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SOME NOTES ON STRONG LAW OF LARGE

NUMBERS FOR BANACH SPACE VALUED FUZZY

RANDOM VARIABLES

Joo-Mok Kim† and Yun Kyong Kim

Abstract. In this paper, we establish two types of strong law
of large numbers for fuzzy random variables taking values on the
space of normal and upper-semicontinuous fuzzy sets with compact
support in a separable Banach space. The first result is SLLN for
strong-compactly uniformly integrable fuzzy random variables, and
the other is the case of that the averages of its expectations con-
verges.

1. Introduction

In the recent years, there have been increasing interests in limit the-
orems for random sets and fuzzy random variables because of its useful-
ness in several applied fields. Among others, several variants of strong
law of large numbers(SLLN) for random sets and fuzzy random variables
have been developed by many researchers. SLLN for random sets were
obtained by Artstein and Hansen [1], Artstein and Vitale [2], Puri and
Ralescu [22], Taylor and Inoue [24-26], and so on.
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The concept of a fuzzy random variables as a generalization of a ran-
dom set was introduced by Puri and Ralescu [23] in order to handle
inexact data due to the subjectivity and imprecision of human knowl-
edge.

Since then, several people have studied strong laws of large numbers
for independent fuzzy random variables based on the limit theorems
for random sets. For example, Klement et al. [17] proved some limit
theorems which include a SLLN for i.i.d. fuzzy random variables and
Inoue [11] obtained a SLLN for independent and tight case. In their
works, the L1-metric on the space of fuzzy sets was used. As results of
SLLN using the supremum metric on the space of fuzzy sets, Colubi et
al [3] obtained SLLN by the approximation method and Molchanov [20]
gave a short proof of SLLN for i.i.d. case. Besides that, a rich variety of
SLLN for fuzzy random variables can be found in [4, 7, 12, 15, 21, 27].

As the latest results, SLLN for weighted sum of fuzzy random vari-
ables were established by Guan and Li [10], Joo et al. [14] and SLLN
for arrays of row-wise independent case was given by Fu and Zhang [8].

The purpose of this paper is to obtain some results on SLLN for fuzzy
random variables. In fact, this paper was motivated by Li and Ogura
[18] which presented SLLN for independent and compactly uniformly in-
tegrable fuzzy random variables by assuming additional restrictive con-
dition that the sequence of averages of its expectations converges to
some fuzzy sets. In this paper, we first prove that the additional re-
strictive condition in Li and Ogura [18] can be deleted in the case of
strong-compactly uniformly integrable case. And then, we give SLLN
for integrably bounded fuzzy random variables only by assuming that
the sequence of averages of its expectations is convergent.

2. Preliminaries

Let Y be a real separable Banach space with norm | · | and let K(Y )
denote the family of all non-empty compact subsets of Y . Then the
space K(Y ) is metrizable by the Hausdorff metric h defined by

h(A,B) = max{sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|}.

A norm of A ∈ K(Y ) is defined by

‖A‖ = h(A, {0}) = sup
a∈A
|a|.
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It is well-known that K(Y ) is complete and separable with respect
to the Hausdorff metric h ( See Debreu [6] ). The addition and scalar
multiplication on K(Y ) are defined as usual:

A⊕B = {a+ b : a ∈ A, b ∈ B}
λA = {λa : a ∈ A}

for A,B ∈ K(Y ) and λ ∈ R.
The convex hull and closed convex hull of A ⊂ Y are denoted by

co(A) and co(A), respectively. Then it is well-known that co(A) may
not be an element of K(Y ) even though A ∈ K(Y ) but co(A) ∈ K(Y )
if A ∈ K(Y ).

Let F(Y ) denote the family of all fuzzy sets u : Y → [0, 1] with the
following properties;

(1) u is normal, i.e., there exists x ∈ Y such that u(x) = 1;
(2) u is upper semicontinuous;

(3) suppu = {x ∈ Y : u(x) > 0} is compact, where A denotes the
closure of a set A ⊂ Y .

