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SLLN FOR INDEPENDENT
FUZZY RANDOM VARIABLES

Young Nam Hyun and Sang Yeol Joo∗

Abstract. We obtain an improvement of strong laws of large num-
bers for independent fuzzy random variables.

1. Introduction

Limit theorems for sums of fuzzy random variables have received
much attentions because of its usefulness and in several applied fields.
Hence many scholars have studied strong laws of large numbers(SLLN)
for sums of independent fuzzy random variables. SLLN in the sense of
L1-metric d1 have been studied by Klement et al. [13], Inoue [7], and
SLLN with respect to uniform metric d∞ have been studied by Colubi
et al. [1], Molchanov [14], Joo et al. [9], Joo and Kim [11], and so
on. Moreover, Joo [8] obtained a SLLN with respect to the Skorokhod
metric ds which was introduced by Joo and Kim [10]. Beside that, there
are many other things such as Colubi et al. [2], Feng [3], Proske and
Puri [15], Uemura [16] which studied SLLN for Banach space-valued
fuzzy random variables.

Recently, Guan and Li [4], Hyun et al. [6] generalized SLLN for
sums of fuzzy random variables to the case of weighted sums under
restrictive conditions.

In this paper, we establish much better SLLN for independent fuzzy
random variables.
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2. Preliminaries

Let R denote the real line. A fuzzy number is a fuzzy set ũ : R →
[0, 1] with the following properties ;

(1) ũ is normal, i.e., there exists x ∈ R such that ũ(x) = 1.
(2) ũ is upper semicontinuous.
(3) supp ũ = cl{x ∈ R : ũ(x) > 0} is compact.
(4) ũ is convex, i.e. ũ(λx+(1−λ)y) ≥ min(ũ(x), ũ(y)) for x, y ∈ R

and λ ∈ [0, 1].
Let F (R) be the family of all fuzzy numbers. For a fuzzy set ũ, if

we define

Lαũ =
{ {x : ũ(x) ≥ α}, 0 < α ≤ 1,

supp ũ, α = 0,

then, it follows that ũ is a fuzzy number if and only if L1ũ 6= φ and Lαũ
is a closed bounded interval for each α ∈ [0, 1]. From this character-
ization of fuzzy numbers, a fuzzy number ũ is completely determined
by the closed intervals Lαũ = [ul

α, ur
α].

Theorem 2.1. For ũ ∈ F (R), the followings hold;

(1) ul is a bounded increasing function on [0, 1].
(2) ur is a bounded decreasing function on [0, 1].
(3) ul

1 ≤ ur
1.

(4) ul and ur are left continuous on [0, 1] and right continuous at
0.

Furthermore, if vl and vr satisfy above (1) − (4), then there exists
a unique ṽ ∈ F (R) such that Lαṽ = [vl

α, vr
α].

Proof :. see Goetschel and Voxman [5]. ¤

The above theorem implies that we can identify a fuzzy number ũ
with the family of closed intervals {[ul

α, ur
α] : 0 ≤ α ≤ 1}, where ul and

ur satisfy (1)-(4) of Theorem 2.1.

We can define uniform metric d∞ on F (R) as follows;

d∞(ũ, ṽ) = sup
0≤α≤1

max(|ul
α − vl

α|, |ur
α − vr

α|)

= max( sup
0≤α≤1

|ul
α − vl

α|, sup
0≤α≤1

|ur
α − vr

α|).
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The norm of ũ ∈ F (R) is defined by

‖ũ‖ = d∞(ũ, 0̃) = max(|ul
0|, |ur

0|).
Unfortunately, (F (R), d∞) is complete but is not separable (For de-

tails, see Klement et al. [13]). Joo and Kim [10] introduced the Sko-
rokod metric ds on F (R) which makes it a separable and topologically
complete metric space(For details, see Joo and Kim [10]).

3. Strong laws of large numbers

In this section, let (Ω,A, P ) be a probability space. A fuzzy number
valued function

X̃ : Ω → F (R), X̃ = {[X l
α, Xr

α] : 0 ≤ α ≤ 1}
is called a fuzzy random variable if for each α ∈ [0, 1], X l

α and Xr
α

are random variable in the usual sense. It is well-known that X̃ is a
fuzzy random variable if and only if X̃ : Ω → (F (R), ds) is measurable
(See Kim [12]). So we assume that the space F (R) is considered as the
metric space endowed with the metric ds, unless otherwise stated.

