GENERALIZED FUZZY WEAK VECTOR QUASIVARIATIONAL-LIKE INEQUALITIES*

Byung-Soo Lee

Abstract. In this paper, we introduce a Stampacchia type of generalized weak vector quasivariational-like inequalities for fuzzy mappings and consider the existence of solutions to them under non-compact assumption.

1. Introduction

The vector variational inequality has grown to be the central part of nonlinear functional analysis in the academic and professional communities since the path-breaking paper [14] introduced it firstly. And then Chen and Cheng [9] published the first primary existence result for the following Stampacchia-type of weak vector variational inequality for single-valued mappings:

Find a vector $\overline{x} \in K$ such that

$$\langle T(\overline{x}), y - \overline{x} \rangle \not\in -int C, \quad y \in K,$$

where K and C are a subset and a closed convex cone of Hausdorff topological vector spaces X and Y, respectively, and $T: K \to L(X,Y)$ is a mapping from K to the set L(X,Y) of all linear continuous mappings from X to Y.

Received July 8, 2005. Revised August 22, 2005.

2000 Mathematics Subject Classification: 49J40.

Key words and phrases: Fuzzy mapping, weak vector quasivariational-like inequality, genealized Ky Fan's section theorem, topologically open fuzzy set-valued, weakly open fuzzy set-valued.

* This research was supported by Kyungsung University Research Grants in 2004.

Konnov and Yao [19] considered the following Stampacchia-type of weak vector variational-like inequality for set-valued mappings:

Find $\overline{x} \in K$ and $s \in T(\overline{x})$ such that

$$\langle s, \eta(\overline{x}, y) \rangle \not\in -int C, \quad y \in K,$$

where $\eta: K \times K \to X$ is a mapping, $T: K \to 2^{L(X,Y)}$ is a set-valued mapping and $C: K \to 2^Y$ is a set-valued mapping such that C(x) is a closed and convex cone with $C(x) \neq Y$ and $int C(x) \neq \emptyset$.

Chen and Li [11] considered the following weak vector quasivariational inequality for set-valued mappings:

Find $\overline{x} \in K(\overline{x})$ and $s \in T(\overline{x})$ such that

$$\langle s, y - \overline{x} \rangle \not\in -int C, \quad y \in K(\overline{x}),$$

where $K: X_0(\subset X) \to 2^{X_0}$ and $T: K_0 \to 2^{L(X,Y)}$ are set-valued mappings.

Lee et al. [27] considered the following weak vector quasivariational inequality for set-valued mappings:

Find $\overline{x} \in S(\overline{x})$ and $\overline{y} \in T(\overline{x})$ such that

$$\psi(\overline{x}, \overline{y}, x) - \psi(\overline{x}, \overline{y}, \overline{x}) \not\in -int K, \quad x \in S(\overline{x}),$$

where C, D are subsets of a locally convex Hausdorff topological space X, K is a cone of a Hausdorff topological vector space Y, and T: $C \to 2^X$, $S: C \to 2^C$ are set-valued mappings and $\psi: C \times D \times C \to Y$ is a mapping. Also they considered the following weak vector quasivariational-like inequality for set-valued mapping:

Find $\overline{x} \in S(\overline{x})$ and $\overline{y} \in T(\overline{x})$ such that

$$\langle M(\overline{x}, \overline{y}), \eta(x, \overline{x}) \rangle \not\in -int K \text{ for } x \in S(\overline{x}),$$

where $M: C \times D \to L(X,Y)$ and $\eta: C \times C \to X$ are mappings.

Besides, many other vector variational-like inequalities and vector quasivariational inequalities were considered on topological vector spaces in [1, 4, 8, 11, 27, 32-33] and [16, 18, 27, 34], respectively.

Very recently, Qun [31] obtained existence theorems for the following vector variational-like inequalities for set-valued mappings:

Find $\overline{x} \in K$ such that there exists $\overline{s} \in T(\overline{x})$ satisfying

$$\langle \overline{s}, \eta(y, \overline{x}) \rangle \not\in -int C(\overline{x}), \quad y \in K,$$

under both the compact and non-compact assumption of K, where X, Y are Hausdorff topological vector spaces, K is a subset of X and η : $K \times K \to X$ is a mapping. Especially, in the non-compact case, by using the concept of escaping sequence, he obtained the existence theorem of solutions.

On the other hand, since Chang and Zhu [7] introduced a variational inequality problem for fuzzy mappings, some authors [4, 5, 17, 20, 22, 24-25] considered vector variational inequality problems for fuzzy mappings. In particular, Chang et al. studied vector quasivariational inequalities [4-5] and vector variational-like inequalities [3] for fuzzy mappings and Lee et al. [20] obtained a fuzzy extension of Siddiqi et al.'s results [32] for vector variational-like inequalities. In [17], the authors considered the existence of solutions to generalized fuzzy vector quasivariational-like inequalities (F-VQVLI) under the compact assumption.