For a fuzzy set u in Y , the α-level set of u is defined by

Lαu =

{
{x : u(x) ≥ α}, if 0 < α ≤ 1
suppu, if α = 0.

Then, it follows immediately that

u ∈ F(Y ) if and only if Lαu ∈ K(Y ) for each α ∈ [0, 1].

The linear structure on F(Y ) is defined as usual;

(u⊕ v)(z) = sup
x+y=z

min(u(x), v(y)),

(λu)(z) =

{
u(z/λ) , λ 6= 0
0̃ , λ = 0,

for u, v ∈ F(Y ) and λ ∈ R, where 0̃ = I{0} denotes the indicator
function of {0}. Then it is known that for each α ∈ [0, 1],

Lα(u⊕ v) = Lαu⊕ Lαv

and

Lα(λu) = λLαu.
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Lemma 2.1. For u ∈ F(Y ), we define

Fu : [0, 1] −→ (K(Y ), h), Fu(α) = Lαu.

Then the followings hold;
(1) Fu is non-increasing, i.e., α ≤ β implies Fu(α) ⊃ Fu(β),
(2) Fu is left continuous on (0, 1],
(3) Fu has right-limits on [0, 1)and Fu is right-continuous at 0.

Conversely, if G : [0, 1]→ K(Y ) is a function satisfying the above condi-
tions (1)−(3), then there exists a unique v ∈ F(Y ) such that G(α) = Lαv
for all α ∈ [0, 1].

Proof. See Lemma 2.2 of Joo and Kim [13].

We denote {x ∈ Y : u(x) > α} by Lα+u. Then the right limit of Fu
at α is Lα+u.

We can easily show that for u ∈ F(Y ), the function G : [0, 1]→ K(Y )
defined by G(α) = co(Lαu) satisfy the conditions (1) − (3) in Lemma
2.1. Thus there exists a unique v ∈ F(Y ) such that G(α) = Lαv for all
α ∈ [0, 1].

This fuzzy set v is called the closed convex hull of u and denoted by
co(u). So, co(u) ∈ F(Y ) and Lαco(u) = co(Lαu) for each α ∈ [0, 1].

Now, we define the supremum metric d∞ on F (Y ) by

d∞(u, v) = sup
0≤α≤1

h(Lαu, Lαv).

Also, the norm of u is defined as

‖u‖ = d∞(u, 0̃) = sup
x∈L0u

|x|.

Then it is well-known that F(Y ) is complete but is not separable with
respect to d∞(see Klement et al. [17]).

3. Main Results

Throughout this paper, let (Ω,A, P ) be a probability space. A set-
valued function X : Ω → K(Y ) is called measurable if for each closed
subset B of Y,

X−1(B) = {ω : X(ω) ∩B 6= ∅} ∈ A.
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It is well-known that the measurability of X is equivalent to the measur-
ability of X considered as a map from Ω to the metric space (K(Y ), h).
A set-valued function X : Ω → K(Y ) is called a random set if it is
measurable.

A random set X is called integrably bounded if

E‖X‖ <∞.
The expectation of integrably bounded random set X is defined by

E(X) = {E(ξ) : ξ ∈ L(Ω, Y ) and ξ(ω) ∈ X(ω) a.s.},
where L(Ω, Y ) denotes the class of all Y -valued random variables ξ such
that E|ξ| <∞.

A fuzzy set valued function X̃ : Ω → F(Y ) is called a fuzzy random
variable (or fuzzy random set ) if for each α ∈ [0, 1], LαX̃ is a random
set. If X̃ : Ω → (F(Y ), d∞) is measurable, then X̃ is a fuzzy random
variable. But the converse is not true.(see Colubi et al. [5] or Kim [16])

A fuzzy random variable X̃ is called integrably bounded if E‖X̃‖ <
∞. The expectation of integrably bounded fuzzy random variable X̃ is
a fuzzy subset E(X̃) of Y defined by

E(X̃)(x) = sup{α ∈ [0, 1] : x ∈ E(LαX̃)}.
For details for expectations of random sets and fuzzy random variables,
the readers refer to Li et al [19].

