Acknowledgement
이 논문은 산업통상자원부 제조·공정·물류 산업지능화 산업기술거점센터 (20013726) 연구비 지원으로 수행되었다.
References
- M. Kampa and E. Castanas, "Human health effects of air pollution", Environ. Pollut., Vol. 151, No. 2, pp. 362-367, 2008. https://doi.org/10.1016/j.envpol.2007.06.012
- K. Katsouyanni, "Ambient air pollution and health", Br. Med. Bull., Vol. 68, No. 1, pp. 143-156, 2003. https://doi.org/10.1093/bmb/ldg028
- G. Neri, "First fifty years of chemoresistive gas sensors", Chemosensors, Vol. 3, No. 1, pp. 1-20, 2015. https://doi.org/10.3390/chemosensors3010001
- J. H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Improving the hydrogen sensing properties of SnO2 nanowire-based conductometric sensors by Pd-decoration", Sens. Actuator B-Chem., Vol. 285, No. 15, pp. 358-367, 2019. https://doi.org/10.1016/j.snb.2019.01.008
- A. Mirzaei, J. H. Kim, H. W. Kim, and S. S. Kim, "How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature", Sens. Actuator B-Chem., Vol. 258, No. 1, pp. 270-294.
- S. Mishra, C. Ghanshyam, N. Ram, R. P. Bajpai, and R. K. Bedi, "Detection mechanism of metal oxide gas sensor under UV radiation", Sens. Actuator B-Chem., Vol. 97, pp. 387-390, 2004. https://doi.org/10.1016/j.snb.2003.09.017
- K. Anothainart, M. Burgmair, Karthigeyan, M. Zimmer, and I. Eisele, "Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements", Sens. Actuator B-Chem., Vol. 93, pp. 580-584, 2003. https://doi.org/10.1016/S0925-4005(03)00220-X
- D. Ito and M. Ichimura, "Room-temperature hydrogen sensing properties of SnO2 thin films fabricated by the photochemical deposition and doping methods", Jpn. J. Appl. Phys., Vol. 45, No. 9A, pp. 7094-7096, 2006. https://doi.org/10.1143/JJAP.45.7094
- V. M. Arakelyan, K. S. Martirosyan, V. E. Galstyan, G. E. Shahnazaryan, and V. M. Aroutiounian, "Room temperature gas sensor based on porous silicon/metal oxide structure", Phys. Status Solidi, Vol. 4, No. 6, pp. 2059-2062, 2007. https://doi.org/10.1002/pssc.200674371
- C. Ge, C. Xie, M. Hu, Y. Gui, Z. Bai, and D. Zeng, "Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles", Mater. Sci. Eng. B, Vol. 141, No. 1-2, pp. 43-48, 2007. https://doi.org/10.1016/j.mseb.2007.05.008
- J. Saura, "Gas-sensing properties of SnO2 pyrolytic films subjected to ultrviolet radiation", Sens. Actuator B-Chem., Vol. 17, No. 3, pp. 211-214, 1994. https://doi.org/10.1016/0925-4005(93)00874-X
- C. H. Han, D. W. Hong, S. D. Han, J. Gwak, and K. C. Singh, "Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED", Sens. Actuator B-Chem., Vol. 125, No. 1, pp. 224-228, 2007. https://doi.org/10.1016/j.snb.2007.02.017
- T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A new detector for gaseous components using semiconductive thin films", Anal. Chem., Vol. 34, No. 11, pp. 1502-1503, 1962. https://doi.org/10.1021/ac60191a001
- K. Pradeev raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z. Z. Chowdhury, M. R. B. Johan, F. A. Aziz, R. F. Rafique, R. T. Selvi, and R. Rathina bala, "Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis", Nanoscale Res. Lett., Vol. 13, No. 229, 2018.
- S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, "Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles", Nanotechnology, Vol. 19, pp. 175502-175507, 2008. https://doi.org/10.1088/0957-4484/19/17/175502
- C. Y. Liu, C. F. Chen, and J. P. Leu, "Fabrication and CO sensing properties of mesostructured ZnO gas sensors", J. Electrochem. Soc., Vol. 156, No. 1, pp. J16-J19, 2009. https://doi.org/10.1149/1.3021044
- T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, "ZnO nanowire-based CO sensors prepared at various temperatures", J. Electrochem. Soc., Vol. 154, No. 12, pp. J393-J396, 2007. https://doi.org/10.1149/1.2789813
- S. W. Fan, A. K. Srivastava, and V. P. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO", Appl. Phys. Lett., Vol. 95, pp. 142106(1)-142106(3), 2009. https://doi.org/10.1063/1.3243458
- B. Babu, R. Koutavarapu, J. Shim, and K. Yoo, "SnO2 quantum dots decorated NiFe2O4 nanoplates: 0D/2D heterojunction for enhanced visible-light-driven photocatalysis", Mater. Sci. Semicond. Process., Vol. 107, No. 1, pp. 104834.
- M. S. Choi, H. G. Na, J. H. Bang, A. Mirzaei, S. Han, H. Y. Lee, S. S. Kim, H. W. Kim, and C. Jin, "SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing", Sens. Actuator B-Chem., Vol. 326, pp. 128801(1)-128801(11), 2021. https://doi.org/10.1016/j.snb.2020.128801
- C. C. Jeng, P. J. H. Chong, C. C. Chiu, G. J. Jiang, H. J. Lin, R. J. Wu, and C. H. Wu, "A dynamic equilibrium method for the SnO2-based ozone sensors using UV-LED continuous irradiation", Sens. Actuator B-Chem., Vol. 195, pp. 702-706, 2014. https://doi.org/10.1016/j.snb.2014.01.034
- D. Ao, and M. Ichimura, "UV irradiation effects on hydrogen sensors based on SnO2 thin films fabricated by the photochemical deposition", Solid-State Electron., Vol. 69, pp. 1-3, 2012. https://doi.org/10.1016/j.sse.2011.11.024
- G. Faglia, C. Baratto, E. Comini, and G. Sberveglieri, "A selective semiconductor gas sensor based on surface photovoltage", Proc. SPIE 4936, Nano- and Microtechnology: Materials, Processes, Packaging, and Systems, pp. 186-193, Melbourne, Australia, 2002.