• 제목/요약/키워드: fuzzy random variables

검색결과 60건 처리시간 0.024초

퍼지수치 확률변수의 쇼케이 기댓값과 그 응용 (Choquet expected values of fuzzy number-valued random variables and their applications)

  • Lee, Chae-Jang;Kim, Tae-Kyun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.394-397
    • /
    • 2004
  • In this paper, we consider interval number-valued random variables and fuzzy number-valued random variables and discuss Choquet integrals of them. Using these properties, we define the Choquet expected value of fuzzy number-valued random variables which is a natural generalization of the Lebesgue expected value of Lebesgue expected value of fuzzy random variables. Furthermore, we discuss some application of them.

  • PDF

Weak laws of large numbers for weighted sums of Banach space valued fuzzy random variables

  • Kim, Yun Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.215-223
    • /
    • 2013
  • In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in a separable real Banach space. First, we give weak laws of large numbers for weighted sums of strong-compactly uniformly integrable fuzzy random variables. Then, we consider the case that the weighted averages of expectations of fuzzy random variables converge. Finally, weak laws of large numbers for weighted sums of strongly tight or identically distributed fuzzy random variables are obtained as corollaries.

SOME NOTES ON STRONG LAW OF LARGE NUMBERS FOR BANACH SPACE VALUED FUZZY RANDOM VARIABLES

  • Kim, Joo-Mok;Kim, Yun Kyong
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.383-399
    • /
    • 2013
  • In this paper, we establish two types of strong law of large numbers for fuzzy random variables taking values on the space of normal and upper-semicontinuous fuzzy sets with compact support in a separable Banach space. The first result is SLLN for strong-compactly uniformly integrable fuzzy random variables, and the other is the case of that the averages of its expectations converges.

Piecewise Linear Fuzzy Random Variables and their Statistical Application

  • WATANABE, Norio;IMAIZUMI, Tadashi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.696-700
    • /
    • 1998
  • Fuzzy random variables with piecewise linear membership functions are introduced from a practical viewpoint. The estimation of the expected values of these fuzzy random variables is also discussed and statistical application is denonstratied by using a real data set.

  • PDF

SLLN FOR INDEPENDENT FUZZY RANDOM VARIABLES

  • Hyun, Young Nam;Joo, Sang Yeol
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.573-581
    • /
    • 2008
  • We obtain an improvement of strong laws of large numbers for independent fuzzy random variables.

  • PDF

Convergence in distribution for level-wise continuous fuzzy random variables

  • 김윤경;주상열;권중성
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.8.2-8
    • /
    • 2003
  • The theory of fuzzy random variables and fuzzy stochastic processes has been received much attentions in recent years. But convergence in distribution for fuzzy random variables has not established yet. In this talk, we restrict our concerns to level-wise continuous fuzzy random variables and obtain some characterizations of its tightness and convergence in distribution.

  • PDF

수준 연속인 퍼지 랜덤 변수의 가중 합에 대한 약 수렴성 (Weak convergence for weighted sums of level-continuous fuzzy random variables)

  • 김윤경
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.852-856
    • /
    • 2004
  • 이 논문에서는 퍼지 랜덤 변수의 합에 대한 약한 대수의 법칙을 일반화로서, 컴팩트 일양 적분 가능한 수준 연속 퍼지 랜덤 변수의 가중 합이 약 수렴하기 위한 동치 조건을 구하였다.

퍼지수치 확률변수의 쇼케이 기댓값과 그 응용 (Choquet expected values of fuzzy number-valued random variables and their applications)

  • 장이채;김태균
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.98-103
    • /
    • 2005
  • 본 논문에서는 구간수치 확률변수와 퍼지수치 확률변수를 생각하고 이들의 쇼케이 적분을 조사한다. 이러한 성질들을 이용하여 퍼지수치 확률변수의 르베그적분의 일반화인 퍼지수치 확률변수의 쇼케이 기대값을 정의한다. 특히 이들의 응용에 관한 예제들을 다룬다.

Weak Laws of Large Numbers for Weighted Sums of Fuzzy Random Variables

  • Hyun, Young-Nam;Kim, Yun-Kyong;Kim, Young-Ju;Joo, Sang-Yeol
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.529-540
    • /
    • 2009
  • In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of fuzzy numbers of the real line R. We first give improvements of WLLN for weighted sums of convex-compactly uniformly integrable fuzzy random variables obtained by Joo and Hyun (2005). And then, we consider the case that the averages of expectations of fuzzy random variables converges. As results, WLLN for weighted sums of convexly tight or identically distributed case is obtained.