We introduce the concepts of tightness and compact uniform integra-
bility for a sequence of random sets and fuzzy random variables.

Definition 3.1. Let {Xn} be a sequence of random sets.
(1) {Xn} is said to be tight if for each ε > 0, there exists a compact

subset K of (K(Y ), h) such that

P (Xn /∈ K) < ε for all n.

(2) {Xn} is said to be compactly uniformly integrable(CUI) if for each
ε > 0, there exists a compact subset K of (K(Y ), h)) such that∫

{Xn /∈K}
‖Xn‖ dP < ε for all n.
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Definition 3.2. Let {X̃n} be a sequence of fuzzy random variables.

(1) {X̃n} is said to be level-wise independent if for each α ∈ [0, 1], the
sequence of random sets {LαX̃n} is independent.

(2) {X̃n} is said to be independent if the sequence of σ-fields {σ(X̃n)}
is independent, where σ(X̃) is the smallest σ-field which LαX̃ is mea-
surable for all α ∈ [0, 1].

(3) {X̃n} is said to be tight if for each ε > 0, there exists a compact
subset K of (K(Y ), h) such that

P (LαX̃n /∈ K) < ε for all n and all α ∈ [0, 1].

(4) {X̃n} is said to be strongly tight if for each ε > 0, there exists a
compact subset K of (F(Y ), d∞) such that

P (X̃n /∈ K) < ε for all n.

(5) {X̃n} is said to be compactly uniformly integrable (CUI) if for
each ε > 0 there exists a compact subset K of (K(Y ), h) such that∫

{LαX̃n /∈K}
‖LαX̃n‖ dP < ε for all n and all α ∈ [0, 1].

(6) {X̃n} is said to be strong-compactly uniformly integrable (SCUI)
if for each ε > 0 there exists a compact subset K of (F(Y ), d∞) such
that ∫

{X̃n /∈K}
‖X̃n‖ dP < ε for alln.

It is trivial that strong-compactly uniform integrability (resp. strong
tightness) implies compactly uniform integrability (resp. tightness). The
following example shows that the converse is not true even though Y is
finite dimensional.

Example. Let Y = R be the real line. For 0 < λ < 1, let

uλ(x) =

 1, if x = 0,
λ, if 0 < |x| ≤ 1
0, elsewhere.

Then

Lαuλ =

{
{0}, if λ < α ≤ 1
{x : |x| ≤ 1}, if 0 ≤ α ≤ λ,

and so d∞(uλ, uδ) = 1 for λ 6= δ.
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Now let {λn} be a sequence of distinct elements in [0, 1] and X̃n be a
fuzzy random variable with P (X̃n = uλn) = 1.

Suppose that 0 < ε < 1 and there is a compact subset K of (F(R), d∞)
such that ∫

{X̃n /∈K}
‖X̃n‖ dP < ε for all n.

Then since

P{X̃n /∈ K} =

∫
{X̃n /∈K}

‖X̃n‖ dP < ε,

K necessarily contains λn for all n. But this is impossible because a
sequence {uλn} does not have any convergent subsequence. Thus, {X̃n}
cannot be strong-compactly uniformly integrable.

But if we take K = {A ∈ K(R) : ‖A‖ ≤ 1}, then K is a compact
subset of (K(R), h) and∫

{LαX̃n /∈K}
‖LαXn‖ dP = 0 for all n and allα ∈ [0, 1],

which implies compactly uniform integrability of {X̃n}.

The following theorem was obtained by Li and Ogura [18].

Theorem 3.1. (Li and Ogura [18]) Let {X̃n} be a sequence of level-
wise independent and CUI fuzzy random variables. If

∞∑
n=1

1

np
E‖X̃n‖p <∞ for some 1 ≤ p ≤ 2,

and { 1
n
⊕ni=1 coE(X̃i)} is convergent with respect to d∞, then

lim
n→∞

d∞(
1

n
⊕ni=1 X̃i,

1

n
⊕ni=1 coE(X̃i) = 0 a.s..

