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GENERAL NONLINEAR RANDOM SET-VALUED

VARIATIONAL INCLUSION PROBLEMS WITH RANDOM

FUZZY MAPPINGS IN BANACH SPACES

Javad Balooee

Abstract. This paper is dedicated to study a new class of general nonlin-
ear random A-maximal m-relaxed η-accretive (so called (A, η)-accretive
[49]) equations with random relaxed cocoercive mappings and random
fuzzy mappings in q-uniformly smooth Banach spaces. By utilizing the
resolvent operator technique for A-maximal m-relaxed η-accretive map-
pings due to Lan et al. and Chang’s lemma [13], some new iterative
algorithms with mixed errors for finding the approximate solutions of the
aforesaid class of nonlinear random equations are constructed. The con-
vergence analysis of the proposed iterative algorithms under some suitable
conditions are also studied.

1. Introduction

Variational inequality theory has become a very effective and powerful tool
for studying a wide range of problems arising in pure and applied sciences
which include the work on differential equations, mechanics, contact problems
in elasticity, control problems, general equilibrium problems in economics and
transportation, and unilateral, obstacle, moving, and free boundary problems.
For the applications, physical formulation, numerical methods and other as-
pects of variational inequalities, see [1–67] and the references therein. Quasi-
variational inequalities are generalized forms of variational inequalities in which
the constraint set depend on the solution. These were introduced and stud-
ied by Bensoussan et al. [12]. In 1991, Chang and Huang [17, 18] introduced
and studied some new classes of complementarity problems and variational in-
equalities for set-valued mappings with compact values in Hilbert spaces. An
useful and important generalization of the variational inequalities is called the
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variational inclusions, due to Hassouni and Moudafi [32], which have wide appli-
cations in the fields of optimization and control, economics and transportation
equilibrium, engineering science.

It is known that accretivity of the underlying operator plays indispens-
able roles in the theory of variational inequality and its generalizations. In
2001, Huang and Fang [38] were the first to introduce generalized m-accretive
mapping and gave the definition of the resolvent operator for generalized m-
accretive mappings in Banach spaces. Verma [59–62] introduced and stud-
ied new notions of A-monotone and (A, η)-monotone operators and studied
some properties of them in Hilbert spaces. In [49], Lan et al. first intro-
duced the concept of (A, η)-accretive mappings, which generalizes the existing
η-subdifferential operators, maximal η-monotone operators, H-monotone oper-
ators, A-monotone operators, (H, η)-monotone operators, (A, η)-monotone op-
erators in Hilbert spaces, H-accretive mapping, generalized m-accretive map-
pings and (H, η)-accretive mappings in Banach spaces.

The fuzzy set theory which was introduced by Professor Lotfi Zadeh [66]
at the university of California in 1965 has emerged as an interesting and fas-
cinating branch of pure and applied sciences. The applications of the fuzzy
set theory can be found in many branches of regional, physical, mathematical
and engineering sciences, see, for example, [9, 30, 54, 67]. In 1989, Chang and
Zu [21] first introduced and studied a class of variational inequalities for fuzzy
mappings. Since then several classes of variational inequalities with fuzzy map-
pings were considered by Chang and Haung [16], Ding [27], Ding and Park [29],
Haung [34], Noor [55] and Park and Jeong [56,57] in Hilbert spaces. Note that
most of results in this direction for variational inclusions (inequalities) has been
done in the setting of Hilbert spaces.

Variational inequalities with fuzzy mapping have been useful in the study
of equilibrium and optimal control problem, see, for example, [15]. Recently,
Huang and Lan [40], considered nonlinear equations with fuzzy mapping in
fuzzy normed spaces and subsequently Lan and Verma [53] considered fuzzy
variational inclusion problems in Banach spaces.

On the other hand, the random variational inequality and random quasi-
variational inequality problems, random variational inclusion problems and
random quasi-complementarity problems have been introduced and studied by
Chang [14], Chang and Huang [19, 20], Chang and Zhu [22], Cho et al. [23],
Ganguly and Wadhawa [31], Huang and Cho [37], Khan et al. [44] and Lan [47],
etc. The concept of random fuzzy mapping was first introduced by Haung [36].
Subsequently, the random variational inclusion problem for random fuzzy map-
pings is studied by Ahmad and Bazan [4]. Cho and Lan [25] considered and
studied a class of generalized nonlinear random (A, η)-accretive equations with
random relaxed cocoercive mappings in Banach spaces and by introducing some
random iterative algorithms, they proved the convergence of iterative sequences
generated by the proposed algorithms.
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Recently, Lan et al. [50] introduced and studied a class of general nonlinear
random set-valued operator equations involving generalized m-accretive map-
pings in Banach spaces. They also established the existence theorems of the
solution and convergence theorems of the generalized random iterative proce-
dures with errors for these nonlinear random set-valued operator equations in
q-uniformly smooth Banach spaces.

Very recently, Uea and Kumam [58] introduced and studied a class of gen-
eral nonlinear random (H, η)-accretive equations with random fuzzy mappings
in Banach spaces and by using the resolvent mapping technique for the (H, η)-
accretive mappings proved the existence and convergence theorems of the gen-
eralized random iterative algorithms for these nonlinear random equations with
random fuzzy mappings in q-uniformly smooth Banach spaces.

In this paper, a new class of general nonlinear random A-maximalm-relaxed
η-accretive (so called (A, η)-accretive [49]) equations with random relaxed co-
coercive mappings and random fuzzy mappings in Banach spaces is introduced
and studied. By using the resolvent operator technique for A-maximal m-
relaxed η-accretive mappings due to Lan et al. and Chang’s lemma [13], some
new iterative algorithms with mixed errors for finding the approximate solu-
tions of the mentioned class of nonlinear random equations are constructed.
The existence of random solutions and the convergence of random iterative se-
quences generated by the suggested iterative algorithms in q-uniformly smooth
Banach spaces are also proved. The results presented in this paper improve
and extend the corresponding results of [14,19,23,25,28,31,32,35–37,39,41,43,
45, 50, 58] and many other recent works.

2. Preliminaries and basic facts

Throughout this paper, let (Ω,A, µ) be a complete σ-finite measure space
and X be a separable real Banach space endowed with dual space X∗, norm
‖ · ‖ and dual pair 〈·, ·〉 between X and X∗. We denote by B(X), CB(X)

and Ĥ(·, ·) the class of Borel σ-fileds in X , the family of all nonempty closed
bounded subsets of X and the Hausdorff metric

Ĥ(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}

on CB(X), respectively. The generalized duality mapping Jq : X → 2X
∗

is
defined by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is usual normalized duality map-
ping. It is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x 6= 0 and Jq
is single-valued if X∗ is strictly convex. In the sequel, we always assume that
X is a real Banach space such that Jq is single-valued. If X is a Hilbert space,
then J2 becomes the identity mapping on X .
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Themodulus of smoothness of X is the function ρX : [0,∞) → [0,∞) defined
by

ρX(t) = sup{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.

Further, a Banach space X is called q-uniformly smooth if there exists a con-
stant c > 0 such that

ρX(t) ≤ ctq, q > 1.

It is well-known that Hilbert spaces, Lp (or lp) spaces, 1 < p < ∞, and the
Sobolev spaces Wm,p, 1 < p <∞, are all q-uniformly smooth.

Concerned with the characteristic inequalities in q-uniformly smooth Banach
spaces, Xu [63] proved the following result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. Then X is

q-uniformly smooth if and only if there exists a constant cq > 0 such that for

all x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq‖y‖
q.

Definition 2.2. A mapping x : Ω → X is said to be measurable if, for any
B ∈ B(X), {t ∈ Ω : x(t) ∈ B} ∈ A.

Definition 2.3. A mapping T : Ω ×X → X is called a random mapping if,
for any x ∈ X , T (·, x) : Ω → X is measurable. A random mapping T is said to
be continuous if, for any t ∈ Ω, the mapping T (t, ·) : X → X is continuous.

Similarly, we can define a random mapping a : Ω × X × X → X . We
shall write Tt(x) = T (t, x(t)) and at(x, y) = a(t, x(t), y(t)) for all t ∈ Ω and
x(t), y(t) ∈ X .

It is well-known that a measurable mapping is necessarily a random map-
ping.

Definition 2.4. A set-valued mapping V : Ω → 2X is said to be measurable

if, for any B ∈ B(X), V −1(B) = {t ∈ Ω : V (t) ∩B 6= ∅} ∈ A.

Definition 2.5. A mapping u : Ω → X is called a measurable selection of a
set-valued measurable mapping V : Ω → 2X if, u is measurable and for any
t ∈ Ω, u(t) ∈ V (t).

Definition 2.6. A set-valued mapping V : Ω × X → 2X is called a random

set-valued mapping if, for any x ∈ X , V (·, x) is measurable. A random set-

valued mapping V : Ω×X → 2X is said to be Ĥ-continuous if, for any t ∈ Ω,
V (t, ·) is continuous in the Hausdorff metric on CB(X).

