On fuzzy preinvex mappings associated with interval-valued Choquet integrals

* Lee Chae Jang, ** Hyun Mee Kim,

* Dept. of Mathematics and Computer Science, Konkuk University

** Dept. of Mathematics Kyunghee University

Abstract

In this paper, we consider define fuzzy invex sets and fuzzy preinvex functions on the class of Choquet integrable functions, and interval-valued fuzzy invex sets and interval-valued fuzzy preinvex functions on the class of interval-valued Choquet integrals. And also we prove some properties of them.

Key words: fuzzy invex set, fuzzy preinvex mapping, interval-valued Choquet integrals, comonotonically additive.

1. Introduction

Jang et al. have been studied interval-valued Choquet integrals with respect to fuzzy measures [3,4,5]. In this paper, we introduce the concepts of fuzzy invex sets and fuzzy preinvex functions on the class of Choquet integrable functions, and interval-valued fuzzy invex sets and interval-valued fuzzy preinvex functions on the class of interval-valued Choquet integrals. We also discuss fuzzy preinvex mapping ϕ_c^* defined by Choquet integrals.

2. results

Throughout this paper, we assume that X is a locally compact Hausdorff space, Ω is a σ -algebra of X, M is the class of measurable functions of X, M^+ is the class of non-negative measurable functions in M, and O is the class of open subsets of X, K is the class of continuous functions on X with compact support, and K^+ is the class of non-negative functions in K.

Definition 2.1 [3,4,5] A closed set-valued function F is said to be measurable if for each open set $O \subset \mathbb{R}^+$,

$$F^{-1}(O) = \{x | F(x) \cap O\} \neq \emptyset \in \Omega.$$

Definition 2.2 [3,4,5] Let F be a closed set-valued function. A measurable function $f: X \rightarrow R^+$ satisfying $f(x) \in F(x)$ for all $x \in X$ is called a measurable selection of F.

Definition 2.3 [3,4,5] (1) Let F be a closed set-valued function and $A \in \Omega$. The set-valued Choquet integral of F on A is defined by

$$(C)\int_A Fd\mu = \{(C)\int_A fd\mu | f \in S(F)\},$$

where S(F) is the family of $\mu-a.e.$ measurable selections of F.

Theorem 2.4 ([3,4,5]). A closed set-valued function F is measurable if and only if there exists a sequence of measurable selections $\{f_n\}$ of F such that

$$F(x) = d\{f_n(x)\}$$
 for all $x \in X$.

Theorem 2.5 ([3.4.5]). If F is a closed set-valued function and Choquet integrably bounded and if we define

$$f^+(x) = \sup\{r|r \in F(x)\}$$
 and $f^-(x) = \inf\{r|r \in F(x)\}$ for all $x \in X$, then f^+ and f^- are Choquet integrable selections of F .

Theorem 2.6 [3,4,5] Let $K, F, G \in \mathbb{T}$.

Then we have

- (1) $F \sim F$,
- (2) $F \sim G \rightarrow G \sim F$,
- (3) $F \sim A$ for all $A \in I(R^+)$,
- (4) $F \sim G$ and $F \sim K \rightarrow F \sim (G + K)$.

Let M^+ be the set of continuous

non-negative functions $f: X \rightarrow R^+$ with compact support. We consider the following class of interval-valued functions;

 $\mathbb{T} = \{ F \mid F : X \rightarrow I(R^+) \text{ is measurable and }$ Choquet integrable bounded}.

Definition 2.7 A subset \mathbb{T}_0 of \mathbb{T} is said to be a fuzzy invex at G with respect to H, if for each $F \in \mathbb{T}_0$, $G + tH(F,G) \in \mathbb{T}_0$ for all $t \in [0,1]$ where $H: \mathbb{T}_0 \times \mathbb{T}_0 \longrightarrow \mathbb{T}$ is an interval-valued mapping.

