DOI QR코드

DOI QR Code

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors

산화물 반도체 가스 센서의 습도 의존성 제거 기술

  • Jiho Park (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University) ;
  • Ji-Wook Yoon (Division of Advanced Materials Engineering, College of Engineering, Jeonbuk National University)
  • 박지호 (전북대학교 신소재공학부 정보소재공학전공) ;
  • 윤지욱 (전북대학교 신소재공학부 정보소재공학전공)
  • Received : 2024.05.13
  • Accepted : 2024.05.21
  • Published : 2024.07.01

Abstract

Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (RS-2023-00239826). This work was also carried out with the support of 'Cooperative Research Program for Agriculture Science and Technology Development (Project No.PJ016994)' Rural Development Administration, Republic of Korea.

References

  1. J. H. Lee, Sens. Actuators, B, 140, 319 (2009). doi: https://doi.org/10.1016/j.snb.2009.04.026 
  2. H. J. Kim and J. H. Lee, Sens. Actuators, B, 192, 607 (2014). doi: https://doi.org/10.1016/j.snb.2013.11.005 
  3. A. Dey, Mater. Sci. Eng. B, 229, 206 (2018). doi: https://doi.org/10.1016/j.mseb.2017.12.036 
  4. K. Lim, Y. M. Jo, J. W. Yoon, J. S. Kim, D. J. Lee, Y. K. Moon, J. W. Yoon, J. H. Kim, H. J. Choi, and J. H. Lee, Small, 17, 2100438 (2021). doi: https://doi.org/10.1002/smll.202100438 
  5. J. S. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 11 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.1.2 
  6. T. T. Liang, D. S. Kim, J. W. Yoon, and Y. T. Yu, Sens. Actuators, B, 346, 130578 (2021). doi: https://doi.org/10.1016/j.snb.2021.130578 
  7. J. W. Yoon, Y. J. Hong, G. D. Park, S. J. Hwang, F. Abdel-Hady, A. A. Wazzan, Y. C. Kang, and J. H. Lee, ACS Appl. Mater. Interfaces, 7, 7717 (2015). doi: https://doi.org/10.1021/acsami.5b00706 
  8. B. Y. Kim, J. W. Yoon, J. K. Kim, Y. C. Kang, and J. H. Lee, ACS Appl. Mater. Interfaces, 10, 16605 (2018). doi: https://doi.org/10.1021/acsami.8b02412 
  9. S. Y. Jeong, J. W. Yoon, T. H. Kim, H. M. Jeong, C. S. Lee, Y. C. Kang, and J. H. Lee, J. Mater. Chem. A, 5, 1446 (2017). doi: https://doi.org/10.1039/c6ta09397c 
  10. J. W. Yoon and J. H. Lee, Lab Chip, 17, 3537 (2017). doi: https://doi.org/10.1039/C7LC00810D 
  11. N. Barsan and U. Weimar, J. Phys.: Condens. Matter, 15, R813 (2003). doi: https://doi.org/10.1088/0953-8984/15/20/201 
  12. J. Oh, S. H. Kim, M. J. Lee, H. Hwang, W. Ku, J. Lim, I. S. Hwang, J. H. Lee, and J. H. Hwang, Sens. Actuators, B, 364, 131894 (2022). doi: https://doi.org/10.1016/j.snb.2022.131894 
  13. G. Heiland and D. Kohl, Chemical Sensor Technology (Elsevier Science, Japan, 1988) p. 15. doi: https://doi.org/10.1016/B978-0-444-98901-7.50007-5 
  14. N. Barsan, D. Koziej, and U. Weimar, Proc. 2007 International Semiconductor Conference (IEEE, Sinaia, Romania, 2007) p. 59. doi: https://doi.org/10.1109/SMICND.2007.4519648 
  15. D. Koziej, N. Barsan, U. Weimar, J. Szuber, K. Shimanoe, and N. Yamazoe, Chem. Phys. Lett., 410, 321 (2005). doi: https://doi.org/10.1016/j.cplett.2005.05.107 
  16. N. Yamazoe, K. Suematsu, and K. Shimanoe, Thin Solid Films, 548, 695 (2013). doi: https://doi.org/10.1016/j.tsf.2013.03.139 
  17. R. A. Shaukat, A. M. Tamim, G. T. Hwang, and C. K. Jeong, Trans. Electr. Electron. Mater., 25, 123 (2024). doi: https://doi.org/10.1007/s42341-024-00508-5 
