• 제목/요약/키워드: fuzzy set-valued mapping

검색결과 17건 처리시간 0.024초

GENERALIZED FUZZY WEAK VECTOR QUASIVARIATIONAL-LIKE INEQUALITIES

  • LEE, BYUNG-SOO
    • 호남수학학술지
    • /
    • 제27권3호
    • /
    • pp.445-463
    • /
    • 2005
  • In this paper, we introduce a Stampacchia type of generalized weak vector quasivariational-like inequalities for fuzzy mappings and consider the existence of solutions to them under non-compact assumption.

  • PDF

On fuzzy preinvex mappings associated with interval-valued Choquet integrals

  • Lee, Chae-Jang;Kim, Hyun-Mee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.127-128
    • /
    • 2008
  • In this paper, we consider define fuzzy invex sets and fuzzy preinvex functions on the class of Choquet integrable functions, and interval-valued fuzzy invex sets and interval-valued fuzzy preinvex functions on the class of interval-valued Choquet integrals. And also we prove some properties of them.

  • PDF

Some generalized weak vector quasivariational-like inequalities for fuzzy mappings

  • Lee Byung-Soo;Cho Hyun-Duk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.70-76
    • /
    • 2006
  • Some Stampacchia type of generalized weak vector quasivariational-like inequalities for fuzzy mappings was introduced and the existence of solutions to them under non-compact assumption was considered using the particular form of the generalized Ky Fan's section theorem due to Park [15]. As a corollary, Stampacchia type of generalized vector quasivariational-like inequalities for fuzzy mappings was studied under compact assumption using Ky Fan's section theorem [7].

CONVERGENCE THEOREMS FOR DENJOY-PETTIS INTEGRABLE FUZZY MAPPINGS

  • Park, Chun-Kee
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.229-241
    • /
    • 2010
  • In this paper, we introduce the Denjoy-Pettis integral of fuzzy mappings in Banach spaces and obtain some properties of the Denjoy-Pettis integral of fuzzy mappings and the convergence theorems for Denjoy-Pettis integrable fuzzy mappings.

Some characterizations of a mapping defined by interval-valued Choquet integrals

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.66-70
    • /
    • 2007
  • Note that Choquet integral is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and Lebesgue integral are equal if a fuzzy measure is a classical measure. In this paper, we consider interval-valued Choquet integrals with respect to fuzzy measures(see [4,5,6,7]). Using these Choquet integrals, we define a mappings on the classes of Choquet integrable functions and give an example of a mapping defined by interval-valued Choquet integrals. And we will investigate some relations between m-convex mappings ${\phi}$ on the class of Choquet integrable functions and m-convex mappings $T_{\phi}$, defined by the class of closed set-valued Choquet integrals with respect to fuzzy measures.

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.