In this paper, we introduce a Stampacchia type of generalized weak vector quasivariational-like inequalities for fuzzy mappings (**F-WVQVL** I) and consider the existence of solutions for them under the noncompact assumption. Our results generalize the existences of solutions for (**F-VQVLI**) studied in [17].

2. Preliminaries

Let $X,\ Y$ be topological spaces and $T:X\to 2^Y$ be a multivalued mapping. Let $T^-:Y\to 2^X$ be a multivalued mapping defined by

$$x \in T^-(y)$$
 if and only if $y \in T(x)$.

Definition 2.1 [9].

- (1) T is said to be upper semicontinuous (in short, u.s.c.) at $x \in X$ if, for every open set V in Y containing T(x), there is an open set U containing x such that $T(u) \subseteq V$ for all $u \in U$;
- (2) T is said to be u.s.c. on X if T is u.s.c. at every point of X.
- (3) T is said to be lower semicontinuous (in short, l.s.c.) at $x \in X$ if, for every open set V in Y with $T(x) \cap V \neq \emptyset$, there is an open set U containing x such that $T(u) \cap V \neq \emptyset$ for all $u \in U$;
- (4) T is said to be l.s.c. on X if T is l.s.c. at every point of X.
- (5) T is said to be continuous at x if T is both u.s.c. and l.s.c. at x.
- (6) T is said to be compact if T(X) is contained in some compact subset of Y,
- (7) T is said to be closed if the graph of T, $G_rT = \{(x, y) \in X \times Y : y \in T(x)\}$ is closed in $X \times Y$.
- (8) T is said to have open lower sections if for any $y \in Y$, $T^{-}(y)$ is open in X.

LEMMA 2.1. T is l.s.c. at $x \in X$ if, and only if, for any $y \in T(x)$ and for any net $\{x_{\alpha}\}$ in X converging to x, there is a net $\{y_{\alpha}\}$ such that $y_{\alpha} \in T(x_{\alpha})$ for each α , and y_{α} converging to y.

Let X, Y be sets and $F: X \to \Im(Y)$ be a fuzzy mapping. We denote a fuzzy set F(x) by F_x in Y for $x \in X$, where $\Im(Y)$ is the collection of all fuzzy sets in Y.

DEFINITION 2.2 [3-5, 7].

(1) F is said to be convex on a set X if Y is a convex subset of a topological vector space and for any $x \in X$, $y, z \in Y$ and $\lambda \in [0, 1]$,

$$F_x(\lambda y + (1 - \lambda)z) \ge \min\{F_x(y), F_x(z)\}.$$

- (2) F is said to be closed fuzzy set-valued if for each $y \in Y$, $F_x(y)$ is u.s.c. on $X \times Y$ as a real ordinary function.
- (3) F is said to be topologically open fuzzy set-valued if, for each $x_0 \in X$ and for each open subset V of Y with $F_{x_0}(y) \geq \gamma$ for some

- $y \in V \ (\gamma \in (0,1])$, there is a neighborhood U of x_0 in X such that if $x \in U$, then $F_x(y) \ge \gamma$ for some $y \in V$.
- (4) F is said to be weakly open fuzzy set-valued if for each $y \in Y$, $F_x(y)$ is l.s.c. on $X \times Y$ as a real ordinary function.

LEMMA 2.2 [3]. Let K be a nonempty closed convex subset of a real Hausdorff topological vector space X, D a nonempty closed convex subset of a real Hausdorff topological vector space Y and $\beta: K \to (0,1]$ a l.s.c. function. Let $F: K \to \Im(D)$ be a fuzzy mapping with the cut set $(F_x)_{\beta(x)} := \{d \in D: F_x(d) \geq \beta(x)\} \neq \emptyset$ for any $x \in K$. Let $\overline{F}: K \to 2^D$ be a multivalued mapping defined by $\overline{F}(x) = (F_x)_{\beta(x)}$. If F is a convex fuzzy mapping with closed fuzzy set-values, then \overline{F} is a closed mapping with nonempty convex-values.

LEMMA 2.3 [4]. Let X and Y be topological spaces, and $F: X \to \Im(Y)$ be a fuzzy mapping such that for any $x \in X$, the cut set $(F_x)_{\gamma} := \{y \in Y: F_x(y) \geq \gamma\}$ is nonempty for $\gamma \in (0,1]$. Let $\overline{F}: X \to 2^Y$ be a multivalued mapping defined by $\overline{F}(x) = (F_x)_{\gamma}$. If F is convex and topologically open fuzzy set-valued, then \overline{F} is a l.s.c. mapping with nonempty convex-values.

LEMMA 2.4 [5]. Let K be a nonempty closed convex subset of a real Hausdorff topological vector space X, D a nonempty closed convex subset of a Hausdorff topological vector space Y and $\beta: X \to (0,1]$ a u.s.c. function. Let $F: K \to \Im(D)$ be a fuzzy mapping such that for any $x \in K$, the strong cut set $[F_x]_{\beta(x)} := \{d \in D: F_x(d) > \beta(x)\}$ is nonempty. Let $\overline{F}: K \to 2^D$ be a multivalued mapping defined by $\overline{F}(x) = [F_x]_{\beta(x)}$.