If we assume strong-compactly uniform integrablilty, then we can ob-
tain SLLN without the additional restrictive assumption that { 1

n
⊕ni=1

coE(X̃i)} is convergent.

Theorem 3.2. Let {X̃n} be a sequence of SCUI fuzzy random vari-
ables. Then

lim
n→∞

d∞(
1

n
⊕ni=1 X̃i,

1

n
⊕ni=1 coE(X̃i) = 0 a.s.
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if and only if for each α ∈ [0, 1],

lim
n→∞

h(
1

n
⊕ni=1 LαX̃i,

1

n
⊕ni=1 co(ELαX̃i))→ 0 a.s.

and

lim
n→∞

h(
1

n
⊕ni=1 Lα+X̃i,

1

n
⊕ni=1 co(ELα+X̃i))→ 0 a.s..

To prove the above theorem, we need some lemmas.

Lemma 3.3. (Greco and Moschen [9]) LetK be subset of (F(Y ), d∞).
Then K is relatively compact if and only if

(1) K is compact-supported, i.e., there is a compact subset A of Y
such that L0u ⊂ A for all u ∈ K.

(2) For each α ∈ (0, 1], limδ→0 supu∈K h(Lαu, Lα−δu) = 0.
(3) For each α ∈ [0, 1), limδ→0 supu∈K h(Lα+u, Lα+δu) = 0.

Lemma 3.4. Let K be a relatively compact subset of (F(Y ), d∞).
Then {co(u) : u ∈ K} is also relatively compact in (F(Y ), d∞).

Proof. It follows from the facts that if L0u ⊂ A, then L0co(u) =
co(L0u) ⊂ co(A) and

h(Lαco(u), Lβco(v)) = h(coLαu, coLβv) ≤ h(Lαu, Lβv).

Recall that we can define the concept of convexity on F(Y ) as in the
case of a vector space even though F(Y ) is not a vector space. That is,
K ⊂ F(Y ) is said to be convex if λu⊕ (1− λ)v ∈ K whenever u, v ∈ K
and 0 ≤ λ ≤ 1. Also, the convex hull co(K) of K is defined to be the
intersection of all convex sets that contains K. Then we can easily show
that co(K) is equal to the family of consisting of all fuzzy sets in the
form λ1u1⊕· · ·⊕λkuk, where u1, . . . , uk are any elements of K, λ1, . . . , λk
are nonnegative real numbers satisfying

∑k
i=1 λi = 1 and k = 2, 3, . . . .

Lemma 3.5. Let K be a relatively compact subset of (F(Y ), d∞).
Then co(K) is also relatively compact in (F(Y ), d∞).
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Proof. (Step 1) Let A be a compact subset of Y such that L0u ⊂ A for
all u ∈ K. Then the closed convex hull co(A) is compact subset of Y. If
v ∈ co(K), then there exist u1, . . . , uk ∈ K and nonnegative real numbers

λ1, . . . , λk satisfying
∑k

i=1 λi = 1 such that v = λ1u1⊕ · · · ⊕λkuk. Thus,
L0v = λ1L0u1 ⊕ · · · ⊕ λkL0uk ⊂ co(A) which implies that co(K) is
compact-supported.

(Step 2) If v ∈ co(K) and v = λ1u1 ⊕ · · · ⊕ λkuk, then

h(Lαv, Lα−δv) ≤
k∑
i=1

λih(Lαui, Lα−δui) ≤ sup
u∈K

h(Lαu, Lα−δu).

Thus, for each α ∈ (0, 1]

lim
δ→0

sup
v∈co(K)

h(Lαv, Lα−δv)

= lim
δ→0

sup
u∈K

h(Lαu, Lα−δu) = 0.

Similarly, it can be prove that for each α ∈ [0, 1),

lim
δ→0

sup
v∈co(K)

h(Lα+v, Lα+δv) = 0.

Therefore, co(K) is relatively compact from lemma 3.3.

Lemma 3.6. Let K be a relatively compact subset of (F(Y ), d∞).
Then for each ε > 0, there exists a partition 0 = α0 < α1 < · · · < αr = 1
of [0, 1] such that

sup
u∈K

h(Lαku, Lα+
k−1
u) < ε

for all k = 1, 2, . . . , r.