Definition 2.7. Let X be a q-uniformly smooth Banach space, T : Ω×X → X

and η : Ω×X ×X → X be random single-valued mappings. Then
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(a) T is said to be accretive if

〈Tt(x)− Tt(y), Jq(x(t) − y(t))〉 ≥ 0, ∀x(t), y(t) ∈ X, t ∈ Ω;

(b) T is called strictly accretive if T is accretive and

〈Tt(x)− Tt(y), Jq(x(t) − y(t))〉 = 0,

if and only if x(t) = y(t) for all t ∈ Ω;
(c) T is said to be r-strongly accretive if there exists a measurable function

r : Ω → (0,∞) such that

〈Tt(x)− Tt(y), Jq(x(t) − y(t))〉 ≥ r(t)‖x(t) − y(t)‖q, ∀x(t), y(t) ∈ X, t ∈ Ω;

(d) T is said to be (θ, κ)-relaxed cocoercive if there exist measurable func-
tions θ, κ : Ω → (0,∞) such that

〈Tt(x) − Tt(y), Jq(x(t) − y(t))〉 ≥ −θ(t)‖Tt(x) − Tt(y)‖
q + κ(t)‖x(t) − y(t)‖q,

∀x(t), y(t) ∈ X, t ∈ Ω;

(e) T is called ̺-Lipschitz continuous if there exists a measurable function
̺ : Ω → (0,∞) such that

‖Tt(x)− Tt(y)‖ ≤ ̺(t)‖x(t) − y(t)‖, ∀x(t), y(t) ∈ X, t ∈ Ω;

(f) η is said to be τ-Lipschitz continuous if there exists a measurable func-
tion τ : Ω → (0,∞) such that

‖ηt(x, y)‖ ≤ τ(t)‖x(t) − y(t)‖, ∀x(t), y(t) ∈ X, t ∈ Ω;

(g) η is said to be µ-Lipschitz continuous in the second argument if there
exists a measurable function µ : Ω → (0,∞) such that

‖ηt(x, u)− ηt(y, u)‖ ≤ µ(t)‖x(t) − y(t)‖, ∀x(t), y(t), u(t) ∈ X, t ∈ Ω.

In a similar way to part (g), we can define the Lipschitz continuity of the
mapping η in the third argument.

Definition 2.8. LetX be a q-uniformly smooth Banach space, η : Ω×X×X →
X and H,A : Ω × X → X be three random single-valued mappings. Then a
set-valued mapping M : Ω×X → 2X is said to be:

(a) accretive if

〈u(t)− v(t), Jq(x(t) − y(t))〉 ≥ 0,

∀x(t), y(t) ∈ X,u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(b) η-accretive if

〈u(t)− v(t), Jq(ηt(x, y))〉 ≥ 0,

∀x(t), y(t) ∈ X,u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(c) strictly η-accretive if M is η-accretive and the equality holds if and
only if x(t) = y(t), ∀t ∈ Ω;
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(d) r-strongly η-accretive if there exists a measurable function r : Ω →
(0,∞) such that

〈u(t)− v(t), Jq(ηt(x, y))〉 ≥ r(t)‖x(t) − y(t)‖q,

∀x(t), y(t) ∈ X,u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(e) α-relaxed η-accretive if there exists a measurable function α : Ω →
(0,∞) such that

〈u(t)− v(t), Jq(ηt(x, y))〉 ≥ −α(t)‖x(t) − y(t)‖q,

∀x(t), y(t) ∈ X,u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(f) m-accretive if M is accretive and (It + ρ(t)Mt)(X) = X for all t ∈ Ω
and for any measurable function ρ : Ω → (0,∞), where I denotes the
identity mapping on X , It(x) = x(t), for all x(t) ∈ X , t ∈ Ω;

(g) generalized m-accretive if M is η-accretive and (It + ρ(t)Mt)(X) = X

for all t ∈ Ω and any measurable function ρ : Ω → (0,∞);
(h) H-accretive if M is accretive and (Ht + ρ(t)Mt)(X) = X for all t ∈ Ω

and any measurable function ρ : Ω → (0,∞), where Ht(·) = H(t, ·) for
all t ∈ Ω;

(i) (H, η)-accretive if M is η-accretive and (Ht + ρ(t)Mt)(X) = X for all
t ∈ Ω and any measurable function ρ : Ω → (0,∞);

(j) A-maximal m-relaxed η-accretive if M is m-relaxed η-accretive and
(At + ρ(t)Mt)(X) = X for all t ∈ Ω and any measurable function
ρ : Ω → (0,∞), where At(·) = A(t, ·) for all t ∈ Ω;

(k) β-Ĥ-Lipschitz continuous if there exists a measurable function β : Ω →
(0,+∞) such that

Ĥ(Mt(x),Mt(y)) ≤ β(t)‖x(t) − y(t)‖, ∀x(t), y(t) ∈ X, t ∈ Ω.

Remark 2.9. (1) If X = H is a Hilbert space, then parts (a)-(i) of the above
mentioned definition reduce to the definitions of monotone operators, η-mono-
tone operators, strictly η-monotone operators, strongly η-monotone opera-
tors, relaxed η-monotone operators, maximal monotone operators, maximal
η-monotone operators, H-monotone operators and (H, η)-monotone operators,
respectively.

(2) For appropriate and suitable choices of m, A, η and X , it is easy to see
that part (j) of the above mentioned definition includes a number of definitions
of monotone operators and accretive mappings (see [49]).

Proposition 2.10 ([49]). Let A : Ω × X → X be an r-strongly η-accretive

mapping andM : Ω×X → 2X be an A-maximal m-relaxed η-accretive mapping.

Then the operator (At+ρ(t)Mt)
−1 is single-valued for any measurable function

ρ : Ω → (0,+∞) and t ∈ Ω.

Definition 2.11. Let A : Ω ×X → X be a strictly η-accretive mapping and
M : Ω × X → 2X be an A-maximal m-relaxed η-accretive mapping. Then,
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for any measurable function ρ : Ω → (0,+∞), the resolvent operator Jηt,Mt

ρ(t),At
:

X → X is defined by:

J
ηt,Mt

ρ(t),At
(u(t)) = (At + ρ(t)Mt)

−1(u(t)), ∀t ∈ Ω, u(t) ∈ X.

Proposition 2.12 ([49]). Let X be a q-uniformly smooth Banach space and

η : Ω × X × X → X be τ-Lipschitz continuous, A : Ω × X → X be an

r-strongly η-accretive mapping and M : Ω × X → X be an A-maximal m-

relaxed η-accretive mapping. Then the resolvent operator J
ηt,Mt

ρ(t),At
: X → X is

τq−1(t)
r(t)−ρ(t)m(t) -Lipschitz continuous, i.e.,

‖Jηt,Mt

ρ(t),At
(x(t)) − J

ηt,Mt

ρ(t),At
(y(t))‖ ≤

τq−1(t)

r(t) − ρ(t)m(t)
‖x(t)− y(t)‖,

∀x(t), y(t) ∈ X, t ∈ Ω,

where ρ(t) ∈ (0, r(t)
m(t) ) is a real-valued random variable for all t ∈ Ω.

3. A new random variational inclusion problem

In what follows, we denote the collection of all fuzzy sets on X by F(X) =
{A | A : X → [0, 1]}. For any set K, a mapping S from K into F(X) is called
a fuzzy mapping. If S : K → F(X) is a fuzzy mapping, then S(x), for any
x ∈ K, is a fuzzy set on F(X) (in the sequel, we denote S(x) by Sx) and Sx(y),
for any y ∈ X , is the degree of membership of y in Sx. For any A ∈ F(X) and
α ∈ [0, 1], the set

(A)α = {x ∈ X : A(x) ≥ α}

is called a α-cut set of A.

Definition 3.1. A fuzzy mapping S : Ω → F(X) is called measurable if, for
any α ∈ (0, 1], (S(·))α : Ω → 2X is a measurable set-valued mapping.

Definition 3.2. A fuzzy mapping S : Ω×X → F(X) is called a random fuzzy

mapping if, for any x ∈ X , S(·, x) : Ω → F(X) is a measurable fuzzy mapping.

Obviously, the random fuzzy mapping includes set-valued mapping, random
set-valued mapping and fuzzy mapping as special cases.

Let S1,S2, . . . ,Sl,Q,G : Ω×X → F(X) be random fuzzy mappings satisfying
the following condition (∗): There exist mappings a1, a2, . . . , al, d, e : X → [0, 1]
such that

(∗)
(Si,t,x(t))ai(x(t)) ∈ CB(X) for each i = 1, 2, . . . , l,

(Qt,x(t))d(x(t)) ∈ CB(X), (Gt,x(t))e(x(t)) ∈ CB(X), ∀(t, x(t)) ∈ Ω×X.

By using the random fuzzy mapping S1 satisfying (∗) with corresponding func-
tion a1 : X → [0, 1], we can define a random set-valued mapping S1 as follows:

S1 : Ω×X → CB(X), (t, x(t)) 7→ (S1,t,x(t))a1(x(t)), ∀(t, x(t)) ∈ Ω×X,
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where S1,t,x(t) = S1(t, x(t)). In the sequel, Si (i = 1, 2, . . . , l), Q and G are
called the random set-valued mappings induced by the random fuzzy mappings
Si (i = 1, 2, . . . , l), Q and G, respectively.

Suppose that S1,S2, . . . ,Sl,Q,G : Ω × X → F(X) are random fuzzy map-
pings, A, p, f : Ω×X → X , η : Ω×X×X → X andN : Ω×X ×X × · · · ×X

︸ ︷︷ ︸

l

→

X are random single-valued mappings. Further, let a1, a2, . . . , al, d, e : X →
[0, 1] be any mappings and M : Ω×X×X → 2X be a random set-valued map-
ping such that, for each fixed t ∈ Ω and z(t) ∈ X , M(t, ·, z(t)) : X → 2X be an
A-maximal m-relaxed η-accretive mapping with Im(p) ∩ domM(t, ·, z(t)) 6= ∅.
Now, we consider the following problem:

For any element h : Ω → X and any measurable function λ : Ω → (0,+∞),
find measurable mappings x, u1, u2, . . . , ul, ϑ, w : Ω → X such that for each t ∈
Ω, x(t) ∈ X and for each i = 1, 2, . . . , l, Si,t,x(t)(ui(t))≥ ai(x(t)), Qt,x(t)(ϑ(t)) ≥
d(x(t)), Gt,x(t)(w(t)) ≥ e(x(t)) and

(1) h(t) ∈ ft(x) +Nt(u1, u2, . . . , ul) + λ(t)Mt(pt(x)− ϑ,w), ∀t ∈ Ω.