A fuzzy random variable X̃ is called integrable if E‖X̃‖ < ∞. The
expectation of integrable fuzzy random variable X̃ is a fuzzy number
defined by

E(X̃) = {[EX l
α, EXr

α] : 0 ≤ α ≤ 1}.
Now we need the concept of independence for fuzzy random vari-

ables. In this paper, we adopt the following notion of independence:

Definition 3.1. A sequence of fuzzy random variables {X̃n} is

called independent if a sequence of σ-fields {σ(X̃n)} is independent,

where σ(X̃) is the smallest σ-field of subsets of Ω such that X̃ : Ω →
(F (Rp), ds) is measurable.

Note that σ(X̃) = σ({X l
α, Xr

α : 0 ≤ α ≤ 1}) because X̃ : Ω →
(F (R), ds) is measurable if and only if for each α ∈ [0, 1], X l

α and Xr
α

are measurable.
Let {X̃n} be a sequence of integrable fuzzy random variables and

{λni} be a Toeplitz sequence, i.e., {λni} is a double array of real num-
bers satisfying

(1) For each i, lim
n→∞

λni = 0;
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(2) There exists C > 0 such that
∑∞

i=1 |λni| ≤ C for each n.

Now, we write X̃n = {[X l
n,α, Xr

n,α] : 0 ≤ α ≤ 1} and assume the
following condition:

(3.1): For each ε > 0, there exists a partition 0 = α0 < α1 < · · · <
αm = 1 of [0, 1] such that for all n,

max( max
1≤k≤m

E|X l
n,α+

k−1
−X l

n,αk
|, max

1≤k≤m
E|Xr

n,α+
k−1

−Xr
n,αk

|) < ε.

Theorem 3.2. Let {X̃n} be a sequence of independent fuzzy ran-
dom variables satisfying (3.1). Suppose that there exists a nonnegative

random variable ξ with Eξ1+ 1
γ < ∞ for some γ > 0 such that for each

n,
P (‖X̃n‖ ≥ λ) ≤ P (ξ ≥ λ) for all λ > 0.

If {λni} is a Toeplitz sequence satisfying max
1≤i≤n

|λni| = O(n−γ), then

lim
n→∞

d∞(⊕n
i=1λniX̃i,⊕n

i=1λniEX̃i) = 0 a.s.

Proof. See Hyun et al. [6]. ¤

Theorem 3.3. Let {X̃n} be a sequence of independent fuzzy ran-
dom variables satisfying (3.1). If

(3.2) sup
n

E‖X̃n‖p = M < ∞ for some p > 1,

then for any Toeplitz sequence {λni} satisfying max
1≤i≤n

|λni| = O(n−γ)

for γ > 1
p−1 ,

lim
n→∞

d∞(⊕n
i=1λniX̃i,⊕n

i=1λniEX̃i) = 0 a.s.

Proof. By Lemma 3 of Wei and Taylor [17], (3.2) implies that there
exists a nonnegative random variable ξ with Eξ1+ 1

γ < ∞ for 0 < 1
γ <

p− 1 such that for each n,

P (‖X̃n‖ ≥ λ) ≤ P (ξ ≥ λ) for all λ > 0.
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Thus the result follows immediately from Theorem 3.2. ¤

If we apply Theorem 3.2 to

λni =
{

1/n, if 1 ≤ i ≤ n,

0, if i > n,

then we can obtain a SLLN for independent fuzzy random variables.
But in this case, we need the restrictive condition E|ξ|2 < ∞. Similarly,
we need the restrictive condition sup

n
E‖X̃n‖p < ∞ for some p > 2

in order to provide a SLLN by applying Theorem 3.3. However, we
can obtain much better SLLN by similar arguments as in the proof of
Theorem 3.2.