We consider the following class of interval-valued functions with continuous selections; for each $g \in \mathbb{T}$,

$$\mathbb{T}_G = \{ F \in \mathbb{T} \mid F \sim G, S(G) \subset M^+ \} .$$

Theorem 2.8 If $G \in \mathbb{T}$ and H(F,G) is comonotonic to G for all $F \in \mathbb{T}$, then \mathbb{T}_G is an interval-valued fuzzy invex set at G with respect to the mapping H, where $H: \mathbb{T}_G \times \mathbb{T}_G \to \mathbb{T}$ is defined by

$$H(F,G) = H([f^-,f^+],[g^-,g^+])$$
$$= [\eta(f^-,g^-),\eta(f^+,g^+)].$$

Definition 2.9 Let \mathbb{K} be a non-empty invex subset of \mathbb{T} . A mapping $\Phi: \mathbb{K} \to I(R^+)$ is said to be intervalvalued fuzzy preinvex at G with respect to H, if $\Phi(G+tH(F,G)) \leq (1-t)\Phi(G)+t\Phi(F)$ for all $t \in [0,1]$ and $F \in \mathbb{K}$.

Lemma 2.10 If $F,G \in \mathbb{T}$ with $F \geq G$ and $F-G \sim G$, then we have

$$(C)\int F-G\ d\mu$$

$$= (C) \int F d\mu - (C) \int G d\mu.$$

Now, we denote the following class; for each $G \in \mathbb{T}$, $\mathbb{T}_G^* = \{F \in \mathbb{T}_G | F \geq G\}$ and then it is clearly fuzzy invex subset of \mathbb{T} .

Theorem 2.11 Let \mathbb{T}_G^* be as the same above set. Assume that for all $F \in \mathbb{T}_G^*$

- (i) $H^*(F,G)$ is comonotonic to G,
- (ii) $H^*(F,G) \leq F G$, and
- (iii) $F G \sim G$.

If we define $\Phi_c^*: \mathbb{T}_G^* \to I(R^+)$ is defined by $\Phi_c^*(F) = (C) \int F d\mu$, then Φ_c^* is fuzzy

preinvex at G with respect to H^* .

Theorem 2.12 Let $\phi_c^* : \mathbb{F}_g^* \to R^+$ is defined by $\phi_c^* (f) = (C) \int f d\mu$ and \mathbb{T}_G^* be as

the same above set. If $\phi_c^*: \mathbb{F}_g^* \to R^+$ is a fuzzy preinvex at g with respect to the mapping η , then $\Phi_c^*: \mathbb{T}_G^* \to I(R^+)$ is an interval-valued fuzzy preinvex at G with respect to the mapping $H^*: \mathbb{T}_G^* \times \mathbb{T}_G^* \to \mathbb{T}$, where H^* is defined by $H^*(F,G) = H^*([f^-,f^+],[g^-,g^+]) = [\eta(f^-,g^-),\eta(f^+,g^+)]$

3. References

- [1] J. Aubin, "Set-valued analysis", Birkauser Boston, 1990.
- [2] R.J. Aumann, "Integrals of set-valued functions", J. Math. Anal. Appl. Vol. 12, pp 1-12, 1965.
- [3] Lee-Chae Jang. T. Kim, and Jong Duek Jeon, "On comonotonically additive interval-valued Choquet integrals(II)", KFIS, Vol. 14, No. 1, pp.33-38, 2004.
- [4] Lee-Chae Jang. T. Kim, and Jong Duek Jeon, "On set-valued Choquet integrals and convergence theorem (II) ", Bull. Kerean Math.Soc., Vol. 20, No. 1, pp.139-147, 2003.
- [5] Lee-Chae Jang, "Interval-valued Choquet integrals and their applications", Journal of Applied Mathematics and Computing, Vol. 16, No.1-2, pp.429-443, 2004.
- [6] Lee-Chae Jang and H. M. Kim, "On fuzzy preinvexity in Choquet integrals",
- [7] M. A. Noor, "Fuzzy preinvex functions", Fuzzy Sets and Systems, Vol. 64, pp.95-104, 1994.