- (1) If F is convex, then \overline{F} has nonempty convex-values.
- (2) If F is weakly open fuzzy set-valued, then \overline{F} has open lower sections.

DEFINITION 2.3. Let X, Z be two vector spaces, $K \subset X$ be a nonempty convex set and $P \subset Z$ a pointed, closed convex cone with apex at the origin and nonempty interior int P. A multivalued mapping

 $H: K \times K \to 2^Z$ is said to be *P*-convex with respect to the first variable if, for $x_1, x_2, y \in K$, $u_1 \in H(x_1, y)$, $u_2 \in H(x_2, y)$ and $\lambda \in [0, 1]$, there exists $u \in H(\lambda x_1 + (1 - \lambda)x_2, y)$ such that

$$\lambda u_1 + (1 - \lambda)u_2 \in u + P.$$

DEFINITION 2.4. Let X, Z be vector spaces. A mapping $\eta: X \times X \to Z$ is said to be linear if

$$\eta(\lambda(x_1, y_1) + (x_2, y_2)) = \lambda \eta(x_1, y_1) + \eta(x_2, y_2)$$

for all (x_1, x_2) , $(y_1, y_2) \in X \times X$ and $\lambda \in \mathbb{R}$.

DEFINITION 2.5 [36]. A point z_0 in a nonempty subset C of Z is called a vector maximal point of C if the set $\{z \in C : z_0 \leq_P z, z \neq z_0\} = \emptyset$, which is equivalent to

$$C \cap (z_0 + P) = \{z_0\}.$$

LEMMA 2.5 [28]. Let C be a nonempty compact subset of an ordered Banach space Z. Then $\max C \neq \emptyset$, where $\max C$ denotes the set of all vector maximal points of C.

3. Main results

Throughout this section, X denotes a Hausdorff topological vector space, Y is a topological vector space and Z is an ordered topological vector space. Let K be a nonempty convex subset of X, D be a nonempty subset of Y and $\{C(x): x \in K\}$ be a family of solid convex cones in Z, that is, for any $x \in K$, int C(x) is nonempty and $C(x) \neq Z$. Let $F: K \to \Im(D)$ and $G: K \to \Im(K)$ be two fuzzy mappings, $M: K \times D \to 2^{L(X,Z)}$ and $H: K \times K \to 2^Z$ be two multivalued mappings, $\eta: X \times X \to X$ be a mapping, $\beta: X \to (0,1]$ be a function and γ be a constant in (0,1].

An ordering \leq with respect to the cone C in Z is defined as $y \not\leq_{int} C$ x if and only if $x - y \not\in -int C$ for $x, y \in Z$.

We consider the existence of solutions to the following Stampacchia type of generalized weak vector quasivariational-like inequalities for fuzzy mappings:

(F-WVQVLI) Find $\bar{x} \in K$ such that there exists $\bar{s} \in (F_{\bar{x}})_{\beta(\bar{x})}$ satisfying the following inequality:

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $x \in K$, $z \in (G_{\bar{x}})_{\gamma}$ and $u \in H(x, \bar{x})$, where

$$\max \langle M(\bar{x},\bar{s}), \eta(x,z) \rangle = \max_{s \in M(\bar{x},\bar{s})} \langle s, \eta(x,z) \rangle$$

and $\langle s, \eta(x, z) \rangle$ denotes the evaluation of continuous linear operator s from X into Z at $\eta(x, z)$.

In addition, we obtain the existence of solutions to the following Stampacchia type of generalized vector quasivariational-like inequalities for fuzzy mappings:

(F-VQVLI) Find $\bar{x} \in K$ such that, for any $x \in K$, there exists $\bar{s} \in (F_{\bar{x}})_{\beta(\bar{x})}$ satisfying the following inequality:

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $z \in (G_{\bar{x}})_{\gamma}$ and $u \in H(x, \bar{x})$.

Replacing $\Im(K)$ and $\Im(D)$ with 2^K and 2^D , respectively, in (F-WVQVLI) and (F-VQVLI), we obtain the following Stampacchia type of generalized weak vector quasivariational-like inequalities and vector quasivariational-like inequalities for multivalued mappings:

(WVQVLI) Find $\bar{x} \in K$ and $\bar{s} \in F(\bar{x})$ such that

$$\max \langle M(\bar{x},\bar{s}), \eta(x,z) \rangle + u \not\in -int \ C(\bar{x})$$

for any $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$.

(VQVLI) Find $\bar{x} \in K$ such that, for any $x \in K$, that exists $\bar{s} \in F(\bar{x})$ satisfying the following inequality:

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$.

