DOI QR코드

DOI QR Code

Gas Sensing Characteristics of Ru doped-WO3 Micro Gas Sensors

루테늄이 첨가된 텅스텐 산화물을 이용한 마이크로 가스 센서의 암모니아 가스 감지 특성

  • Lee, Hoi Jung (Department of Materials Science and Engineering, The University of Seoul) ;
  • Yoon, Jin Ho (Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Bum Joon (Department of Materials Science and Engineering, The University of Seoul) ;
  • Jang, Hyun Duck (Industrial Engineering, Ajuo University) ;
  • Kim, Jung Sik (Department of Materials Science and Engineering, The University of Seoul)
  • 이회중 (서울시립대학교 신소재공학과) ;
  • 윤진호 (서울시립대학교 신소재공학과) ;
  • 김범준 (서울시립대학교 신소재공학과) ;
  • 장현덕 (아주대학교 산업공학과) ;
  • 김정식 (서울시립대학교 신소재공학과)
  • Received : 2010.12.22
  • Published : 2011.05.25

Abstract

In this study, micro gas sensors for ammonia gas were prepared by adopting MEMS technology and using a sol-gel process. Three types of sensors were prepared via different synthesis routes starting with W sol and Ru sol mixture. This mixture was deposited on a MEMS platform and the platform was subsegueny heated to a temperature of $350^{\circ}C$. The topography and crystal structure of the sensing film were studied using FE-SEM and XRD. The response of the gas sensor to $NH_3$ gas was examined at various operating temperatures and gas concentrations. The sensor response increased almost linearly with gas concentration and the best sensing response was obtained at $333^{\circ}C$ for 5.0 ppm $NH_3$ for the specimen prepared by coating $WO_3$ powders with the Ru sol mixture.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. Y. H. Kim, Gijeon 5 (1993).
  2. J. G. Irwin and Williams, Environ. Pollut 50, 29 (1998).
  3. P. J. Adams, J. Geo-phys. res. Atmos 106, 1097 (2001). https://doi.org/10.1029/2000JD900512
  4. T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, Chem. lett. 639 (1992).
  5. G. Heiland and D. Kohl, Chem. Sen. Tech. 1, 15 (1988).
  6. C. S. Kim, R. J. Lad, and C. P. Tripp, Sens. Actuators B, 76, 442 (2001). https://doi.org/10.1016/S0925-4005(01)00653-0
  7. S. W. Oh, Y. H. Kim, D. J. Yoo, S. M. Oh, and S. J. Park, Sens. Actuators B 13, 400 (1993). https://doi.org/10.1016/0925-4005(93)85411-3
  8. P. J. Shaver, Appl. Phys. Lett. 11, 255 (1967). https://doi.org/10.1063/1.1755123
  9. J. H. Yoon and J. S. Kim, Met. Mater. Int. 16, 773 (2010) https://doi.org/10.1007/s12540-010-1012-9
  10. T. Seiyama, Anal Chem 34, 1502 (1962). https://doi.org/10.1021/ac60191a001
  11. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, and L. A. Patil, Sens. Actuators B 115, 128 (2006). https://doi.org/10.1016/j.snb.2005.08.030
  12. M. J. Madou and S. R. Morrison, Adam Hilger, Bristol 6, 124 (1989).
  13. N. Barsan, D. Koziej, and U. Weimar, Sens. Actuators B 121, 18 (2007). https://doi.org/10.1016/j.snb.2006.09.047
  14. H. K. Hong, B. H. Kim, Y. I. Cheon, and Y. K. Sung, J. IEEK 13, 372 (1990).
  15. S. G. Lee, S. D. Choi, and K. H. Kim, KIEEME 3, 224 (1990).