The problem (1) is called the general nonlinear random A-maximal m-relaxed

η-accretive equation with random relaxed cocoercive mappings and random fuzzy

mappings in Banach spaces.

Remark 3.3. For appropriate and suitable choices of X , A, η, λ, p, f , M ,
N , Si (i = 1, 2, . . . , l), Q, G and h, one can obtain many known classes of
random variational inequalities, random quasi-variational inequalities, random
complementarity and random quasi-complementarity problems as special cases
of the problem (1).

Some special cases of the problem (1) are as follows:

Case I: If l = 3, N : Ω×X×X×X → X is a random single-valued mapping,
S1 = S, S2 = T , S3 = P , a1 = a, a2 = b, a3 = c, u1 = ν, u2 = u, u3 = v, and
A, p, f , η, M , Q, G are the same as in the problem (1), then for any element
h : Ω → X and any measurable function λ : Ω → (0,+∞), the problem (1)
collapses to the problem of finding measurable mappings x, ν, u, v, ϑ, w : Ω → X

such that for each t ∈ Ω, x(t) ∈ X , St,x(t)(ν(t)) ≥ a(x(t)), Tt,x(t)(u(t)) ≥
b(x(t)), Pt,x(t)(v(t)) ≥ c(x(t)), Qt,x(t)(ϑ(t)) ≥ d(x(t)), Gt,x(t)(w(t)) ≥ e(x(t))
and

(2) h(t) ∈ ft(x) +Nt(ν, u, v) + λ(t)Mt(pt(x)− ϑ,w), ∀t ∈ Ω,

which appears to be a new problem.

Case II: Let A, p, f , η, M , N , T , P , G be the same as in the problem (2) and
S,Q : Ω×X → CB(X) be two random set-valued mappings. Now, by using S
and Q, we define two random fuzzy mappings S,Q : Ω×X → 2X as follows:

St,x(t) = χSt(x), Qt,x(t) = χQt(x), ∀(t, x(t)) ∈ Ω×X,
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where χSt(x) and χQt(x) are the characteristic functions of the sets St(x) and
Qt(x), respectively. It is easy to see that S and Q are random fuzzy mappings
satisfying the condition (∗) with constant functions a(x(t)) = 1 and d(x(t)) = 1,
for all t ∈ Ω, x(t) ∈ X , respectively. Also,

(St,x(t))a(x(t)) = (χSt(x))1 = {y ∈ X : χSt(x)(y) = 1} = St(x),

(Qt,x(t))d(x(t)) = (χQt(x))1 = {y ∈ X : χQt(x)(y) = 1} = Qt(x).

Then the problem (2) is equivalent to the following:
Find measurable mappings x, ν, u, v, ϑ, w : Ω → X such that for each t ∈ Ω,

x(t) ∈ X , ν(t) ∈ St(x), Tt,x(t)(u(t)) ≥ b(x(t)), Pt,x(t)(v(t)) ≥ c(x(t)), ϑ(t) ∈
Qt(x), Gt,x(t)(w(t)) ≥ e(x(t)) and

(3) h(t) ∈ ft(x) +Nt(ν, u, v) + λ(t)Mt(pt(x)− ϑ,w), ∀t ∈ Ω,

which appears to be a new problem.

Case III: If A, p, f , η, M , N , T , P , G are the same as in the problem (2) and
S,Q : Ω ×X → X are two random single-valued mappings, then the problem
(3) is equivalent to determining measurable mappings x, u, v, w : Ω → X such
that for each t ∈ Ω, x(t) ∈ X , Tt,x(t)(u(t)) ≥ b(x(t)), Pt,x(t)(v(t)) ≥ c(x(t)),
Gt,x(t)(w(t)) ≥ e(x(t)) and

(4) h(t) ∈ ft(x) +Nt(St(x), u, v) + λ(t)Mt(pt(x) −Qt(x), w), ∀t ∈ Ω,

which appears to be a new problem.

Case IV: If A, p, f , η, M , N , T , P , G, S are the same as in the problem (4)
and Q ≡ 0, then the problem (4) reduces to the following problem:

Find measurable mappings x, u, v, w : Ω → X such that for each t ∈ Ω,
x(t) ∈ X , Tt,x(t)(u(t)) ≥ b(x(t)), Pt,x(t)(v(t)) ≥ c(x(t)), Gt,x(t)(w(t)) ≥ e(x(t))
and

(5) h(t) ∈ ft(x) +Nt(St(x), u, v) + λ(t)Mt(pt(x), w), ∀t ∈ Ω,

which appears to be a new problem. The problem (5) is introduced and studied
by Uea and Kumam [58], when f ≡ 0, h(t) = 0 and λ(t) = 1, for all t ∈ Ω.

Case V: Let A, p, f , η, M , N be the same as in the problem (1) and
S1, S2, . . . , Sl, Q,G : Ω ×X → CB(X) be random set-valued mappings. Like
in Case II, by using S1, S2, . . . , Sl, Q and G, we can define random fuzzy
mappings S1, S2, . . . , Sl, Q and G as follows:

Si,t,x(t) = χSi,t(x), (i = 1, 2 . . . , l),

Qt,x(t) = χQt(x), Gt,x(t) = χGt(x), ∀(t, x(t)) ∈ Ω×X,

where χSi,t(x) (i = 1, 2, . . . , l), χQt(x) and χGt(x) are the characteristic functions
of the sets Si,t(x) (i = 1, 2, . . . , l), Qt(x) and Gt(x), respectively. It is easy to
see that Si (i = 1, 2, . . . , l), Q and G are random fuzzy mappings satisfying the
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condition (∗) with constant functions ai(x(t)) = 1 (i = 1, 2, . . . , l), d(x(t)) = 1
and e(x(t)) = 1, for all t ∈ Ω, x(t) ∈ X , respectively. Also,

(Si,t,x(t))ai(x(t)) = (χSi,t(x))1 = {y ∈ X : χSi,t(x)(y) = 1} = Si,t(x),

(Qt,x(t))d(x(t)) = (χQt(x))1 = {y ∈ X : χQt(x)(y) = 1} = Qt(x),

(Gt,x(t))e(x(t)) = (χGt(x))1 = {y ∈ X : χGt(x)(y) = 1} = Gt(x),

i = 1, 2, . . . , l.

Then the problem (1) is equivalent to the following:
Find measurable mappings x, u1, u2, . . . , ul, ϑ, w : Ω → X such that for

each t ∈ Ω, x(t) ∈ X , ui(t) ∈ Si,t(x) for each i = 1, 2, . . . , l, ϑ(t) ∈ Qt(x),
w(t) ∈ Gt(x) and

(6) h(t) ∈ ft(x) +Nt(u1, u2, . . . , ul) + λ(t)Mt(pt(x)− ϑ,w), ∀t ∈ Ω.

The problem (6) is called the general nonlinear random A-maximal m-relaxed

η-accretive equation with random relaxed cocoercive mappings in Banach spaces.

Case VI: If X = H is a Hilbert space, T : Ω × H → H is a random single-
valued operator, h(t) = 0 and λ(t) = 1, for all t ∈ Ω, f ≡ 0, p ≡ I, Nt(x, y, z) =
Nt(x, y), for all t ∈ Ω and x(t), y(t), z(t) ∈ X , M(t, x(t), s(t)) = M(t, x(t)) for
all t ∈ Ω and x(t), s(t) ∈ H and M(t, ·) : H → 2H is a A-maximal m-relaxed η-
monotone (so-called (A, η)-monotone) operator for all t ∈ Ω, then the problem
(5) reduces to the following generalized random set-valued operator equation
involving A-maximal m-relaxed η-monotone operator in Hilbert spaces:

Find measurable mapping x : Ω → H such that

(7) x ∈ J
ηt,Mt

ρ(t),At
(At(x) − ρ(t)Nt(St(x), Tt(x))), ∀t ∈ Ω,

where ρ(t) > 0 is a real-valued random variable and Jηt,Mt

ρ(t),At
= (At+ρ(t)Mt)

−1.

The problem (7) was introduced and studied by Lan [45].

Case VII: If T : Ω×X → X is a random single-valued mapping, Nt(x, y, z) =
x(t)+ y(t) for all t ∈ Ω and x(t), y(t), z(t) ∈ X , f ≡ 0, p ≡ I, M(t, x(t), s(t)) =
M(t, x(t)) for all t ∈ Ω and x(t), s(t) ∈ X andM(t, ·) : X → 2X is a A-maximal
m-relaxed η-monotone operator for all t ∈ Ω, then the problem (5) changes into
finding a measurable mapping x : Ω → X such that

(8) 0 ∈ St(x) + Tt(x) + λ(t)Mt(x), ∀t ∈ Ω.

The problem (8) was introduced and studied by Cho and Lan [25].

Some other special cases of the problems (1)–(6) can be found in [1–3, 23,
25, 28, 32, 35, 42, 46, 50, 58] and the references therein.

4. Random iterative algorithms

In this section, we develop and analyze a new class of iterative methods and
construct some new random iterative algorithms with mixed errors for solving
the problems (1)–(6). For this end, we need the following lemmas.
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Lemma 4.1 ([13]). Let M : Ω×X → CB(X) be a Ĥ-continuous random set-

valued mapping. Then, for any measurable mapping x : Ω → X, the set-valued

mapping M(·, x(·)) : Ω → CB(X) is measurable.

Lemma 4.2 ([13]). Let M,V : Ω → CB(X) be two measurable set-valued

mappings, ǫ > 0 be a constant and x : Ω → X be a measurable selection of M .

Then there exists a measurable selection y : Ω → X of V such that, for any

t ∈ Ω,

‖x(t)− y(t)‖ ≤ (1 + ǫ)Ĥ(M(t), V (t)).

The following lemma offers a good approach for solving the problem (1).