Deleting a topological vector space Y and a fuzzy mapping F, first, and then replacing Z with an ordered topological vector space Y, H: $K \times K \to 2^Z$ with $H: K \times K \to Y$, and $M: K \times D \to 2^{L(X,Z)}$ with $S: K \to 2^{L(X,Y)}$ in (F-WVQVLI) or (F-VQVLI), respectively, we obtain the following vector variation-like inequality for fuzzy mappings:

(F-VVLI) Find $\bar{x} \in K$ satisfying the following inequality:

$$\max \langle S(\bar{x}), \eta(x, y) \rangle + H(x, \bar{x}) \not\in -int C(\bar{x})$$

for any $x \in K$ and any $y \in (G_{\bar{x}})_{\beta(\bar{x})}$, where $\{C(x) : x \in K\}$ is a family of closed convex cones in Y.

Replacing a fuzzy mapping $G: K \to \Im(K)$ with a multivalued mapping $G: K \to 2^K$ defined by G(x) = K for $x \in K$ and putting $H \equiv 0$ in **(F-VVLI)**, we obtain the following vector variational-like inequalities for multivalued mappings:

(VVLI) Find $\bar{x} \in K$ such that

$$\max \langle S(\bar{x}), \eta(x, y) \rangle \not\in -int C(\bar{x}), \quad x, y \in K,$$

which is a generalized form of the following vector variational-like inequalities for multivalued mappings introduced and studied by Chang, Thompson and Yuan [6]:

(VVLI)' Find $\bar{x} \in K$ satisfying the following inequality:

$$\max \langle S(\bar{x}), \eta(x, \bar{x}) \rangle \not\in -int C(\bar{x}) \quad x \in K.$$

Putting Z = Y, $\eta(x, z) = x - z$, $H = \bar{0}$ and replacing $M : K \times D \to 2^{L(X,Z)}$ with $S : K \to L(X,Y)$ in (WVQVLI) or (VQVLI), respectively, we have the following variational inequality:

(VVI) Find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - z \rangle \not\in -int C(\bar{x}), \quad x \in K, z \in G(\bar{x}).$$

Putting $C(x) \equiv C$ for $x \in K$ and $\eta(x,y) = x - y$ in **(VVLI)**, we obtain the following vector-valued variational inequality considered by Lee et al. [26]:

Find $\bar{x} \in K$ such that there exists $\bar{s} \in S(\bar{x})$ satisfying

$$\langle \bar{s}, x - \bar{x} \rangle \not\in -int C, \quad x \in K.$$

Putting $Z = \mathbb{R}$, $L(X, Z) = X^*$, the dual of X and $C(x) \equiv \mathbb{R}^+$, the positive orchant for $x \in K$ in (VVLI)', we obtain the following scalar-valued variational inequality considered by Cottle and Yao [12], Isac [15], and Noor [29]:

Find $\bar{x} \in K$ such that

$$\sup_{u \in S(\bar{x})} \langle u, \eta(x, \bar{x}) \rangle \ge 0, \quad x \in K.$$

Replacing $S: K \to 2^{L(X,Z)}$ with $S: X \to L(X,Z)$ and putting $\eta(x,z) = x - g(z)$, respectively, where $g: K \to K$ is a mapping, then (VVLI)' reduces to the following vector variational inequality (VVI)' considered by Siddiqi et al. [33]:

(VVI)' Find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - g(\bar{x}) \rangle \not\in -int C(\bar{x}), \quad x \in K.$$

Putting $G(x) = \{x\}$ for $x \in K$ in **(VVI)** or g(x) = x for $x \in K$ in **(VVI)**, we obtain the following vector-valued variational inequality considered by Chen [8]:

Find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - \bar{x} \rangle \not\in -int C(\bar{x}), \text{ for } x \in K.$$

Putting $C(x) \equiv C$ and g(x) = x for $x \in K$ in **(VVI)**, we obtain the following vector-valued variational inequality considered by Chen et al. [8-10]:

Find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - \bar{x} \rangle \not\in -int C, \quad x \in K.$$

The following particular form of the generalized Ky Fan's section theorem which is due to Park [30] will be used in dealing with (F-WVQVLI) for the noncompact set case.

THEOREM 3.1 [30]. Let K be a nonempty convex subset of X and $A \subset K \times K$ satisfy the following conditions:

- (i) $(x, x) \in A, x \in K;$
- (i) $A_x = \{ y \in K : (x, y) \in A \}, x \in K, is closed;$
- $(\overline{\mathbf{m}})$ $A^y = \{x \in K : (x,y) \not\in A\}, y \in K$, is convex or empty;
- (iv) there exists a nonempty compact subset B of K such that for each finite subset N of K there exists a nonempty compact convex subset L_N of K containing N such that

$$L_N \cap \{y \in K : (x,y) \in A \text{ for any } x \in L_N\} \subset B.$$

Then there exists a $y_0 \in B$ such that $K \times \{y_0\} \subset A$.

In particular, if K = B, that is, K is a compact convex subset of X, then the condition (iv) is obviously true and thus we obtain Ky Fan's section theorem [13], which will be used in considering (F-VQVLI) under compact assumption.

Now, we consider the existence of solutions to the Stampacchia type of (F-WVQVLI) for non-compact set case.