Proof. Let ε > 0 be given. By applying Lemma 3.3, for each 0 < α <
1, we can take δα > 0 so that

sup
u∈K

h(Lαu, Lα−δαu) < ε

and

sup
u∈K

h(Lα+u, Lα+δαu) < ε.

Also, we can choose δ0, δ1 > 0 so that

sup
u∈K

h(L0u, Lδ0u) < ε
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and

sup
u∈K

h(L1u, L1−δ1u) < ε.

Let I0 = [0, δ0), I1 = (1 − δ1, 1] and Iα = (α − δα, α + δα) for each
α ∈ (0, 1).

Then by the compactness of [0,1], there exists β1, . . . , βN ∈ (0, 1) such
that

[0, 1] = I0 ∪ I1 ∪ (∪Ni=1Iβi).

The collection of points {0, δ0, 1 − δ1, 1} ∪ {βi − δβi , βi, βi + δβi : i =
1, . . . , N} forms a partition of [0, 1]. We denote these points in ascending
order by

0 = α0 < α1 < · · · < αr = 1.

Then it is obvious that for all k = 1, 2, . . . , r,

sup
u∈K

h(Lαku, Lα+
k−1
u) < ε.

Now for a fixed partition π : 0 = α0 < α1 < · · · < αr = 1 of [0,1], we
define

gπ : F(Y )→ F(Y ) by gπ(u)(x) =
r∑

k=1

αk−1IAk−1\Ak(x) + IAr(x),

where Ak = Lαku. Then it follows that

Lαgπ(u) =

{
Lα1u, if 0 ≤ α ≤ α1

Lαku, if αk−1 < α ≤ αk, k = 2, . . . , r.

From this fact, it is trivial that

gπ(u⊕ v) = gπ(u)⊕ gπ(v) and gπ(λu) = λgπ(u).

Lemma 3.7. Let K be a relatively compact subset of (F(Y ), d∞).
Then for each ε > 0, there exists a partition π of [0, 1] such that

sup
u∈K

d∞(u, gπ(u)) < ε.

Proof. By lemma 3.6, there exists a partition π : 0 = α0 < α1 < · · · <
αr = 1 of [0,1] such that

sup
u∈K

h(Lαku, Lα+
k−1
u) < ε
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for all k = 1, 2, . . . , r. Then

sup
u∈K

d∞(u, gπ(u)) = sup
u∈K

max
1≤k≤r

h(Lαku, Lα+
k−1
u) < ε.

Now we are in a position to prove the theorem 3.2.

Proof of Theorem 3.2. The necessity is trivial. To prove the sufficiency,
let ε > 0 be given. By strong-compactly uniform integrability of {X̃n},
we can choose a compact subset K of (F(Y ), d∞) such that

(3.1)

∫
{X̃n /∈K}

‖X̃n‖ dP < ε/4 for all n.

By lemmas 3.4 and 3.5, we may assume that 0̃ ∈ K and K is convex,
and that K contains co(u) for all u ∈ K without loss of generality.

By lemma 3.7, we choose a partition π : 0 = α0 < α1 < · · · < αr of
[0, 1] such that

(3.2) sup
u∈K

d∞(u, gπ(u)) < ε/4.

We note that

d∞(
1

n
⊕ni=1 X̃i,

1

n
⊕ni=1 coE(X̃i))

≤ d∞(
1

n
⊕ni=1 X̃i,

1

n
⊕ni=1 gπ(X̃i))

+ d∞(
1

n
⊕ni=1 gπ(X̃i)),

1

n
⊕ni=1 gπ(coE(X̃i)))

+ d∞(
1

n
⊕ni=1 gπ(coE(X̃i))),

1

n
⊕ni=1 coE(X̃i))

= ( I) + (II) + (III).
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For (I), we have

(I) = max
1≤k≤r

sup
αk−1<α≤αk

h(
1

n
⊕ni=1 LαX̃i,

1

n
⊕ni=1 LαkX̃i)