Lemma 4.3. The set of measurable mappings x, u1, u2, . . . , ul, ϑ, w : Ω → X

is a random solution of the problem (1) if and only if, for each t ∈ Ω, ui(t) ∈
Si,t(x) for each i = 1, 2, . . . , l, ϑ(t) ∈ Qt(x), w(t) ∈ Gt(x) and

pt(x) = ϑ(t) + J
ηt,Mt(·,w)
ρ(t)λ(t),At

[At(pt(x) − ϑ)− ρ(t)(ft(x)

+Nt(u1, u2, . . . , ul)− h(t))],

where J
ηt,Mt(·,w)
ρ(t)λ(t),At

= (At + ρ(t)λ(t)Mt(·, w))−1 and ρ : Ω → (0,∞) is a measur-

able function.

Proof. The fact follows directly from the definition of J
ηt,Mt(·,w)
ρ(t)λ(t),At

. �

Now, by using Chang’s lemma [13] and based on Lemma 4.3, we can con-
struct the new following iterative algorithm for solving the problem (1).

Algorithm 4.4. Let A, p, f , η, M , N , Si (i = 1, 2, . . . , l), Q, G, h, λ

be the same as in the problem (1) and let Si (i = 1, 2, . . . , l), Q, G be Ĥ-

continuous random set-valued mappings induced by Si (i = 1, 2, . . . , l), Q and

G, respectively. Assume that α : Ω → (0, 1] is a measurable step size func-

tion. For any measurable mapping x0 : Ω → X, the set-valued mappings

Si(·, x0(·)), Q(·, x0(·)), G(·, x0(·)) : Ω → CB(X) (i = 1, 2, . . . , l), are measur-

able by Lemma 4.1. Hence there exist measurable selections u0,i : Ω → X of

Si(·, x0(·)) (i = 1, 2, . . . , l), ϑ0 : Ω → X of Q(·, x0(·)) and w0 : Ω → X of

G(·, x0(·)) by Himmelberg [33]. For each t ∈ Ω, set

x1(t) = (1− α(t))x0(t) + α(t){x0(t)− pt(x0) + ϑ0(t) + J
ηt,Mt(·,w0)
ρ(t)λ(t),At

[At(pt(x0)

− ϑ0)− ρ(t)(ft(x0) +Nt(u0,1, u0,2, . . . , u0,l)− h(t))]}

+ α(t)e0(t) + r0(t),

where ρ(t) is the same as in Lemma 4.3 and e0, r0 : Ω → X are measurable

functions. It is easy to know that x1 : Ω → X is measurable. Since u0,i(t) ∈
Si,t(x0) ∈ CB(X) for each i = 1, 2, . . . , l, ϑ0(t) ∈ Qt(x0) ∈ CB(X) and w0(t) ∈
Gt(x0) ∈ CB(X), by Lemma 4.2, there exist measurable selections u1,i, w1, ϑ1 :
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Ω → X (i = 1, 2, . . . , l) of set-valued measurable mappings Si(·, x1(·)) (i =
1, 2, . . . , l), Q(·, x1(·)) and G(·, x1(·)), respectively, such that, for all t ∈ Ω,

‖u0,i(t)− u1,i(t)‖ ≤ (1 +
1

1
)Ĥ(Si,t(x0), Si,t(x1)),

‖ϑ0(t)− ϑ1(t)‖ ≤ (1 +
1

1
)Ĥ(Qt(x0), Qt(x1)),

‖w0(t)− w1(t)‖ ≤ (1 +
1

1
)Ĥ(Gt(x0), Gt(x1)).

Letting

x2(t) = (1− α(t))x1(t) + α(t){x1(t)− pt(x1) + ϑ1(t) + J
ηt,Mt(·,w1)
ρ(t)λ(t),At

[At(pt(x1)

− ϑ1)− ρ(t)(ft(x1) +Nt(u1,1, u1,2, . . . , u1,l)− h(t))]}

+ α(t)e1(t) + r1(t), ∀t ∈ Ω,

then x2 : Ω → X is measurable. By induction, we can define sequences {xn(t)},
{un,i(t)} (i = 1, 2, . . . , l), {ϑn(t)} and {wn(t)} for solving the problem (1)
inductively satisfying

(9)







xn+1(t) = (1− α(t))xn(t) + α(t){xn(t)− pt(xn) + ϑn(t)

+J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)− ρ(t)(ft(xn)

+Nt(un,1, un,2, . . . , un,l)− h(t))]}

+α(t)en(t) + rn(t), ∀t ∈ Ω,

un,i(t) ∈ Si,t(xn), ϑn(t) ∈ Qt(xn), wn(t) ∈ Gt(xn),

‖un,i(t)− un+1,i(t)‖ ≤ (1 + 1
1+n

)Ĥ(Si,t(xn), Si,t(xn+1)),

‖ϑn(t)− ϑn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Qt(xn), Qt(xn+1)),

‖wn(t)− wn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Gt(xn), Gt(xn+1)),

i = 1, 2, . . . , l,

where for all n ≥ 0 and t ∈ Ω, en(t), rn(t) ∈ X are real-valued random errors

to take into account a possible inexact computation of the random resolvent

operator point satisfying the following conditions:

(10)







lim
n→∞

‖en(t)‖ = lim
n→∞

‖rn(t)‖ = 0, ∀t ∈ Ω;
∞∑

n=0
‖en(t)− en−1(t)‖ <∞, ∀t ∈ Ω;

∞∑

n=0
‖rn(t)− rn−1(t)‖ <∞, ∀t ∈ Ω.

Algorithm 4.5. Let A, p, f , η, M , N , S, T , P, Q, G, h, λ be the same as

in the problem (2) and let S, T , P , Q, G be Ĥ-continuous random set-valued

mappings induced by S, T , P, Q and G, respectively. Suppose further that

α : Ω → (0, 1] is a measurable step size function. In a similar way to Algorithm
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4.4, for any measurable mapping x0 : Ω → X, we can define sequences {xn(t)},
{νn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} for solving the problem (2) in

the following way:






xn+1(t) = (1− α(t))xn(t) + α(t){xn(t)− pt(xn) + ϑn(t)

+J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)− ρ(t)(ft(xn) +Nt(νn, un, vn)

−h(t))]}+ α(t)en(t) + rn(t), ∀t ∈ Ω,

νn(t) ∈ St(xn), ‖νn(t)− νn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(St(xn), St(xn+1)),

un(t) ∈ Tt(xn), ‖un(t)− un+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Tt(xn), Tt(xn+1)),

vn(t) ∈ Pt(xn), ‖vn(t)− vn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Pt(xn), Pt(xn+1)),

ϑn(t) ∈ Qt(xn), ‖ϑn(t)− ϑn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Qt(xn), Qt(xn+1)),

wn(t) ∈ Gt(xn), ‖wn(t)− wn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Gt(xn), Gt(xn+1)),

where for all n ≥ 0, en(t), rn(t) ∈ X are the same as in Algorithm 4.4 satisfying

the conditions (10).

Algorithm 4.6. Let A, p, f , η, M , N , T , P, G, S, Q, h, λ be the same as in

the problem (4) and T, P,G : Ω ×X → CB(X) be Ĥ-continuous random set-

valued mappings induced by T , P, G, respectively. Further, let α : Ω → (0, 1] be
a measurable step size function. In similar to Algorithm 4.4, for any measurable

mapping x0 : Ω → X, we can define sequences {xn(t)}, {un(t)}, {vn(t)} and

{wn(t)} for solving the problem (4) as follows:






xn+1(t) = (1− α(t))xn(t) + α(t){xn(t)− pt(xn) +Qt(xn)

+J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn)−Qt(xn)) − ρ(t)(ft(xn)

+Nt(St(xn), un, vn)− h(t))]} + α(t)en(t) + rn(t), ∀t ∈ Ω,

un(t) ∈ Tt(xn), ‖un(t)− un+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Tt(xn), Tt(xn+1)),

vn(t) ∈ Pt(xn), ‖vn(t)− vn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Pt(xn), Pt(xn+1)),

wn(t) ∈ Gt(xn), ‖wn(t)− wn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Gt(xn), Gt(xn+1)),

where for all n ≥ 0, en(t), rn(t) ∈ X are the same as in Algorithm 4.4 satisfying

the conditions (10).

Algorithm 4.7. Let A, p, f , η, M , N , T , P, G, S, Q, h, λ be the same as in

the problem (5) and T, P,G : Ω ×X → CB(X) be Ĥ-continuous random set-

valued mappings induced by T , P, G, respectively. Further, let α : Ω → (0, 1]
be a measurable step size function. Like in Algorithm 4.4, for any measurable

mapping x0 : Ω → X, we can define sequences {xn(t)}, {un(t)}, {vn(t)} and

{wn(t)} for solving the problem (5) as follows:






xn+1(t) = (1− α(t))xn(t) + α(t){xn(t)− pt(xn) + J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn))

−ρ(t)(ft(xn) +Nt(St(xn), un, vn)− h(t))]}
+α(t)en(t) + rn(t), ∀t ∈ Ω,

un(t) ∈ Tt(xn), ‖un(t)− un+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Tt(xn), Tt(xn+1)),

vn(t) ∈ Pt(xn), ‖vn(t)− vn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Pt(xn), Pt(xn+1)),

wn(t) ∈ Gt(xn), ‖wn(t)− wn+1(t)‖ ≤ (1 + 1
1+n

)Ĥ(Gt(xn), Gt(xn+1)),
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where for all n ≥ 0, en(t), rn(t) ∈ X are the same as in Algorithm 4.4 satisfying

the conditions (10).

Remark 4.8. (1) If h(t) = 0, λ(t) = 1, en(t) = 0, rn(t) = 0, for all n ≥ 0
and t ∈ Ω, f ≡ 0 and M : Ω × X × X → 2X is a (H, η)-accretive mapping,
then Algorithm 4.7 reduces to Algorithm 3.2 in [58]. Also, for a suitable and
appropriate choice of the involved mappings and constants in Algorithm 4.7,
one can obtain Algorithms 3.3 and 3.4 in [58].