LEMMA 3.2 [35]. Let X be a paracompact Hausdorff topological space and Y be a topological vector space. Let $F: X \to 2^Y$ be a multivalued mapping with nonempty convex-values. If F has open lower sections, then there exists a continuous function $f: X \to Y$ such that $f(x) \in F(x)$ for any $x \in X$.

PROPOSITION 3.3. Let K be a nonempty convex subset of X and D be a nonempty subset of Y. Let $f: K \to D$ be a continuous function and $G: K \to 2^K$ be a l.s.c. multivalued mapping with convex-values. Let $M: K \times D \to 2^{L(X,Z)}$ be a multivalued mapping, and a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-int C(x)\}, x \in K$, be closed. Let $\eta: X \times X \to X$ be linear, $y \mapsto \eta(\cdot, y)$ be continuous and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P = \bigcap_{x \in K} C(x)$. Suppose further that

- (i) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle$ converges to $\max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y$, $s_{\alpha} \to s$ and $z_{\alpha} \to z$;
- (i) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$,
- ($\overline{\mathbf{n}}$) there is a nonempty compact subset B of K such that for each nonempty finite subset N of K, there is a nonempty compact convex subset L_N of K containing N such that, for $y \in L_N \setminus B$, there exist $x \in L_N$, $z \in G(y)$ and $u \in H(x, y)$ such that

$$\max \langle M(y, f(y)), \eta(x, z) \rangle + u \in -int C(y).$$

Then there exists $\bar{x} \in K$ such that

$$\max \langle M(\bar{x}, f(\bar{x})), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$.

Proof. Let $A = \{(x,y) \in K \times K : \max \langle M(y,f(y)), \eta(x,z) \rangle + u \not\in -int C(y) \text{ for any } z \in G(y) \text{ and } u \in H(x,y) \}$. It is easily shown that $(x,x) \in A$ for $x \in K$ from the condition (i). And $A_x = \{y \in K : (x,y) \in A\}, x \in K$, is closed. In fact, for any net $\{y_\alpha\}$ in A_x converging

to y, we have $\max \langle M(y_{\alpha}, f(y_{\alpha})), \eta(x, z_{\alpha}) \rangle + u_{\alpha} \not\in -int C(y_{\alpha})$ for any $z_{\alpha} \in G(y_{\alpha})$ and $u_{\alpha} \in H(x, y_{\alpha})$. From Lemma 2.1 and the condition (i), $\max \langle M(y, f(y)), \eta(x, z) \rangle + u \not\in -int C(y)$ for any $z \in G(y)$ and $u \in H(x, y)$, so that we have $y \in A_x$, which shows that A_x is closed for $x \in K$. And $A^y = \{x \in K : (x, y) \not\in A\}$, $y \in K$, is convex. Indeed, let $x_1, x_2 \in A^y$ and $\lambda \in [0, 1]$. Then, from the fact that $(x_1, y) \not\in A$ for any $s \in \overline{F}(y)$, there exist $z_1 \in \overline{G}(y)$ and $u_1 \in H(x_1, y)$ such that

$$\max \langle M(y,s), \eta(x_1,z_1) \rangle + u_1 \in -int C(y)$$

and from the fact that $(x_2, y) \notin A$ for any $s \in \overline{F}(y)$, there exist $z_2 \in \overline{G}(y)$ and $u_2 \in H(x_2, y)$ such that

$$\max \langle M(y,s), \eta(x_2, z_2) \rangle + u_2 \in -int C(y).$$

On the other hand, from the convexity of G, \overline{G} is convex-valued due to Lemma 2.4(1). Hence, for any $s \in \overline{F}(y)$, there exist $u \in H(\lambda x_1 + (1 - \lambda)x_2, y)$ and $z := \lambda z_1 + (1 - \lambda)z_2 \in \overline{G}(y)$ for $\lambda \in [0, 1]$ such that

$$\max \langle M(y,s), \eta(\lambda x_1 + (1-\lambda)x_2, z) \rangle + u$$

$$= \max \langle M(y,s), \eta(\lambda x_1 + (1-\lambda)x_2, \lambda z_1 + (1-\lambda)z_2) \rangle + u$$

$$= \max \langle M(y,s), (\lambda \eta(x_1, z_1) + (1-\lambda)\eta(x_2, z_2)) \rangle + u$$

$$\leq \lambda \max \langle M(y,s), \eta(x_1, z_1) \rangle + (1-\lambda) \max \langle M(y,s), \eta(x_2, z_2) \rangle + u$$

$$\in \lambda \max \langle M(y,s), \eta(x_1, z_1) \rangle + (1-\lambda) \max \langle M(y,s), \eta(x_2, z_2) \rangle + \lambda u_1 + (1-\lambda)u_2 - P$$

$$= \lambda (\max \langle M(y,s), \eta(x_1, z_1) \rangle + u_1) + (1-\lambda)(\max \langle M(y,s), \eta(x_2, z_2) \rangle + u_2) - P$$

$$\subseteq -\inf C(y) - \inf C(y) - C(y)$$

$$= -\inf C(y).$$

Thus $\lambda x_1 + (1 - \lambda)x_2 \in A^y$, which shows that A^y is convex. Further, note that the condition $(\bar{\mathbf{n}})$ implies that, for $y \in L_N \backslash B$, there exists

 $x \in L_N$ such that $y \notin A_x$. Hence the condition (iv) of Theorem 3.1 is satisfied. Thus there exists $\bar{x} \in K$ such that

$$\max \langle M(\bar{x}, f(\bar{x})), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $x \in K$, $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$. This completes the proof. \square

Now, we show the existence of solution for the problem (F-WVQVLI).

