GENERALIZED FUZZY WEAK VECTOR QUASIVARIATIONAL-LIKE INEQUALITIES

  • LEE, BYUNG-SOO (Department of Mathematics Kyungsung University)
  • Received : 2005.07.08
  • Published : 2005.09.25

Abstract

In this paper, we introduce a Stampacchia type of generalized weak vector quasivariational-like inequalities for fuzzy mappings and consider the existence of solutions to them under non-compact assumption.

Keywords

Acknowledgement

Supported by : Kyungsung University

References

  1. Optimization v.41 A note on generalized vector variational-like inequalities Ansari, Q.H.
  2. Generalized vector variational-like inequalities and their scalarizations Ansari, G.H.;Siddiqu, A.H.;Yao, J.C.;Giannessi, F.(ed.)
  3. Fuzzy Sets and Systems v.61 Coincidence theorems and variational inequalities for fuzzy mappings Chang, S.S.
  4. Fuzzy Sets and Systems v.87 Vector quasivariational inequalities for fuzzy mappings (I) Chang, S.S.;Lee, G.M.;Lee, B.S.
  5. Fuzzy Sets and Systems v.102 Vector quasivariational inequalities for fuzzy mappings (II) Chang, S.S.;Lee, G.M.;Lee, B.S.
  6. Comput. Math. Appl. v.37 The existence theorems of solutions for generalized vector-valued variational-like inequalities Chang, S.S.;Thompson, H.B.;Yuan, G.X.Z.
  7. Fuzzy Sets and Systems v.32 On variational inequalities for fuzzy mappings Chang, S.S.;Zhu, Y.G.
  8. J. Opti. Th. Appl. v.74 no.3 Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem Chen, G.Y.
  9. Lecture Notes in Econ. and Math. Systems v.285 Vector Variational Inequalities and Vector Optimization Chen, G.Y.;Cheng, G.M.
  10. Zeitscrift fur Operations Research v.3 A vector variational inequality and optimization over and efficient set Chen, G.Y.;Craven, B.D.
  11. J. Opti. Th. Appl. v.90 Existence of solutions for a generalized quasi-vector variational inequality Chen, G.Y.;Li, S.J.
  12. J. Opti. Th. Appl. v.75 no.2 Pseudo-monotone complementarity problems in Hilbert spaces Cottle, R.W.;Yao, J.C.
  13. Mathematische Annalen v.142 A generalization of Tychonoff's fixed-point theorem Fan, Ky
  14. Theorems of alternative, quadratic programs, and complementarity problems, Variational Inequalities and Complementarity Problems Giannessi, F.;Cottle(ed.);Giannessi(ed.);Lions(ed.)
  15. J. of the Faculty of Sciences, Univ. of Tokyo, Section IA, Mathematics v.37 A special variational inequality and the implicit complementarity problem Isac, G.
  16. Honam Math. J. v.26 no.4 Generalized vector quasivariational-like inequalities Kang, M.K.;Lee, B.S.
  17. Generalized fuzzy vector quasivariational-like inequalities Kang, M.K.;Lee, B.S.
  18. Optimization v.46 On generalized vector quasi-variational inequalities Kim, W.K.;Tan, K.K.
  19. J. Math. Anal. v.206 On the generalized vector variational inequality problem Konnov, V.;Yao, J.C.
  20. Indian J. pure appl. Math. v.34 no.10 A fuzzy extension of Siddiqi et al.'s results for vector variational-like inequalities Lee, B.S.;Jung, D.Y.
  21. Appl. Math. Lett. v.12 A vector version of Minty's lemma and application Lee, B.S.;Lee, G.M.
  22. J. Korean Math. Soc. v.33 Generalized vector-valued variational inequalities and fuzzy extensions Lee, B.S.;Lee, G.M.;Kim, D.S.
  23. Indian J. pure appl. Math. v.28 Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces Lee, B.S.;Lee, G.M.;Kim, D.S.
  24. Fuzzy Sets and Systems v.78 Strongly quasivariational inequalities for fuzzy mappings Lee, G.M.;Kim, D.S.;Lee, B.S.
  25. Nonlinear Analysis Forum v.4 Vector variational inequalities for fuzzy mappings Lee, G.M.;Kim, D.S.;Lee, B.S.
  26. Appl. Math. Lett. v.6 Generalized vector variational inequality and fuzzy extension Lee, G.M.;Kim, D.S.;Lee, B.S.;Cho, S.J.
  27. J. Math. Anal. Appl. v.203 On vector quasivariational inequalities Lee, G.M.;Lee, B.S.;Chang, S.S.
  28. Lectures Notes in Econ. and Math. Systems v.319 Theory of Vector Optimization Luc, D.C.
  29. Appl. Math. Lett. v.1 Generalized variational inequality Noor, M.A.
  30. Numer. Funct. Anal. & Optimiz. v.15 A unified approach to generalizations of the KKM-type theorems related to acyclic maps Park, Se-Hie
  31. Generalized vector variational-like inequalities, Vector Variational Inequalities and Vector Equilibria Qun, L.;Giannessi, F.(ed.)
  32. Indian J. pure appl. Math. v.28 no.8 On vector variational-like inequalities Siddiqi, A.H.;Ansari, Q.H.;Ahmad, R.
  33. J. Opti. Th. Appl. v.84 On vector variational inequalities Siddiqi, A.H.;Ansari, Q.H.;Khaliq, A.
  34. Mathematische Nachrichten v.122 Quasi-variational inequalities in topological linear locally convex Hausdorff spaces Tan, N.X.
  35. J. Math. Econ. v.12 Existence of maximal elements and equilibria in linear topological spaces Yannelis, N.C.;Prabhakar, N.D.
  36. J. Opti. Th. Appl. v.14 Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives Yu, P.L.