(2) If h(t) = 0, λ(t) = 1, rn(t) = 0, for all n ≥ 0 and t ∈ Ω, f ≡ 0 and
M : Ω ×X ×X → 2X is a generalized m-accretive mapping, then Algorithm
4.7 reduces to Algorithm 2.4 in [50].

(3) If p ≡ I, f ≡ 0, h(t) = 0, λ(t) = 1, rn(t) = 0, for all n ≥ 0 and
t ∈ Ω, G : Ω × X → X be a random single-valued mapping, Nt(x, , y, z) =
ft(z)+gt(x, y), for all t ∈ Ω and x(t), y(t), z(t) ∈ X , where f : Ω×X → X and
g : Ω×X×X → X are random single-valued mappings andM : Ω×X×X → 2X

is a generalizedm-accretive mapping, then Algorithm 4.7 reduces to Algorithm
2.5 in [50].

(4) If f ≡ 0, Nt(St(x), u, v) = St(x) + u(t), M(t, x(t), y(t)) =M(t, x(t)), for
all t ∈ Ω and x(t), y(t) ∈ X , α(t) = 1, rn(t) = 0, for all n ≥ 0 and t ∈ Ω, then
Algorithm 4.7 reduces to Algorithm 3.1 in [25].

(5) If all the conditions in (4) hold, p ≡ I, T : Ω × X → X is a random
single-valued mapping, and h(t) = 0 for all t ∈ Ω, then Algorithm 4.7 collapses
to Algorithm 3.2 in [25].

(6) If h(t) = 0, λ(t) = 1, rn(t) = 0, for all n ≥ 0 and t ∈ Ω, f ≡ 0 and
M : Ω × X → 2X is a generalized m-accretive mapping, then Algorithm 4.7
reduces to Algorithm 2.6 in [50].

Remark 4.9. In brief, for a suitable and appropriate choice of the mappings A,
p, f , η, M , N , Si (i = 1, 2, . . . , l), S, T , P , Q, G, Si (i = 1, 2, . . . , l), S, T , P ,
Q, G, α, h, λ, the sequences {en}, {rn} and the space X , Algorithms 4.4–4.7
include many known algorithms which due to classes of variational inequalities
and variational inclusions (see, for example, [14, 19, 23, 25, 28, 31, 32, 35–37, 39,
41, 43, 50, 58]).

5. Main results

In this section, we prove the existence of solutions for the problems (1)–(6)
and the convergence of iterative sequences generated by Algorithms 4.4–4.7 in
q-uniformly smooth Banach spaces.

Definition 5.1. Let X be a q-uniformly smooth Banach space and let N :
Ω ×X ×X × · · · ×X

︸ ︷︷ ︸

l

→ X be a random single-valued mapping. N is said to

be (ǫ1, ǫ2, . . . , ǫl)-mixed Lipschitz continuous if there exist measurable functions
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ǫi : Ω → (0,+∞) (i = 1, 2, . . . , l) such that

‖Nt(x1, x2, . . . , xl)−Nt(y1, y2, . . . , yl)‖ ≤
l∑

i=1

ǫi(t)‖xi(t)− yi(t)‖,

∀xi(t), yi(t) ∈ X, t ∈ Ω.

Theorem 5.2. Let X be a q-uniformly smooth Banach space, A, p, f , η, M ,

N , Si (i = 1, 2, . . . , l), Q, G, h, λ be the same as in the problem (1) and

Si, Q,G : Ω × X → CB(X) (i = 1, 2, . . . , l), be random set-valued mappings

induced by Si (i = 1, 2, . . . , l), Q, G, respectively. Suppose further that

(a) p is (γ,̟)-relaxed cocoercive and π-Lipschitz continuous;
(b) A is r-strongly η-accretive and σ-Lipschitz continuous;
(c) η and f are τ-Lipschitz continuous and ε-Lipschitz continuous, respect-

ively;
(d) for each i = 1, 2, . . . , l, Si is ξi-Ĥ-Lipschitz continuous, and Q and G

are ̺-Ĥ-Lipschitz continuous and ι-Ĥ-Lipschitz continuous, respectiv-

ely;
(e) N is (ǫ1, ǫ2, . . . , ǫl)-mixed Lipschitz continuous;
(f) there exist measurable functions µ : Ω → (0,+∞) and ρ : Ω → (0,+∞)

with ρ(t) ∈ (0, r(t)
λ(t)m(t) ), for all t ∈ Ω, such that

(11)
‖J

ηt,Mt(·,x)
ρ(t)λ(t),At

(z(t))− J
ηt,Mt(·,y)
ρ(t)λ(t),At

(z(t))‖ ≤ µ(t)‖x(t) − y(t)‖,

∀t ∈ Ω, x(t), y(t), z(t) ∈ X

and

(12)







ϕ(t) = ̺(t) + µ(t)ι(t) + q
√
1− q̟(t) + (qγ(t) + cq)πq(t) < 1,

σ(t)(π(t) + ̺(t)) + ρ(t)(ε(t) +
l∑

i=1

ǫi(t)ξi(t))

< τ1−q(t)(1 − ϕ(t))(r(t) − ρ(t)λ(t)m(t)),

where cq is the same as in Lemma 2.1.

Then there exists a set of measurable mappings x∗, u∗i , v
∗, ϑ∗, w∗ : Ω → X (i =

1, 2, . . . , l), which is a random solution of the problem (1) and for each t ∈ Ω,
xn(t) → x∗(t), un,i(t) → u∗i (t) for each i = 1, 2, . . . , l, vn(t) → v∗(t), ϑn(t) →
ϑ∗(t), wn(t) → w∗(t) as n → ∞, where {xn(t)}, {un,i(t)} (i = 1, 2, . . . , l),
{ϑn(t)} and {wn(t)} are the iterative sequences generated by Algorithm 4.4.

Proof. It follows from (9), Proposition 2.12 and (11) that

‖xn+1(t)− xn(t)‖(13)

≤ ‖(1− α(t))xn(t) + α(t){xn(t)− pt(xn) + ϑn(t)

+ J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)− ρ(t)(ft(xn)

+Nt(un,1, un,2, . . . , un,l)− h(t))]}

+ α(t)en(t) + rn(t)− (1− α(t))xn−1(t)
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− α(t){xn−1(t)− pt(xn−1) + ϑn−1(t)

+ J
ηt,Mt(·,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(ft(xn−1)

+Nt(un−1,1, un−1,2, . . . , un−1,l)− h(t))]}

− α(t)en−1(t)− rn−1(t)‖

≤ (1− α(t))‖xn(t)− xn−1(t)‖

+ α(t)
(

‖xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))‖

+ ‖ϑn(t)− ϑn−1(t)‖

+ ‖J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)

− ρ(t)(ft(xn) +Nt(un,1, un,2, . . . , un,l)− h(t))]

− J
ηt,Mt(·,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(ft(xn−1)

+Nt(un−1,1, un−1,2, . . . , un−1,l)− h(t))]‖
)

+ α(t)‖en(t)− en−1(t)‖ + ‖rn(t)− rn−1(t)‖

≤ (1− α(t))‖xn(t)− xn−1(t)‖

+ α(t)
(

‖xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))‖

+ ‖ϑn(t)− ϑn−1(t)‖ + ‖J
ηt,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)

− ρ(t)(ft(xn) +Nt(un,1, un,2, . . . , un,l)− h(t))]

− J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(ft(xn−1)

+Nt(un−1,1, un−1,2, . . . , un−1,l)− h(t))]‖

+ ‖J
ηt,Mt(·,wn)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(ft(xn−1)

+Nt(un−1,1, un−1,2, . . . , un−1,l)− h(t))]

− J
ηt,Mt(·,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(ft(xn−1)

+Nt(un−1,1, un−1,2, . . . , un−1,l)− h(t))]‖
)

+ α(t)‖en(t)− en−1(t)‖ + ‖rn(t)− rn−1(t)‖

≤ (1− α(t))‖xn(t)− xn−1(t)‖

+ α(t)
(

‖xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))‖

+ ‖ϑn(t)− ϑn−1(t)‖ + µ(t)‖wn(t)− wn−1(t)‖

+
τq−1(t)

r(t) − ρ(t)λ(t)m(t)
(‖At(pt(xn)− ϑn)

−At(pt(xn−1)− ϑn−1)‖+ ρ(t)‖ft(xn)− ft(xn−1)‖

+ ρ(t)‖Nt(un,1, un,2, . . . , un,l)
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−Nt(un−1,1, un−1,2, . . . , un−1,l)‖)
)

+ α(t)‖en(t)− en−1(t)‖ + ‖rn(t)− rn−1(t)‖.

By Lemma 2.1, there exists a constant cq > 0 such that we have

‖xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))‖
q

≤ ‖xn(t)− xn−1(t)‖
q − q〈pt(xn)− pt(xn−1), Jq(xn(t)− xn−1(t))〉

+ cq‖pt(xn)− pt(xn−1)‖
q.

Since p is (γ,̟)-relaxed cocoercive and π-Lipschitz continuous, it follows that

(14)

‖xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))‖
q

≤ ‖xn(t)− xn−1(t)‖
q + (qγ(t) + cq)‖pt(xn)− pt(xn−1)‖

q

− q̟(t)‖xn(t)− xn−1(t)‖
q

= (1− q̟(t) + (qγ(t) + cq)π
q(t))‖xn(t)− xn−1(t)‖

q.