THEOREM 3.4. Let K be a nonempty paracompact convex subset of X and D be a nonempty closed convex subset of Y. Let $F: K \to \Im(D)$ be a convex fuzzy mapping with weakly open fuzzy set-values and nonempty strong cut set $[F_x]_{\beta(x)}$ for a u.s.c. function $\beta: X \to (0,1]$, $G: K \to \Im(K)$ be a convex fuzzy mapping with topologically open fuzzy set-values and nonempty cut set $(G_x)_{\gamma}$ for $\gamma \in (0,1]$, a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-int C(x)\}, x \in K$, be closed, and $M: K \times D \to 2^{L(X,Z)}$ be a multivalued mapping. Let $\eta: X \times X \to X$ be linear, $y \mapsto \eta(\cdot,y)$ continuous and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P = \bigcap_{x \in K} C(x)$.

Suppose further that

- (i) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle \rightarrow \max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \rightarrow y, s_{\alpha} \rightarrow s$ and $z_{\alpha} \rightarrow z$,
- $(\bar{\mathbf{i}}) \ \langle M(x,\cdot), \eta(x,\cdot) \rangle = 0 \ \text{and} \ H(x,x) = \{0\} \ \text{for all} \ x \in K,$
- ($\overline{\mathbf{n}}$) there is a nonempty compact subset B of K such that for any nonempty finite subset N of K, there is a nonempty compact convex subset L_N of K containing N such that for any $y \in L_N \backslash B$, there exist $x \in L_N$, $z \in (G_y)_{\gamma}$ and $u \in H(x,y)$ such that

$$\max \langle M(y,s), \eta(x,z) \rangle + u \in -int C(y)$$

for any $s \in (F_y)_{\beta(y)}$.

Then the problem (F-WVQVLI) is solvable, i.e., there exist $\bar{x} \in K$ and $\bar{s} \in (F_{\bar{x}})_{\beta(\bar{x})}$ such that

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $x \in K$, $z \in (G_{\bar{x}})_{\gamma}$ and $u \in H(x, \bar{x})$.

Proof. Define two multivalued mappings $\overline{F}: K \to 2^D$ and $\overline{G}: K \to 2^K$ by $\overline{F}(x) = [F_x]_{\beta(x)}$ and $\overline{G}(x) = (G_x)_{\gamma}$, for $x \in K$, respectively. It follows from Lemma 2.3 that \overline{G} is l.s.c. and has nonempty convexvalues and, from Lemma 2.4, that \overline{F} has nonempty convex-values such that $\overline{F}^-(y)$ is open in X for $y \in D$. Thus, by Lemma 3.2, there exists a continuous function $f: K \to D$ such that $f(x) \in \overline{F}(x)$ for $x \in K$. So, by Proposition 3.3, there exists $\overline{x} \in K$ such that

$$\max \langle M(\bar{x}, f(\bar{x})), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $x \in K$, $z \in (G_{\bar{x}})_{\gamma}$ and $u \in H(x, \bar{x})$. Letting $\bar{s} = f(\bar{x})$, we obtain the desired conclusion of Theorem 3.4. This completes the proof.

From Theorem 3.4, we obtain the following theorem for Stampacchia type of the generalized weak vector quasivariational-like inequalities (WVQVLI) for multivalued mappings.

THEOREM 3.5. Let K be a nonempty paracompact convex subset of X and D be a nonempty closed convex subset of Y. Let $F: K \to 2^D$ be a multivalued mapping with nonempty convex-values and open lower sections, $G: K \to 2^K$ be a multivalued l.s.c. mapping with nonempty convex-values, a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-int C(x)\}, x \in K$, closed, and $M: K \times D \to 2^{L(X,Z)}$ be a multivalued mapping. Let $\eta: X \times X \to X$ be linear, $y \mapsto \eta(\cdot, y)$ be continuous and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P = \bigcap_{x \in K} C(x)$.

Suppose further that

- (i) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle \rightarrow \max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \rightarrow y, s_{\alpha} \rightarrow s$ and $z_{\alpha} \rightarrow z,$
- (i) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$,
- ($\bar{\mathbf{n}}$) there is a nonempty compact subset B of K such that, for any nonempty finite subset N of K, there is a nonempty compact convex subset L_N of K containing N such that, for any $y \in L_N \backslash B$,

there exist $x \in L_N$, $z \in G(y)$ and $u \in H(x, y)$ such that

$$\max \langle M(y,s), \eta(x,z) \rangle + u \in -int C(y), \quad s \in F(y).$$

Then the problem (WVQVLI) is solvable.