  18. M. Egashira, M. Nakashima, S. Kawasumi, and T. Selyama, J. Phys. Chem., 85, 4125 (1981). doi: https://doi.org/10.1021/j150626a034 
  19. J. Shin, S. J. Choi, I. Lee, D. Y. Youn, C. O. Park, J. H. Lee, H. L. Tuller, and I. D. Kim, Adv. Funct. Mater., 23, 2357 (2013). doi: https://doi.org/10.1002/adfm.201202729 
  20. S. J. Choi, I. Lee, B. H. Jang, D. Y. Youn, W. H. Ryu, C. O. Park, and I. D. Kim, Anal. Chem., 85, 1792 (2013). doi: https://doi.org/10.1021/ac303148a 
  21. M. Righettoni, A. Tricoli, and S. E. Pratsinis, Anal. Chem., 82, 3581 (2010). doi: https://doi.org/10.1021/ac902695n 
  22. R. Xing, L. Xu, J. Song, C. Zhou, Q. Li, D. Liu, and H. W. Song, Sci. Rep., 5, 10717 (2015). doi: https://doi.org/10.1038/srep10717 
  23. S. Harbeck, A. Szatvanyi, N. Barsan, U. Weimar, and V. Hoffmann, Thin Solid Films, 436, 76 (2003). doi: https://doi.org/10.1016/S0040-6090(03)00512-1 
  24. N. Ma, K. Suematsu, M. Yuasa, T. Kida, and K. Shimanoe, ACS Appl. Mater. Interfaces, 7, 5863 (2015). doi: https://doi.org/10.1021/am509082w 
  25. N. Ma, K. Suematsu, M. Yuasa, and K. Shimanoe, ACS Appl. Mater. Interfaces, 7, 15618 (2015). doi: https://doi.org/10.1021/acsami.5b04380 
  26. P. Rai, J. W. Yoon, H. M. Jeong, S. J. Hwang, C. H. Kwak, and J. H. Lee, Nanoscale, 6, 8292 (2014). doi: https://doi.org/10.1039/C4NR01906G 
  27. H. R. Kim, A. Haensch, I. D. Kim, N. Barsan, U. Weimar, and J. H. Lee, Adv. Funct. Mater., 21, 4456 (2011). doi: https://doi.org/10.1002/adfm.201101154 
  28. K. I. Choi, M. Hubner, A. Haensch, H. J. Kim, U. Weimar, N. Barsan, and J. H. Lee, Sens. Actuators, B, 183, 401 (2013). doi: https://doi.org/10.1016/j.snb.2013.04.007 
  29. K. I. Choi, H. J. Kim, Y. C. Kang, and J. H. Lee, Sens. Actuators, B, 194, 371 (2014). doi: https://doi.org/10.1016/j.snb.2013.12.111 
  30. V. Prabhakaran, C. G. Arges, and V. Ramani, Proc. Natl. Acad. Sci. U.S.A., 109, 1029 (2012). doi: https://doi.org/10.1073/pnas.1114672109 
  31. J. W. Yoon, J. S. Kim, T. H. Kim, Y. J. Hong, Y. C. Kang, and J. H. Lee, Small, 12, 4159 (2016). doi: https://doi.org/10.1002/smll.201670153 
  32. C. H. Kwak, T. H. Kim, S. Y. Jeong, J. W. Yoon, J. S. Kim, and J. H. Lee, ACS Appl. Mater. Interfaces, 10, 18886 (2018). doi: https://doi.org/10.1021/acsami.8b04245 
  33. J. S. Kim, C. W. Na, C. H. Kwak, H. Y. Li, J. W. Yoon, J. H. Kim, S. Y. Jeong, and J. H. Lee, ACS Appl. Mater. Interfaces, 11, 25322 (2019). doi: https://doi.org/10.1021/acsami.9b06386 
  34. J. S. Kim, K. B. Kim, H. Y. Li, C. W. Na, K. Lim, Y. K. Moon, J. W. Yoon, and J. H. Lee, J. Mater. Chem. A, 9, 16359 (2021). doi: https://doi.org/10.1039/d1ta02618f 
  35. K. Kim, J. K. Park, J. Lee, Y. J. Kwon, H. Choi, S. M. Yang, J. H. Lee, and Y. K. Jeong, J. Hazard. Mater., 424, 127524 (2022). doi: https://doi.org/10.1016/j.jhazmat.2021.127524 
  36. S. Y. Jeong, Y. K. Moon, J. K. Kim, S. W. Park, Y. K. Jo, Y. C. Kang, and J. H. Lee, Adv. Funct. Mater., 31, 2007895 (2021). doi: https://doi.org/10.1002/adfm.202007895 
  37. H. Y. Li, C. S. Lee, D. H. Kim, and J. H. Lee, ACS Appl. Mater. Interfaces, 10, 27858 (2018). doi: https://doi.org/10.1021/acsami.8b09169 
  38. X. Zhu, X. Chang, S. Tang, X. Chen, W. Gao, S. Niu, J. Li, Y. Jiang, and S. Sun, ACS Appl. Mater. Interfaces, 14, 25680 (2022). doi: https://doi.org/10.1021/acsami.2c03575