From (9), ̺-Ĥ-Lipschitz continuity of Q and ι-Ĥ-Lipschitz continuity of G,
deduce that

(15)
‖ϑn(t)− ϑn−1(t)‖ ≤ (1 +

1

n
)Ĥ(Qt(xn), Qt(xn−1))

≤ ̺(t)(1 +
1

n
)‖xn(t)− xn−1(t)‖

and

(16)
‖wn(t)− wn−1(t)‖ ≤ (1 +

1

n
)Ĥ(Gt(xn), Gt(xn−1))

≤ ι(t)(1 +
1

n
)‖xn(t)− xn−1(t)‖.

By using σ-Lipschitz continuity of A, π-Lipschitz continuity of p and (15), we
obtain

(17)

‖At(pt(xn)− ϑn)−At(pt(xn−1)− ϑn−1)‖

≤ σ(t)(‖pt(xn)− pt(xn−1)‖+ ‖ϑn(t)− ϑn−1(t)‖)

≤ σ(t)(π(t) + ̺(t)(1 +
1

n
))‖xn(t)− xn−1(t)‖.

From ε-Lipschitz continuity of f , it follows that

(18) ‖ft(xn)− ft(xn−1)‖ ≤ ε(t)‖xn(t)− xn−1(t)‖.
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Since N is (ǫ1, ǫ2, . . . , ǫl)-mixed Lipschitz continuous, and for each i = 1, 2, . . . ,

l, Si is ξi-Ĥ-Lipschitz continuous, by (9), we get

(19)

‖Nt(un,1, un,2, . . . , un,l)−Nt(un−1,1, un−1,2, . . . , un−1,l)‖

≤
l∑

i=1

ǫi(t)‖un,i(t)− un−1,i(t)‖

≤
l∑

i=1

ǫi(t)(1 +
1

n
)Ĥ(Si,t(xn−1), Si,t(xn))

≤
l∑

i=1

ǫi(t)ξi(t)(1 +
1

n
)‖xn(t)− xn−1(t)‖.

Combining (14)–(19) with (13), we obtain

(20)
‖xn+1(t)− xn(t)‖ ≤ (1− α(t) + α(t)ψ(t, n))‖xn(t)− xn−1(t)‖

+ α(t)‖en(t)− en−1(t)‖+ ‖rn(t)− rn−1(t)‖,

where

ψ(t, n) = (̺(t) + µ(t)ι(t))(1 +
1

n
) + q

√

1− q̟(t) + (qγ(t) + cq)πq(t)

+
τq−1(t)Γ(t, n)

r(t) − ρ(t)λ(t)m(t)
,

Γ(t, n) = σ(t)(π(t) + ̺(t)(1 +
1

n
)) + ρ(t)(ε(t) +

l∑

i=1

ǫi(t)ξi(t)(1 +
1

n
)).

Letting θ(t, n) = 1 − α(t) + α(t)ψ(t, n), we know that θ(t, n) → θ(t) = 1 −
α(t) + α(t)ψ(t), as n→ ∞, where

ψ(t) = ̺(t) + µ(t)ι(t) + q

√

1− q̟(t) + (qγ(t) + cq)πq(t)

+
τq−1(t)Γ(t)

r(t)− ρ(t)λ(t)m(t)
,

Γ(t) = σ(t)(π(t) + ̺(t)) + ρ(t)(ε(t) +

l∑

i=1

ǫi(t)ξi(t)).

In view of the condition (12), ψ(t) ∈ (0, 1) for all t ∈ Ω and so 0 < θ(t) < 1 for

all t ∈ Ω. Hence there exist n0 ∈ N and a measurable function θ̂ : Ω → (0,∞)

(Take θ̂(t) = θ(t)+1
2 ∈ (θ(t), 1) for each t ∈ Ω) such that θ(t, n) ≤ θ̂(t) for all

n ≥ n0 and t ∈ Ω. Accordingly, for all n > n0, by (20), deduce that, for all
t ∈ Ω,

‖xn+1(t)− xn(t)‖(21)

≤ θ̂(t)‖xn(t)− xn−1(t)‖ + α(t)‖en(t)− en−1(t)‖ + ‖rn(t)− rn−1(t)‖

≤ θ̂(t)[θ̂(t)‖xn−1(t)− xn−2(t)‖ + α(t)‖en−1(t)− en−2(t)‖
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+ ‖rn−1(t)− rn−2(t)‖] + α(t)‖en(t)− en−1(t)‖+ ‖rn(t)− rn−1(t)‖

= θ̂2(t)‖xn−1(t)− xn−2(t)‖+ α(t)[θ̂(t)‖en−1(t)− en−2(t)‖

+ ‖en(t)− en−1(t)‖] + θ̂(t)‖rn−1(t)− rn−2(t)‖+ ‖rn(t)− rn−1(t)‖

≤

...

≤ θ̂n−n0(t)‖xn0+1(t)− xn0
(t)‖

+

n−n0∑

i=1

α(t)θ̂i−1(t)‖en−(i−1)(t)− en−i(t)‖

+

n−n0∑

i=1

θ̂i−1(t)‖rn−(i−1)(t)− rn−i(t)‖.

By using the inequality (21), it follows that, for any m ≥ n > n0,

(22)

‖xm(t)− xn(t)‖ ≤
m−1∑

j=n

‖xj+1(t)− xj(t)‖

≤
m−1∑

j=n

θ̂j−n0 (t)‖xn0+1(t)− xn0
(t)‖

+

m−1∑

j=n

j−n0∑

i=1

α(t)θ̂i−1(t)‖en−(i−1)(t)− en−i(t)‖

+

m−1∑

j=n

j−n0∑

i=1

θ̂i−1(t)‖rn−(i−1)(t)− rn−i(t)‖.

Since θ̂(t) < 1 for all t ∈ Ω, it follows from (10) and (22) that ‖xm(t)−xn(t)‖ →
0 as n→ ∞ and so {xn(t)} is a Cauchy sequence in X . In view of completeness
of X , there exists x∗(t) ∈ X such that xn(t) → x∗(t) for all t ∈ Ω. By using

(9), ξi-Ĥ-Lipschitz continuity of Si (i = 1, 2, . . . , l), ̺-Ĥ-Lipschitz continuity

of Q and ι-Ĥ-Lipschitz continuity of G, we have

(23)







‖un,i(t)− un+1,i(t)‖ ≤ (1 + 1
1+n

)ξi(t)‖xn(t)− xn+1(t)‖,
‖ϑn(t)− ϑn+1(t)‖ ≤ (1 + 1

1+n
)̺(t)‖xn(t)− xn+1(t)‖,

‖wn(t)− wn+1(t)‖ ≤ (1 + 1
1+n

)ι(t)‖xn(t)− xn+1(t)‖,
i = 1, 2, . . . , l.

It follows from (23) that {un,i(t)} (i = 1, 2, . . . , l), {ϑn(t)} and {wn(t)} are
also Cauchy sequences in X . Accordingly, there exist u∗i (t), ϑ

∗(t), w∗(t) ∈ X

(i = 1, 2, . . . , l), such that for all t ∈ Ω and for each i = 1, 2, . . . , l, un,i(t) →
u∗i (t), ϑn(t) → ϑ∗(t) and wn(t) → w∗(t) as n → ∞. Since {xn(t)}, {un,i(t)}
(i = 1, 2, . . . , l), {ϑn(t)} and {wn(t)} are sequences of measurable mappings,
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we know that x∗, u∗i , ϑ, w : Ω → X (i = 1, 2, . . . , l), are measurable. Further,
for each t ∈ Ω and i = 1, 2, . . . , l, we have

d(u∗i (t), Si,t(x
∗)) = inf{‖u∗i (t)− z‖ : z ∈ Si,t(x

∗)}

≤ ‖u∗i (t)− un,i(t)‖+ d(un,i(t), Si,t(x
∗))

≤ ‖u∗i (t)− un,i(t)‖+ Ĥ(Si,t(xn), Si,t(x
∗))

≤ ‖u∗i (t)− un,i(t)‖+ ξi(t)‖xn(t)− x∗(t)‖.

The right side of the above inequality tends to zero as n→ ∞. Hence, for each
i = 1, 2, . . . , l, u∗i (t) ∈ Si,t(x

∗).
Similarly, we can verify that for each t ∈ Ω, ϑ∗(t) ∈ Qt(x

∗) and w∗(t) ∈
Gt(x

∗). The condition (11) and wn(t) → w∗(t), for all t ∈ Ω, as n → ∞,

imply that for each t ∈ Ω, J
ηt,Mt(·,wn)
ρ(t)λ(t),At

→ J
ηt,Mt(·,w

∗)
ρ(t)λ(t),At

uniformly on X , as

n→ ∞. Since for each t ∈ Ω, the mappings J
ηt,Mt(·,wn)
ρ(t)λ(t),At

, pt, ft, Nt and At are

continuous, it follows from (9) and (10) that for each t ∈ Ω,

pt(x
∗) = ϑ∗(t) + J

ηt,Mt(·,w
∗)

ρ(t)λ(t),At
[At(pt(x

∗)− ϑ∗)− ρ(t)(ft(x
∗)

+Nt(u
∗
1, u

∗
2, . . . , u

∗
l )− h(t))].

Now, Lemma 4.3 implies that measurable mappings x∗, u∗i , ϑ
∗, w∗ : Ω → X

(i = 1, 2, . . . , l) are a random solution of the problem (1). This completes the
proof. �

Remark 5.3. If X is a 2-uniformly smooth Banach space and there exists a

measurable function ρ : Ω → (0,∞) with ρ(t) ∈ (0, r(t)
λ(t)m(t) ), for all t ∈ Ω, such

that

ϕ(t) = ̺(t) + µ(t)ι(t) +
√

1− 2̟(t) + (2γ(t) + c2)π2(t) < 1,

2̟(t)− (2γ(t) + c2)π
2(t) < 1,

ρ(t) <
r(t)(1 − ϕ(t)) − τ(t)σ(t)(π(t) + ̺(t))

τ(t)[ε(t) +
l∑

i=1

ǫi(t)ξi(t)] + (1− ϕ(t))λ(t)m(t)

,

then (12) holds. As we know, Hilbert spaces and Lp(or lp) spaces, 2 ≤ p <∞,
are 2-uniformly smooth.