For the compact set case, by using Ky Fan's section theorem [13], we obtain the following existence of solutions for the vector variational inequalities (F-VQVLI), (F-VVI), (VQVLI) as special cases of (WVQVLI).

COROLLARY 3.6 [17]. Let K be a nonempty compact convex subset of X and D be a nonempty closed convex subset of Y. Let $F: K \to \Im(D)$ be a convex fuzzy mapping with closed fuzzy set-values, $G: K \to \Im(K)$ be a convex fuzzy mapping with topologically open fuzzy set-values, $M: K \times D \to 2^{L(X,Z)}$ be a multivalued mapping and a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-int C(x)\}, x \in K$, be closed. Let $\eta: X \times X \to X$ be linear, $y \mapsto \eta(\cdot, y)$ be continuous, and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P:=\bigcap_{x \in K} C(x)$.

Suppose further that

- (i) there exist a l.s.c. function $\beta: X \to (0,1]$ and a constant $\gamma \in (0,1]$ such that for any $x \in K$, the cut sets $(F_x)_{\beta(x)}$ and $(G_x)_{\gamma}$ are nonempty;
- (i) $\bigcup_{x \in K} (F_x)_{\beta(x)}$ is contained in some compact subset of D;
- $(\vec{\mathbf{n}}) \max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle$ converges to $\max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y$, $s_{\alpha} \to s$ and $z_{\alpha} \to z$;
- (iv) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$. Then the problem (F-VQVLI) is solvable from Theorem 3.1.

COROLLARY 3.7 [25]. Let K be a nonempty compact convex subset of X. Let $F: K \to \Im(L(X,Y))$ be a fuzzy mapping with closed fuzzy set-values, $G: K \to \Im(K)$ be a convex fuzzy mapping with topologically open fuzzy set-values and a multivalued mapping $W: K \to 2^Y$ defined

by $W(x) = Y \setminus [-int C(x)]$, $x \in K$, be closed, where $\{C(x) : x \in K\}$ is a family of solid convex cones in Y. Let $P = \bigcap_{x \in K} C(x)$ and $h : K \to Y$ be a continuous P-convex function. Suppose further that

- (i) there exist a l.s.c. function $\beta: X \to (0,1]$ and a constant $\gamma \in (0,1]$ such that for any $x \in K$ the cut sets $(F_x)_{\beta(x)}$ and $(G_x)_{\gamma}$ are nonempty;
- (i) $\bigcup_{x \in K} (F_x)_{\beta(x)}$ is contained in some compact subset of L(X,Y);
- (ii) for any $x \in K$, there exists $s \in (F_x)_{\beta(x)}$ such that $\langle s, x z \rangle \notin -int C(x)$ for any $z \in (G_x)_{\gamma}$.

Then the following variational inequality:

(F-VVI) Find $\bar{x} \in K$ such that, for any $x \in K$, there exists $\bar{s} \in (F_{\bar{x}})_{\beta(\bar{x})}$ such that

$$\langle \bar{s}, x - z \rangle + h(x) - h(\bar{x}) \not\in -int C(\bar{x}), \quad z \in (G_{\bar{x}})_{\gamma},$$

is solvable.

The following theorem for the existence of solutions for (**VQVLI**) is a special case of Corollary 3.6.

COROLLARY 3.8 [17]. Let K be a nonempty compact convex subset of X and D be a nonempty subset of Y. Let $F: K \to 2^D$ be closed, $G: K \to 2^K$ be l.s.c. and nonempty convex-valued, $M: K \times D \to 2^{L(X,Z)}$ be nonempty compact-valued and a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-int C(x)\}, x \in K$, be closed. Let $\eta: X \times X \to X$ be linear and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P:=\bigcap_{X \in X} C(x)$.

Suppose further that

- (i) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$;
- (i) F is compact;
- $(\bar{\mathbf{n}}) \max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle$ converges to $\max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y$, $s_{\alpha} \to s$ and $z_{\alpha} \to z$.

Then the problem (VQVLI) is solvable.