Theorem 3.4. Let {X̃n} be a sequence of independent fuzzy ran-
dom variables satisfying (3.1). If

∞∑
n=1

1
np

E‖X̃n‖p < ∞ for some 1 ≤ p ≤ 2,

then

lim
n→∞

1
n

d∞(⊕n
i=1X̃i,⊕n

i=1EX̃i) = 0 a.s.

Proof. Let ε > 0 be given. By assumption (3.1), we choose 0 =
α0 < α1 < · · · < αm = 1 of [0, 1] such that for all n,

(3.3) max
1≤k≤m

E|X l
n,α+

k−1
−X l

n,αk
| < ε.

We note that

1
n

sup
αk−1<α≤αk

|
n∑

i=1

(X l
i,α − EX l

i,α)|

≤ 1
n

sup
αk−1<α≤αk

|
n∑

i=1

(X l
i,α −X l

i,αk
)|+ 1

n
|

n∑

i=1

(X l
i,αk

− EX l
i,αk

)|

+
1
n

sup
αk−1<α≤αk

n∑

i=1

|EX l
i,αk

− EX l
i,α|
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≤ 1
n

n∑

i=1

|X l
i,α+

k−1
−X l

i,αk
|+ 1

n
|

n∑

i=1

(X l
i,αk

− EX l
i,αk

)|

+
1
n

n∑

i=1

|EX l
i,αk

− EX l
i,α+

k−1
|

= (I) + (II) + (III).

For (I), we first note that for all n,

E|X l
n,α+

k−1
−X l

n,αk
|p ≤ 2pE‖X̃n‖p,

and so
∞∑

n=1

1
np

E|X l
n,α+

k−1
−X l

n,αk
|p < ∞.

By Chung’s strong law of large numbers for real-valued random vari-
ables,

n∑

i=1

1
n

(|X l
i,α+

k−1
−X l

i,αk
| − E|X l

i,α+
k−1

−X l
i,αk

|) → 0 a.s.

Thus, by (3.3),

(I) =
1
n

n∑

i=1

(|X l
i,α+

k−1
−X l

i,αk
| − E|X l

i,α+
k−1

−X l
i,αk

|)

+
1
n

n∑

i=1

E|X l
i,α+

k−1
−X l

i,αk
|

< ε a.s. for large n.

For (II), since E|X l
n,αk

|p ≤ E‖X̃n‖p, we have that (II) → 0 a.s. by
Chung’s strong law of large numbers.

Finally, it is trivial that (III) ≤ ε.
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Hence we obtain

1
n

sup
0≤α≤1

|
n∑

i=1

(X l
i,α − EX l

i,α)|

=
1
n

max
0≤k≤m

sup
αk−1<α≤αk

|
n∑

i=1

(X l
i,α − EX l

i,α)|

< 2ε a.s. for large n.

Similarly, it can be proved that

1
n

sup
0≤α≤1

|
n∑

i=1

(Xr
i,α − EXr

i,α)| < 2ε a.s. for large n.

Therefore,
1
n

d∞(⊕n
i=1X̃i,⊕n

i=1EX̃i)

=
1
n

max( sup
0≤α≤1

|
n∑

i=1

(X l
i,α − EX l

i,α)|, sup
0≤α≤1

|
n∑

i=1

(Xr
i,α − EXr

i,α)|)

< 2ε a.s. for large n.

Since ε is arbitrary, this completes the proof. ¤

Corollary 3.5. Let {X̃n} be a sequence of independent fuzzy ran-
dom variables satisfying (3.1). If

sup
n

E‖X̃n‖p < ∞ for some p > 1,

then

lim
n→∞

1
n

d∞(⊕n
i=1X̃i,⊕n

i=1co(EX̃i)) = 0 a.s.

Corollary 3.6. Let {X̃n} be a sequence of independent fuzzy ran-

dom variables. If {X̃n} is convex-compactly uniformly integrable or
convexly tight and

sup
n

E‖X̃n‖p = M < ∞ for some p > 1,

then

lim
n→∞

1
n

d∞(⊕n
i=1X̃i,⊕n

i=1EX̃i) = 0 a.s.
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eralized strong law of large numbers, Probab. Theory Rel. Fields 114 (1999),
401-417.

[2]. A. Colubi, J. S. Dominguez-Menchero, M. López-Diáz, and R. Körner, A
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