DOI QR코드

DOI QR Code

Light-activated mechanism for metal oxide gas sensors

금속 산화물 가스 센서의 광 활성화 센싱 메커니즘

  • Oum, Wansik (Division of Materials Science and Engineering, Hanyang University) ;
  • Shin, Ka Yoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Yu, Dong Jae (Division of Materials Science and Engineering, Hanyang University) ;
  • Kang, Sukwoo (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Eun Bi (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyoun Woo (Division of Materials Science and Engineering, Hanyang University)
  • 엄완식 (한양대학교신소재공학과) ;
  • 신가윤 (한양대학교신소재공학과) ;
  • 유동재 (한양대학교신소재공학과) ;
  • 강석우 (한양대학교신소재공학과) ;
  • 김은비 (한양대학교신소재공학과) ;
  • 김현우 (한양대학교신소재공학과)
  • Received : 2021.10.18
  • Accepted : 2021.10.27
  • Published : 2021.11.30

Abstract

Light-activated metal oxide gas sensors have been investigated in recent decades. Light illumination enhances the sensing attributes, including the operational temperature, sensitivity, and selectivity. Unfortunately, high operating temperature is a major problem for gas sensors because of the huge energy consumption. Therefore, the importance of light-activated room-temperature sensing has increased. This paper reviews recent light-activated sensors and their sensing mechanisms with a specific focus on metal oxide gas sensors. Studies use the outstanding ZnO and SnO2 sensors to research photoactivation when illuminated by various sources such as ultraviolet (UV), halogen lamp, or monochromatic light. Photon induction generates electron-hole pairs that increase the number of adsorption sites of gas molecules and ions improving the sensor's sensing properties.

Keywords

Acknowledgement

이 논문은 산업통상자원부 제조·공정·물류 산업지능화 산업기술거점센터 (20013726) 연구비 지원으로 수행되었다.

