• Title/Summary/Keyword: gas sensing

Search Result 788, Processing Time 0.027 seconds

H2S Micro Gas Sensor Based on a SnO2-CuO Multi-layer Thin Film

  • Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2012
  • This paper proposes a micro gas sensor for measuring $H_2S$ gas. This is based on a $SnO_2$-CuO multi-layer thin film. The sensor has a silicon diaphragm, micro heater, and sensing layers. The micro heater is embedded in the sensing layer in order to increase the temperature to an operating temperature. The $SnO_2$-CuO multi layer film is prepared by the alternating deposition method and thermal oxidation which uses an electron beam evaporator and a thermal furnace. To determine the effect of the number of layers, five sets of films are prepared, each with different number of layers. The sensitivities are measured by applying $H_2S$ gas. It has a concentration of 1 ppm at an operating temperature of $270^{\circ}C$. At the same total thickness, the sensitivity of the sensor with multi sensing layers was improved, compared to the sensor with one sensing layer. The sensitivity of the sensor with five layers to 1 ppm of $H_2S$ gas is approximately 68%. This is approximately 12% more than that of a sensor with one-layer.

Light-activated mechanism for metal oxide gas sensors (금속 산화물 가스 센서의 광 활성화 센싱 메커니즘)

  • Oum, Wansik;Shin, Ka Yoon;Yu, Dong Jae;Kang, Sukwoo;Kim, Eun Bi;Kim, Hyoun Woo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.381-383
    • /
    • 2021
  • Light-activated metal oxide gas sensors have been investigated in recent decades. Light illumination enhances the sensing attributes, including the operational temperature, sensitivity, and selectivity. Unfortunately, high operating temperature is a major problem for gas sensors because of the huge energy consumption. Therefore, the importance of light-activated room-temperature sensing has increased. This paper reviews recent light-activated sensors and their sensing mechanisms with a specific focus on metal oxide gas sensors. Studies use the outstanding ZnO and SnO2 sensors to research photoactivation when illuminated by various sources such as ultraviolet (UV), halogen lamp, or monochromatic light. Photon induction generates electron-hole pairs that increase the number of adsorption sites of gas molecules and ions improving the sensor's sensing properties.

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics (피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성)

  • Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-197
    • /
    • 2014
  • The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to investigate the toxic gas sensing characteristics. The physicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as $NH_3$, NO and $CO_2$. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was decreased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its $NH_3$ gas sensing property was confirmed the most excellent compared with other toxic gases.

Nitrogen Monoxide Gas Sensing Properties of CuO Nanorods Synthesized by a Hydrothermal Method (수열합성법으로 합성된 산화구리 나노막대의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • We report the nitrogen monoxide (NO) gas sensing properties of p-type CuO-nanorod-based gas sensors. We synthesized the p-type CuO nanorods with breadth of about 30 nm and length of about 330 nm by a hydrothermal method using an as-deposited CuO seed layer prepared on a $Si/SiO_2$ substrate by the sputtering method. We fabricated polycrystalline CuO nanorod arrays at $80^{\circ}C$ under the hydrothermal condition of 1:1 morality ratio between copper nitrate trihydrate [$Cu(NO_2)_2{\cdot}3H_2O$] and hexamethylenetetramine ($C_6H_{12}N_4$). Structural characterizations revealed that we prepared the pure CuO nanorod array of a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the gas sensing measurements that the p-type CuO nanorod gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $200^{\circ}C$. We also found that these CuO nanorod gas sensors showed reversible and reliable electrical response to NO gas at a range of operating temperatures. These results would indicate some potential applications of the p-type semiconductor CuO nanorods as promising sensing materials for gas sensors, including various types of p-n junction gas sensors.

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Design of Metal Oxide Hollow Structures Using Soft-templating Method for High-Performance Gas Sensors

  • Shim, Young-Seok;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.178-183
    • /
    • 2016
  • Semiconductor gas sensors based on metal oxide are widely used in a number of applications, from health and safety to energy efficiency and emission control. Nanomaterials including nanowires, nanorods, and nanoparticles have dominated the research focus in this field owing to their large number of surface sites that facilitate surface reactions. Recently, metal oxide hollow structures using soft templates have been developed owing to their high sensing properties with large-area uniformity. Here, we provide a brief overview of metal oxide hollow structures and their gas-sensing properties from the aspects of template size, morphology, and additives. In addition, a gas-sensing mechanism and perspectives are presented.

Sub-ppm level MEMS gas sensor (서브 피피엠 레벨 미세기전 가스 센서)

  • Ko, Sang-Choon;Jun, Chi-Hoon;Song, Hyun-Woo;Park, Seon-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • A sub-ppm level MEMS gas sensor that can be used for the detection of formaldehyde (HCHO) is presented. It is realized by using a zinc oxide (ZnO) thin-film material with a Ni-seed layer as a sensing material and by bulk micromachining technology. To enhance sensitivity of the MEMS gas sensor with Ni-seed layer was embedded with ZnO sensing material and sensing electrodes. As experimental results, the changed sensor resistance ratio for HCHO gas was 9.65 % for 10 ppb, 18.06 % for 100 ppb, and 35.7 % for 1 ppm, respectively. In addition, the minimum detection level of the fabricated MEMS gas sensor was 10 ppb for the HCHO gas. And the measured output voltage was about 0.94 V for 10 ppb HCHO gas concentration. The noise level of the fabricated MEMS gas sensor was about 50 mV. The response and recovery times were 3 and 5 min, respectively. The consumption power of the Pt micro-heater under sensor testing was 184 mW and its operating temperature was $400^{\circ}C$.

Gas Sensing Characteristics of Ru doped-WO3 Micro Gas Sensors (루테늄이 첨가된 텅스텐 산화물을 이용한 마이크로 가스 센서의 암모니아 가스 감지 특성)

  • Lee, Hoi Jung;Yoon, Jin Ho;Kim, Bum Joon;Jang, Hyun Duck;Kim, Jung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.395-399
    • /
    • 2011
  • In this study, micro gas sensors for ammonia gas were prepared by adopting MEMS technology and using a sol-gel process. Three types of sensors were prepared via different synthesis routes starting with W sol and Ru sol mixture. This mixture was deposited on a MEMS platform and the platform was subsegueny heated to a temperature of $350^{\circ}C$. The topography and crystal structure of the sensing film were studied using FE-SEM and XRD. The response of the gas sensor to $NH_3$ gas was examined at various operating temperatures and gas concentrations. The sensor response increased almost linearly with gas concentration and the best sensing response was obtained at $333^{\circ}C$ for 5.0 ppm $NH_3$ for the specimen prepared by coating $WO_3$ powders with the Ru sol mixture.