sci. Technol. 8 (2019), no. 8, P472-P479. https://doi.org/10.1149/2.0111909jss
  9. W. S. Tan et al., Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors, Appl. Phys. Lett. 80 (2002), no. 17, 3207-3209. https://doi.org/10.1063/1.1473701
  10. H. Jiang et al., High-voltage p-GaN HEMTs with OFF-state blocking capability after gate breakdown, IEEE Electron Device Lett. 40 (2019), no. 4, 530-533. https://doi.org/10.1109/led.2019.2897694
  11. J. Kotani et al., Impact of n-GaN cap layer doping on the gate leakage behavior in AlGaN/GaN HEMTs grown on Si and GaN substrates, J. Appl. Phys. 127 (2020), no. 23, article no. 234501.
  12. I. Jabbari et al., Evidence of Poole-frenkel and Fowler-Nordheim tunnelling transport mechanisms in leakage current of (Pd/Au)/Al0.22Ga0.78N/GaN heterostructures, Solid State Commun. 314-315 (2020), article no. 113920.
  13. S. You et al., GaN power ICs design using the MIT virtual source GaNFET compact model with GateLeakage and VT instability effect, Semicond. Sci. Technol. 36 (2021), no. 3, article no. 035008.
  14. A. Debnath, N. DasGupta, and A. DasGupta, Charge-based compact model of gate leakage current for AlInN/GaN and AlGaN/GaN HEMTs, IEEE Trans. Electron Devices 67 (2020), no. 3, 834-840. https://doi.org/10.1109/ted.2020.2965561
  15. D. K. De and O. C. Olawole, Modified Richardson-Dushman equation and modeling thermionic emission from monolayer graphene, Proc. SPIE 9927 (2016), article no. 99270E.
  16. S. Arulkumaran et al., Temperature dependence of gate-leakage current in AlGaN/GaN high-electron-mobility transistors, Appl. Phys. Lett. 82 (2003), no. 18, 3110-3112. https://doi.org/10.1063/1.1571655
  17. L. F. Mao, The effects of the injection-channel velocity on the gate leakage current of nanoscale MOSFETs, IEEE Electron. Device Lett. 28 (2007), no. 2, 161-163. https://doi.org/10.1109/LED.2006.889214
  18. L. F. Mao, Quantum coupling and electrothermal effects on electron transport in high-electron mobility transistors, Pramana 93 (2019), 11. https://doi.org/10.1007/s12043-019-1769-4
  19. X. Tang et al., Thermally enhanced hole injection and breakdown in a Schottky-metal/p-GaN/AlGaN/GaN device under forward bias, Appl. Phys. Lett. 117 (2020), no. 4, article no. 043501.
  20. G. Darbandy et al., Gate leakage current partitioning in nanoscale double gate MOSFETs, using compact analytical model, Solid-State Electron. 75 (2012), 22-27. https://doi.org/10.1016/j.sse.2012.05.006
  21. S. Kabra et al., An analytical model for GaN MESFET's using new velocity-field dependence, Phys. Status Solidi C 3 (2006), no. 6, 2350-2355. https://doi.org/10.1002/pssc.200565318
  22. H. Rao and G. Bosman, Hot-electron induced defect generation in AlGaN/GaN high electron mobility transistors, Solid-State Electron. 79 (2013), no. 2013, 1-13. https://doi.org/10.1016/j.sse.2012.09.003
  23. D. Vasileska, S. M. Goodnick, and G. Klimeck, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, CRC Press, Boca Raton, FL, USA, 2017.
  24. F. Schwierz, An electron mobility model for wurtzite GaN, Solid-State Electron. 49 (2005), no. 6, 889-895. https://doi.org/10.1016/j.sse.2005.03.006