References

  1. M. Kampa and E. Castanas, "Human health effects of air pollution", Environ. Pollut., Vol. 151, No. 2, pp. 362-367, 2008. https://doi.org/10.1016/j.envpol.2007.06.012
  2. K. Katsouyanni, "Ambient air pollution and health", Br. Med. Bull., Vol. 68, No. 1, pp. 143-156, 2003. https://doi.org/10.1093/bmb/ldg028
  3. G. Neri, "First fifty years of chemoresistive gas sensors", Chemosensors, Vol. 3, No. 1, pp. 1-20, 2015. https://doi.org/10.3390/chemosensors3010001
  4. J. H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Improving the hydrogen sensing properties of SnO2 nanowire-based conductometric sensors by Pd-decoration", Sens. Actuator B-Chem., Vol. 285, No. 15, pp. 358-367, 2019. https://doi.org/10.1016/j.snb.2019.01.008
  5. A. Mirzaei, J. H. Kim, H. W. Kim, and S. S. Kim, "How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature", Sens. Actuator B-Chem., Vol. 258, No. 1, pp. 270-294.
  6. S. Mishra, C. Ghanshyam, N. Ram, R. P. Bajpai, and R. K. Bedi, "Detection mechanism of metal oxide gas sensor under UV radiation", Sens. Actuator B-Chem., Vol. 97, pp. 387-390, 2004. https://doi.org/10.1016/j.snb.2003.09.017
  7. K. Anothainart, M. Burgmair, Karthigeyan, M. Zimmer, and I. Eisele, "Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements", Sens. Actuator B-Chem., Vol. 93, pp. 580-584, 2003. https://doi.org/10.1016/S0925-4005(03)00220-X
  8. D. Ito and M. Ichimura, "Room-temperature hydrogen sensing properties of SnO2 thin films fabricated by the photochemical deposition and doping methods", Jpn. J. Appl. Phys., Vol. 45, No. 9A, pp. 7094-7096, 2006. https://doi.org/10.1143/JJAP.45.7094
  9. V. M. Arakelyan, K. S. Martirosyan, V. E. Galstyan, G. E. Shahnazaryan, and V. M. Aroutiounian, "Room temperature gas sensor based on porous silicon/metal oxide structure", Phys. Status Solidi, Vol. 4, No. 6, pp. 2059-2062, 2007. https://doi.org/10.1002/pssc.200674371
  10. C. Ge, C. Xie, M. Hu, Y. Gui, Z. Bai, and D. Zeng, "Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles", Mater. Sci. Eng. B, Vol. 141, No. 1-2, pp. 43-48, 2007. https://doi.org/10.1016/j.mseb.2007.05.008
  11. J. Saura, "Gas-sensing properties of SnO2 pyrolytic films subjected to ultrviolet radiation", Sens. Actuator B-Chem., Vol. 17, No. 3, pp. 211-214, 1994. https://doi.org/10.1016/0925-4005(93)00874-X
  12. C. H. Han, D. W. Hong, S. D. Han, J. Gwak, and K. C. Singh, "Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED", Sens. Actuator B-Chem., Vol. 125, No. 1, pp. 224-228, 2007. https://doi.org/10.1016/j.snb.2007.02.017
  13. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A new detector for gaseous components using semiconductive thin films", Anal. Chem., Vol. 34, No. 11, pp. 1502-1503, 1962. https://doi.org/10.1021/ac60191a001
  14. K. Pradeev raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z. Z. Chowdhury, M. R. B. Johan, F. A. Aziz, R. F. Rafique, R. T. Selvi, and R. Rathina bala, "Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis", Nanoscale Res. Lett., Vol. 13, No. 229, 2018.
  15. S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, "Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles", Nanotechnology, Vol. 19, pp. 175502-175507, 2008. https://doi.org/10.1088/0957-4484/19/17/175502
  16. C. Y. Liu, C. F. Chen, and J. P. Leu, "Fabrication and CO sensing properties of mesostructured ZnO gas sensors", J. Electrochem. Soc., Vol. 156, No. 1, pp. J16-J19, 2009. https://doi.org/10.1149/1.3021044
  17. T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, "ZnO nanowire-based CO sensors prepared at various temperatures", J. Electrochem. Soc., Vol. 154, No. 12, pp. J393-J396, 2007. https://doi.org/10.1149/1.2789813
  18. S. W. Fan, A. K. Srivastava, and V. P. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO", Appl. Phys. Lett., Vol. 95, pp. 142106(1)-142106(3), 2009. https://doi.org/10.1063/1.3243458
  19. B. Babu, R. Koutavarapu, J. Shim, and K. Yoo, "SnO2 quantum dots decorated NiFe2O4 nanoplates: 0D/2D heterojunction for enhanced visible-light-driven photocatalysis", Mater. Sci. Semicond. Process., Vol. 107, No. 1, pp. 104834.
  20. M. S. Choi, H. G. Na, J. H. Bang, A. Mirzaei, S. Han, H. Y. Lee, S. S. Kim, H. W. Kim, and C. Jin, "SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing", Sens. Actuator B-Chem., Vol. 326, pp. 128801(1)-128801(11), 2021. https://doi.org/10.1016/j.snb.2020.128801
  21. C. C. Jeng, P. J. H. Chong, C. C. Chiu, G. J. Jiang, H. J. Lin, R. J. Wu, and C. H. Wu, "A dynamic equilibrium method for the SnO2-based ozone sensors using UV-LED continuous irradiation", Sens. Actuator B-Chem., Vol. 195, pp. 702-706, 2014. https://doi.org/10.1016/j.snb.2014.01.034
  22. D. Ao, and M. Ichimura, "UV irradiation effects on hydrogen sensors based on SnO2 thin films fabricated by the photochemical deposition", Solid-State Electron., Vol. 69, pp. 1-3, 2012. https://doi.org/10.1016/j.sse.2011.11.024
  23. G. Faglia, C. Baratto, E. Comini, and G. Sberveglieri, "A selective semiconductor gas sensor based on surface photovoltage", Proc. SPIE 4936, Nano- and Microtechnology: Materials, Processes, Packaging, and Systems, pp. 186-193, Melbourne, Australia, 2002.