Theorem 5.4. Let X be a q-uniformly smooth Banach space, A, p, f , η, M ,

N , S, T , P, Q, G, h, λ be the same as in the problem (2) and let S, T, P,Q,G :
Ω×X → CB(X) be five random set-valued mappings induced by S, T , P, Q,

G, respectively. Suppose that p is (γ,̟)-relaxed cocoercive and π-Lipschitz

continuous, A is r-strongly η-accretive and σ-Lipschitz continuous, and η and

f are τ-Lipschitz continuous and ε-Lipschitz continuous, respectively. Let S,

T , P , Q and G be ξ-Ĥ-Lipschitz continuous, ζ-Ĥ-Lipschitz continuous, ς-Ĥ-

Lipschitz continuous, ̺-Ĥ-Lipschitz continuous and ι-Ĥ-Lipschitz continuous,

respectively. Assume that N is ǫ-Lipschitz continuous in the second argument,
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δ-Lipschitz continuous in the third argument and κ-Lipschitz continuous in the

fourth argument. Let there exist measurable functions µ : Ω → (0,+∞) and

ρ : Ω → (0,+∞) with ρ(t) ∈ (0, r(t)
λ(t)m(t) ), for all t ∈ Ω, such that (11) holds

and






ϕ(t) = ̺(t) + µ(t)ι(t) + q
√

1− q̟(t) + (qγ(t) + cq)πq(t) < 1,
σ(t)(π(t) + ̺(t)) + ρ(t)(ǫ(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t))
< τ1−q(t)(1− ϕ(t))(r(t) − ρ(t)λ(t)m(t)),

where cq is the same as in Lemma 2.1.

Then there exists a set of measurable mappings x∗, ν∗, u∗, v∗, ϑ∗, w∗ : Ω → X

which is a random solution of the problem (2) and for each t ∈ Ω, xn(t) →
x∗(t), νn(t) → ν∗(t), un(t) → u∗(t), vn(t) → v∗(t), ϑn(t) → ϑ∗(t), wn(t) →
w∗(t), as n → ∞, where {xn(t)}, {νn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and

{wn(t)} are the iterative sequences generated by Algorithm 4.5.

Theorem 5.5. Let X be a q-uniformly smooth Banach space, A, p, f , η, M ,

N , T , P, G, S, Q, h, λ be the same as in the problem (3) and T, P,G : Ω ×
X → CB(X) be random set-valued mappings induced by T , P, G, respectively.
Further, suppose that the conditions (a)-(f) in Theorem 5.4 hold. Then there

exists a set of measurable mappings x∗, ν∗, u∗, v∗, ϑ∗, w∗ : Ω → X which is

a random solution of the problem (3) and for each t ∈ Ω, xn(t) → x∗(t),
νn(t) → ν∗(t), un(t) → u∗(t), vn(t) → v∗(t), ϑn(t) → ϑ∗(t), wn(t) → w∗(t),
as n→ ∞, where {xn(t)}, {νn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are

the iterative sequences generated by Algorithm 4.5.

Theorem 5.6. Suppose that X is a q-uniformly smooth Banach space and A,

p, f , η, M , N , S, T , P , Q, G, h, λ are the same as in the problem (6). Further,
assume that the conditions (a)-(f) in Theorem 5.4 hold. Then there exists a

set of measurable mappings x∗, ν∗, u∗, v∗, ϑ∗, w∗ : Ω → X which is a random

solution of the problem (6) and for each t ∈ Ω, xn(t) → x∗(t), νn(t) → ν∗(t),
un(t) → u∗(t), vn(t) → v∗(t), ϑn(t) → ϑ∗(t), wn(t) → w∗(t), as n → ∞,

where {xn(t)}, {νn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are the iterative

sequences generated by Algorithm 4.5.

Like in the proof of Theorem 5.4, one can verify the convergence of the
iterative sequences generated by Algorithms 4.6 and 4.7 and we omit their
proofs.

Theorem 5.7. Assume that X is a q-uniformly smooth Banach space, A, p,

f , η, M , N , T , P, G, S, Q, h, λ are the same as in the problem (4) and let

T, P,G : Ω×X → CB(X) be random set-valued mappings induced by T , P, G,
respectively. Further, assume that the conditions (a)-(f) in Theorem 5.4 hold.

Then there exists a set of measurable mappings x∗, u∗, v∗, w∗ : Ω → X which

is a random solution of the problem (4) and for each t ∈ Ω, xn(t) → x∗(t),
un(t) → u∗(t), vn(t) → v∗(t), wn(t) → w∗(t) as n → ∞, where {xn(t)},
{un(t)}, {vn(t)} and {wn(t)} are the iterative sequences generated by Algorithm

4.6.
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Theorem 5.8. Let X be a q-uniformly smooth Banach space, A, p, f , η, M ,

N , T , P, G, S, Q, h, λ be the same as in the problem (5) and let T, P,G : Ω×
X → CB(X) be random set-valued mappings induced by T , P, G, respectively.
Moreover, assume that the conditions (a)-(e) in Theorem 5.4 hold. If there

exist measurable functions µ : Ω → (0,+∞) and ρ : Ω → (0,+∞) with ρ(t) ∈

(0, r(t)
λ(t)m(t) ), for all t ∈ Ω, such that (11) holds and







ϕ(t) = µ(t)ι(t) + q
√
1− q̟(t) + (qγ(t) + cq)πq(t) < 1,

σ(t)π(t) + ρ(t)(ǫ(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t))
< τ1−q(t)(1 − ϕ(t))(r(t) − ρ(t)λ(t)m(t)),

where cq is the same as in Lemma 2.1, then there exists a set of measurable

mappings x∗, u∗, v∗, w∗ : Ω → X which is a random solution of the problem

(5) and for each t ∈ Ω, xn(t) → x∗(t), un(t) → u∗(t), vn(t) → v∗(t), wn(t) →
w∗(t), as n→ ∞, where {xn(t)}, {un(t)}, {vn(t)} and {wn(t)} are the iterative

sequences generated by Algorithm 4.7.

Remark 5.9. Theorems 5.2 and 5.4–5.8 generalize and improve Theorems 3.1
and 3.2 in [25], Theorems 3.1, 3.3 and 3.4 in [50] and Theorems 4.1, 4.3 and
4.4 in [58]. In brief, for an appropriate choice of the mappings A, p, f , η, M ,
N , Si (i = 1, 2, . . . , l), S, T , P , Q, G, Si (i = 1, 2, . . . , l), S, T , P , Q, G, h, λ,
the measurable step size function α, the sequences {en}, {rn} and the space X ,
Theorems 5.2 and 5.4–5.8 include many known results of generalized variational
inclusions as special cases (see [14,19,23,25,28,31,32,35–37,39,41,43,45,50,58]
and the references therein).

Acknowledgement. The author thanks the anonymous referees for their
constructive comments which contributed to the improvement of the present
paper.

References

[1] R. P. Agarwal, Y. J. Cho, and N. J. Huang, Generalized nonlinear variational inclusions

involving maximal η-monotone mappings, Nonlinear analysis and applications: to V.
Lakshmikantham on his 80th birthday. Vol. 1, 2, 59–73, Kluwer Acad. Publ., Dordrecht,
2003.

[2] R. P. Agarwal, M. F. Khan, D. O’Regan, and Salahuddin, On generalized multivalued

nonlinear variational-like inclusions with fuzzy mappings, Adv. Nonlinear Var. Inequal.
8 (2005), no. 1, 41–55.

[3] R. Ahmad, Q. H. Ansari, and S. S. Irfan, Generalized variational inclusions and gener-

alized resolvent equations in Banach spaces, Comput. Math. Appl. 49 (2005), no. 11-12,
1825–1835.

[4] R. Ahmad and F. F. Bazan, An iterative algorithm for random generalized nonlinear

mixed variational inclusions for random fuzzy mappings, Appl. Math. Comput. 167

(2005), no. 2, 1400–1411.
[5] M. Alimohammady, J. Balooee, Y. J. Cho, and M. Roohi, A new system of non-

linear fuzzy variational inclusions involving (A, η)-accretive mappings in uniformly

smooth Banach spaces, J. Inequal. Appl. 2009 (2009), Article ID 806727, 33 pp.;
doi:10.1155/2010/806727.



GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION 265

[6] , Iterative algorithms for a new class of extended general nonconvex set-valued

variational inequalities, Nonlinear Anal. 73 (2010), no. 12, 3907–3923.
[7] , Generalized nonlinear random equations with random fuzzy and relaxed co-

coercive mappings in Banach spaces, Adv. Nonlinear Var. Inequal. 13 (2010), no. 2,
37–58.

[8] , New perturbed finite step iterative algorithms for a system of extended general-

ized nonlinear mixed-quasi variational inclusions, Comput. Math. Appl. 60 (2010), no.
11, 2953–2970.

[9] J. P. Aubin, Mathematical Methods of Game and Economics Theory, North-Holland,
Amsterdam, 1979.

[10] J. Balooee, Y. J. Cho, and M. K. Kang, The Wiener-Hopf equation technique for solving

general nonlinear regularized nonconvex variational inequalities, Fixed Point Theory
Appl. 2011 (2011). 2011:86, 34 pp.; doi:10.1186/1687-1812-2011-86.

[11] , Projection methods and a new system of extended general regularized nonconvex

set-valued variational inequalities, J. Appl. Math. 2012 (2012), Article ID 690648, 18
pp.; doi:10.1155/2012/690648.