References

- [1] Q. H. Ansari, A note on generalized vector variational-like inequalities, Optimization 41 (1997), 197–205.
- [2] G. H. Ansari, A. H. Siddiqu and J. C. Yao, Generalized vector variational-like inequalities and their scalarizations, Vector Variational Inequalities and Vector Equilibria (F. Giannessi, eds.), Kluwer Publishers, Dordrecht, 2000.
- [3] S. S Chang, Coincidence theorems and variational inequalities for fuzzy mappings, Fuzzy Sets and Systems 61 (1994), 359–368.
- [4] S. S. Chang, G. M. Lee and B. S. Lee, Vector quasivariational inequalities for fuzzy mappings (I), Fuzzy Sets and Systems 87 (1997), 307–315.
- [5] S. S. Chang, G. M. Lee and B. S. Lee, Vector quasivariational inequalities for fuzzy mappings (II), Fuzzy Sets and Systems 102 (1999), 333–344.
- [6] S. S. Chang, H. B. Thompson and G. X. Z. Yuan, The existence theorems of solutions for generalized vector-valued variational-like inequalities, Comput. Math. Appl. 37 (1999), 1–9.
- [7] S. S. Chang and Y. G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets and Systems 32 (1989), 359–367.
- [8] G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Opti. Th. Appl. 74(3) (1992), 445-456.
- [9] G. Y. Chen and G. M. Cheng, Vector Variational Inequalities and Vector Optimization, Lecture Notes in Econ. and Math. Systems 285, Springer Verlag, Berlin, 1987.
- [10] G. Y. Chen and B. D. Craven, A vector variational inequality and optimization over an efficient set, Zeitscrift für Operations Research 3 (1990), 1-12.
- [11] G. Y. Chen and S. J. Li, Existence of solutions for a generalized quasi-vector variational inequality, J. Opti. Th. Appl. Vol. 90 (1996), 321-334.
- [12] R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity problems in Hilbert spaces, J. Opti. Th. Appl. 75(2) (1992), 281-295.
- [13] Ky Fan, A generalization of Tychonoff's fixed-point theorem, Mathematische Annalen 142 (1961), 305–310.
- [14] F. Giannessi, Theorems of alternative, quadratic programs, and complementarity problems, Variational Inequalities and Complementarity Problems (Cottle, Giannessi and Lions, eds.), John Wiley and Sons, New York, 1980.
- [15] G. Isac, A special variational inequality and the implicit complementarity problem, J. of the Faculty of Sciences, Univ. of Tokyo, Section IA, Mathematics 37

- (1990), 107-127.
- [16] M. K. Kang and B. S. Lee, Generalized vector quasivariational-like inequalities, Honam Math. J. 26 (4) (2004).
- [17] M. K. Kang and B. S. Lee, Generalized fuzzy vector quasivariational-like inequalities, to appear.
- [18] W. K. Kim and K. K. Tan, On generalized vector quasi-variational inequalities, Optimization 46 (1999), 185–198.
- [19] V. Konnov and J. C. Yao, On the generalized vector variational inequality problem, J. Math. Anal. Vol. 206 (1997), 42–58.
- [20] B. S. Lee and D. Y. Jung, A fuzzy extension of Siddiqi et al.'s results for vector variational-like inequalities, Indian J. pure appl. Math. 34 (10) (2003), 1495–1502.
- [21] B. S. Lee and G. M. Lee, A vector version of Minty's lemma and application, Appl. Math. Lett. 12 (1999), 43-50.
- [22] B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector-valued variational inequalities and fuzzy extensions, J. Korean Math. Soc. 33 (1996), 609-624.
- [23] B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces, Indian J. pure appl. Math. 28 (1997), 33-41.
- [24] G. M. Lee, D. S. Kim and B. S. Lee, Strongly quasivariational inequalities for fuzzy mappings, Fuzzy Sets and Systems 78 (1996), 381–386.
- [25] G. M. Lee, D. S. Kim and B. S. Lee, Vector variational inequalities for fuzzy mappings, Nonlinear Analysis Forum 4 (1999), 119-129.
- [26] G. M. Lee, D. S. Kim, B. S. Lee and S. J. Cho, Generalized vector variational inequality and fuzzy extension, Appl. Math. Lett. 6 (1993), 47-51.
- [27] G. M. Lee, B. S. Lee and S. S. Chang, On vector quasivariational inequalities, J. Math. Anal. Appl. 203 (1996), 626–638.
- [28] D. C. Luc, Theory of Vector Optimization, Lectures Notes in Econ. and Math. Systems, Vol. 319, Springer Verlag, Berlin, 1989.
- [29] M. A. Noor, Generalized variational inequality, Appl. Math. Lett. 1 (1988), 119– 122.
- [30] Sehie Park, A unified approach to generalizations of the KKM-type theorems related to acyclic maps, Numer. Funct. Anal. & Optimiz. 15 (1994), 105-119.
- [31] L. Qun, Generalized vector variational-like inequalities, Vector Variational Inequalities and Vector Equilibria (F. Giannessi, eds.), Kluwer Publishers, Dordrecht, 2000.
- [32] A. H. Siddiqi, Q. H. Ansari and R. Ahmad, On vector variational-like inequalities, Indian J. pure appl. Math. 28(8) (1997), 1009–1016.

- [33] A. H. Siddiqi, Q. H. Ansari and A. Khaliq, On vector variational inequalities, J. Opti. Th. Appl. 84 (1995), 171–180.
- [34] N. X. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematische Nachrichten, 122 (1985), 231–245.
- [35] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econ. 12 (1983), 233–245.
- [36] P. L. Yu, Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives, J. Opti. Th. Appl. 14 (1974), 319-377.

Byung-Soo Lee
Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail: bslee@ks.ac.kr