Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0070

Modeling negative and positive temperature dependence of the gate leakage current in GaN high-electron mobility transistors  

Mao, Ling-Feng (School of Computer & Communication Engineering, University of Science & Technology Beijing)
Publication Information
ETRI Journal / v.44, no.3, 2022 , pp. 504-511 More about this Journal
Abstract
Monte Carlo simulations show that, as temperature increases, the average kinetic energy of channel electrons in a GaN transistor first decreases and then increases. According to the calculations, the relative energy change reaches 40%. This change leads to a reduced barrier height due to quantum coupling among the three-dimensional motions of channel electrons. Thus, an analysis and physical model of the gate leakage current that includes drift velocity is proposed. Numerical calculations show that the negative and positive temperature dependence of gate leakage currents decreases across the barrier as the field increases. They also demonstrate that source-drain voltage can have an effect of 1 to 2 orders of magnitude on the gate leakage current. The proposed model agrees well with the experimental results.
Keywords
GaN; gate leakage current; hot carrier; Monte Carlo; quantum coupling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Palacios et al., AlGaN/GaN high electron mobility transistors with InGaN back-barriers, IEEE Electron. Device Lett. 27 (2006), no. 1, 13-15.   DOI
2 K. Narang et al., Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT, J. Alloys Compd. 815 (2020), article no. 152283.
3 S. Saadaoui, O. Fathallah, and H. Maaref, Effects of current transportation and deep traps on leakage current and capacitance hysteresis of AlGaN/GaN HEMT, Mater. Sci. Semicond. Process. 115 (2020), article no. 105100.
4 L. F. Mao, Current reduction caused by the quantum coupling of hot electrons in AlGaN/GaN transistors, Phys. Status Solidi A 215 (2018), article no. 1701035.
5 W. S. Tan et al., Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors, Appl. Phys. Lett. 80 (2002), no. 17, 3207-3209.   DOI
6 H. Jiang et al., High-voltage p-GaN HEMTs with OFF-state blocking capability after gate breakdown, IEEE Electron Device Lett. 40 (2019), no. 4, 530-533.   DOI
7 I. Jabbari et al., Evidence of Poole-frenkel and Fowler-Nordheim tunnelling transport mechanisms in leakage current of (Pd/Au)/Al0.22Ga0.78N/GaN heterostructures, Solid State Commun. 314-315 (2020), article no. 113920.
8 X. Tang et al., Thermally enhanced hole injection and breakdown in a Schottky-metal/p-GaN/AlGaN/GaN device under forward bias, Appl. Phys. Lett. 117 (2020), no. 4, article no. 043501.
9 D. K. De and O. C. Olawole, Modified Richardson-Dushman equation and modeling thermionic emission from monolayer graphene, Proc. SPIE 9927 (2016), article no. 99270E.
10 L. F. Mao, Quantum coupling and electrothermal effects on electron transport in high-electron mobility transistors, Pramana 93 (2019), 11.   DOI
11 S. Kabra et al., An analytical model for GaN MESFET's using new velocity-field dependence, Phys. Status Solidi C 3 (2006), no. 6, 2350-2355.   DOI
12 J. Kotani et al., Impact of n-GaN cap layer doping on the gate leakage behavior in AlGaN/GaN HEMTs grown on Si and GaN substrates, J. Appl. Phys. 127 (2020), no. 23, article no. 234501.
13 H. Rao and G. Bosman, Hot-electron induced defect generation in AlGaN/GaN high electron mobility transistors, Solid-State Electron. 79 (2013), no. 2013, 1-13.   DOI
14 F. Schwierz, An electron mobility model for wurtzite GaN, Solid-State Electron. 49 (2005), no. 6, 889-895.   DOI
15 S. You et al., GaN power ICs design using the MIT virtual source GaNFET compact model with GateLeakage and VT instability effect, Semicond. Sci. Technol. 36 (2021), no. 3, article no. 035008.
16 S. Arulkumaran et al., Temperature dependence of gate-leakage current in AlGaN/GaN high-electron-mobility transistors, Appl. Phys. Lett. 82 (2003), no. 18, 3110-3112.   DOI
17 L. F. Mao, Electrical double-layer modeling of different Al-Content on the performance of AlGaN/GaN HEMTs, ECS J. Solid State Sci. Technol. 7 (2018), no. 9, P496-P500.   DOI
18 P. Murugapandiyan et al., Performance analysis of HfO2/InAlN/AlN/GaN HEMT with AlN buffer layer for high power microwave applications, J. Sci.: Adv. Mater. Devices 5 (2020), no. 2, 192-198.   DOI
19 L. F. Mao, H. S. Ning, and J. Y. Wang, The current collapse in AlGaN/GaN high-electron mobility transistors can originate from the energy relaxation of channel electrons?, PLoS ONE 10 (2015), no. 6, article no. e0128438.
20 L. F. Mao, Electrochemical modeling of the effects of F ions in the AlGaN layer on the two-dimensional electron density in AlGaN/GaN HEMTs, ECS J. Solid State Sci. Technol. 8 (2019), no. 8, P472-P479.   DOI
21 D. Vasileska, S. M. Goodnick, and G. Klimeck, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, CRC Press, Boca Raton, FL, USA, 2017.
22 A. Debnath, N. DasGupta, and A. DasGupta, Charge-based compact model of gate leakage current for AlInN/GaN and AlGaN/GaN HEMTs, IEEE Trans. Electron Devices 67 (2020), no. 3, 834-840.   DOI
23 L. F. Mao, The effects of the injection-channel velocity on the gate leakage current of nanoscale MOSFETs, IEEE Electron. Device Lett. 28 (2007), no. 2, 161-163.   DOI
24 G. Darbandy et al., Gate leakage current partitioning in nanoscale double gate MOSFETs, using compact analytical model, Solid-State Electron. 75 (2012), 22-27.   DOI