[12] A. Bensoussan, M. Goursat, and J. L. Lions, Contrôle impulsionnel et inéquations quasi-

variationnelles stationnaires, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), 1279–1248.
[13] S. S. Chang, Fixed Point Theory with Applications, Chongqing Publishing House,

Chongqing, 1984.
[14] , Variational Inequality and Complementarity Problem Theory with Applica-

tions, Shanghai Scientific and Tech. Literature Publishing House, Shanghai, 1991.
[15] M. S. Chang and H. Y. Chen, A fuzzy user-optimal route choice problem using a link-

based fuzzy variational inequality formulation, Fuzzy Sets and Systems 114 (2000), no.
2, 339–345.

[16] S. S. Chang and N. J. Huang, Generalized complementarity problems for fuzzy mappings,
Fuzzy Sets and Systems 55 (1993), no. 2, 227–234.

[17] , Generalized strongly nonlinear quasi-complementarity problems in Hilbert

spaces, J. Math. Anal. Appl. 158 (1991), no. 1, 194–202.
[18] , Generalized multivalued implicit complementarity problems in Hilbert spaces,

Math. Japon. 36 (1991), no. 6, 1093–1100.
[19] , Generalized random multivalued quasi-complementarity problems, Indian J.

Math. 35 (1993), no. 3, 305–320.
[20] , Random generalized set-valued quasi-complementarity problems, Acta Math.

Appl. Sinica 16 (1993), 396–405.
[21] S. S. Chang and Y. G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets

and Systems 32 (1989), no. 3, 359–367.
[22] , On the problems for a class of random variational inequalities and quasi-

variational inequalities, J. Math. Res. Exposition 9 (1989), 385–393.
[23] Y. J. Cho, N. J. Huang, and S. M. Kang, Random generalized set-valued strongly non-

linear implicit quasi-varitional inequalities, J. Inequal. Appl. 5 (2000), no. 5, 515–531.
[24] Y. J. Cho and H. Y. Lan, A new Class of generalized nonlinear multi-valued quasi-

variational-like-inclusions with H-monotone mappings, Math. Inequal. Appl. 10 (2007),
no. 2, 389–401.

[25] , Generalized nonlinear random (A, η)-accretive equations with random relaxed

cocoercive mappings in Banach spaces, Comput. Math. Appl. 55 (2008), no. 9, 2173–
2182.

[26] Y. J. Cho and X. Qin, Systems of generalized nonlinear variational inequalities and its

projection methods, Nonlinear Anal. 69 (2008), no. 12, 4443–4451.
[27] X. P. Ding, Algorithm of solutions for mixed implicit quasi-variational inequalities with

fuzzy mappings, Comput. Math. Appl. 38 (1999), no. 5-6, 231–249.



266 JAVAD BALOOEE

[28] , Generalized quasi-variational-like inclusions with nonconvex functionals, Appl.
Math. Comput. 122 (2001), no. 3, 267–282.

[29] X. P. Ding and J. Y. Park, A new class of generalized nonlinear implicit quasivariational

inclusions with fuzzy mapping, J. Comput. Appl. Math. 138 (2002), no. 2, 243–257.
[30] D. Dubois and H. Prade, Fuzzy Sets Systems, Theory and Applications, Academic Press,

London, 1980.
[31] A. Ganguly and K. Wadhawa, On random variational inequalities, J. Math. Anal. Appl.

206 (1997), no. 1, 315–321.
[32] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math.

Anal. Appl. 185 (1994), no. 3, 706–712.
[33] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72.
[34] N. J. Huang, A new method for a class of nonlinear variational inequalities with fuzzy

mappings, Appl. Math. Lett. 10 (1997), no. 6, 129–133.
[35] , Generalized nonlinear variational inclusions with noncompact valued mappings,

Appl. Math. Lett. 9 (1996), no. 3, 25–29.
[36] , Random generalized nonlinear variational inclusions for random fuzzy map-

pings, Fuzzy Sets and Systems 105 (1999), no. 3, 437–444.
[37] N. J. Huang and Y. J. Cho, Random completely generalized set-valued implicit quasi-

variational inequalities, Positivity 3 (1999), no. 3, 201–213.
[38] N. J. Huang and Y. P. Fang, Generalized m-accretive mappings in Banach spaces, J.

Sichuan Univ. 38 (2001), 591–592.
[39] , A new class of general variational inclusions involving maximal η-monotone

mappings, Pub. Math. Debrecen 62 (2003), no. 1-2, 83–98.
[40] N. J. Huang and H. Y. Lan, A couple of nonlinear equations with fuzzy mappings in

fuzzy normed spaces, Fuzzy Sets and Systems 152 (2005), no. 2, 209–222.
[41] N. J. Huang, X. Long, and Y. J. Cho, Random completely generalized nonlinear varia-

tional inclusions with non-compact valued random mappings, Bull. Korean Math. Soc.
34 (1997), no. 4, 603–615.

[42] J. U. Jeong, Generalized set-valued variational inclusions and resolvent equations in

Banach spaces, Comput. Math. Appl. 47 (2004), no. 8-9, 1241–1247.
[43] M. M. Jin and Q. K. Liu, Nonlinear quasi-variational inclusions involving generalized

m-accretive mappings, Nonlinear Funct. Anal. Appl. 9 (2004), no. 3, 485–494.
[44] M. F. Khan, Salahuddin, and R. U. Verma, Generalized random variational-like in-

equalities with randomly pseudo-monotone multivalued mappings, Panamer. Math. J.
16 (2006), no. 3, 33–46.

[45] H. Y. Lan, Approximation solvability of nonlinear random (A, η)-resolvent operator

equations with random relaxed cocoercive operators, Comput. Math. Appl. 57 (2009),
no. 4, 624–632.

[46] , On multivalued nonlinear variational inclusion problems with (A, η)-accretive
mappings in Banach spaces, J. Inequal. Appl. 2006 (2006), Art. ID 59836, 12 pp.

[47] , Projection iterative approximations for a new class of general random implicit

quasi-variational inequalities, J. Inequal. Appl. 2006 (2006), Article ID 81261, 17 pp.;
doi:10.1155/JIA/2006/81261.

[48] H. Y. Lan, Y. J. Cho, and R. U. Verma, On solution sensitivity of generalized relaxed

cocoercive implicit quasivariational inclusions with A-monotone mappings, J. Comput.
Anal. Appl. 8 (2006), no. 1, 75–87.

[49] , Nonlinear relaxed cocoercive variational inclusions involving (A, η)-accretive
mappings in Banach spaces, Comput. Math. Appl. 51 (2006), no. 9-10, 1529–1538.

[50] H. Y. Lan, Y. J. Cho, and W. Xie, General nonlinear random equations with random

multivalued operator in Banach spaces, J. Inequal. Appl. 2009 (2009), Article ID 865093,
17 pp.; doi:10.1155/2009/865093.



GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION 267

[51] H. Y. Lan, J. I. Kang, and Y. J. Cho, Nonlinear (A, η)-monotone operator inclusion

systems involving non-monotone set-valued mappings, Taiwanese J. Math. 11 (2007),
no. 3, 683–701.

[52] H. Y. Lan, J. H. Kim, and Y. J. Cho, On a new system of nonlinear A-monotone

multivalued variational inclusions, J. Math. Anal. Appl. 327 (2007), no. 1, 481–493.
[53] H. Y. Lan and R. U. Verma, Iterative algorithms for nonlinear fuzzy variational inclusion

systems with (A, η)-accretive mappings in Banach spaces, Adv. Nonlinear Var. Inequal.
11 (2008), no. 1, 15–30.

[54] M. A. Noor, Two-step approximation schemes for multivalued quasi variational inclu-

sions, Nonlinear Funct. Anal. Appl. 7 (2002), no. 1, 1–14.
[55] , Variational inequalities for fuzzy mappings. I, Fuzzy Sets and Systems 55

(1993), no. 3, 309–312.
[56] J. Y. Park and J. U. Jeong, A perturbed algorithm of variational inclusions for fuzzy

mappings, Fuzzy Sets and Systems 115 (2000), no. 3, 419–424.
[57] , Iterative algorithm for finding approximate solutions to completely generalized

strongly quasivariational inequalities for fuzzy mappings, Fuzzy Sets and Systems 115

(2000), no. 3, 413–418.
[58] N. Onjai-Uea and P. Kumam, A generalized nonlinear random equations with random

fuzzy mappings in uniformly smooth Banach spaces, J. Inequal. Appl. 2010 (2010), Art.
ID 728452, 15 pp.; doi:10.1155/2010/728452.

[59] R. U. Verma, A-monotonicity and applications to nonlinear inclusion problems, J. Appl.
Math. Stoch. Anal. 17 (2004), no. 2, 193–195.

[60] , Approximation solvability of a class of nonlinear set-valued variational inclu-

sions involving (A, η)-monotone mappings, J. Math. Anal. Appl. 337 (2008), no. 2,
969–975.

[61] , Sensitivity analysis for generalized strongly monotone variational inclusions

based on the (A, η)-resolvent operator technique, Appl. Math. Lett. 19 (2006), no. 12,
1409–1413.

[62] , The over-relaxed A-proximal point algorithm and applications to nonlinear vari-

ational inclusions in Banach spaces, Fixed Point Theory 10 (2009), no. 1, 185–195.
[63] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991),

no. 12, 1127–1138.
[64] Y. Yao, Y. J. Cho, and Y. Liou, Algorithms of common solutions for variational in-

clusions, mixed equilibrium problems and fixed point problems, European J. Oper. Res.
212 (2011), no. 2, 242–250.

[65] , Iterative algorithms for variational inclusions, mixed equilibrium problems and

fixed point problems approach to optimization problems, Cent. Eur. J. Math. 9 (2011),
no. 3, 640–656.

[66] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338–358.
[67] H. I. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishing

Group, Boston, MA, 1988.

Department of Mathematics

Sari Branch Islamic Azad University

Sari 48164-194, Iran

E-mail address: javad.balooee@gmail.com