= max
1≤k≤r

h(
1

n
⊕ni=1 Lα+

k−1
X̃i,

1

n
⊕ni=1 LαkX̃i)

≤ max
1≤k≤r

h(
1

n
⊕ni=1 Lα+

k−1
X̃i,

1

n
⊕ni=1 coE(Lα+

k−1
X̃i))

+ max
1≤k≤r

h(
1

n
⊕ni=1 LαkX̃i,

1

n
⊕ni=1 coE(LαkX̃i))

+ max
1≤k≤r

h(
1

n
⊕ni=1 coE(Lα+

k−1
X̃i),

1

n
⊕ni=1 coE(LαkX̃i)).

The first term and second term converge to 0 a.s. as n → ∞ by our
assumption.

For the third term, if we denote

Ũn = I{X̃n∈K}X̃n, Ṽn = I{X̃n /∈K}X̃n,

then

max
1≤k≤r

h(
1

n
⊕ni=1 coE(Lα+

k−1
X̃i),

1

n
⊕ni=1 coE(LαkX̃i))

≤ max
1≤k≤r

1

n

n∑
i=1

Eh(Lα+
k−1
X̃i, LαkX̃i)

≤ max
1≤k≤r

1

n

n∑
i=1

[Eh(Lα+
k−1
Ũi, LαkŨi) + Eh(Lα+

k−1
Ṽi, Lαk Ṽi)]

< ε/4 +
2

n

n∑
i=1

E‖Ṽi‖ < ε by (3.1) and (3.2).

Thus, we have

(I) < ε a.s. as n→∞.
For (II), we have

(II) = max
1≤k≤r

h(
1

n
⊕ni=1 LαkX̃i,

1

n
⊕ni=1 coLαkE(X̃i))

→ 0 a.s. as n→∞ by our assumption.
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Finally for (III), we first note that coE(Ũi) ∈ K by the assumptions
of K and so by (3.2),

d∞(
1

n
⊕ni=1 coE(Ũi)),

1

n
⊕ni=1 gπ[coE(Ũi)]) < ε/4.

Hence we obtain

(III) ≤ d∞(
1

n
⊕ni=1 coE(Ũi)),

1

n
⊕ni=1 gπ[coE(Ũi)])

+ d∞(
1

n
⊕ni=1 coE(Ṽi)),

1

n
⊕ni=1 gπ[coE(Ṽi)])

≤ 1

n
‖ ⊕ni=1 coE(Ṽi))‖+

1

n
‖ ⊕ni=1 gπ(coE(Ṽi))‖+ ε/4

≤ 2

n

n∑
i=1

E‖Ṽi‖+ ε/4 < ε.

Therefore we conclude

d∞(
1

n
⊕ni=1 X̃i,

1

n
⊕ni=1 coE(X̃i)) ≤ 2ε a.s. as n→∞.

This completes the proof.

The following corollary shows that Theorem 3.1. can be modified in
the case of SCUI fuzzy random variables.

Corollary 3.8. Let {X̃n} be a sequence of level-wise independent
and SCUI fuzzy random variables. If

∞∑
n=1

1

np
E‖X̃n‖p <∞ for some 1 ≤ p ≤ 2,

then

lim
n→∞

1

n
d∞(⊕ni=1X̃i,⊕ni=1coE(X̃i) = 0 a.s.

Corollary 3.9. Let {Xn} be a sequence of level-wise independent
and strongly tight fuzzy random variables such that

sup
n
E‖X̃n‖p = M <∞ for some p > 1.

Then

lim
n→∞

d∞(
1

n
⊕ni=1 X̃i,

1

n
⊕ni=1 coE(X̃i)) = 0 a.s..
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Finally, we give SLLN for integrably bounded fuzzy random variables
only by assuming that { 1

n
⊕ni=1 coE(X̃i)} is convergent with respect to

d∞.

Theorem 3.10. Let {X̃n} be a sequence of integrably bounded fuzzy
random variables such that for some v ∈ F(Y ),

lim
n→0

d∞(
1

n
⊕ni=1 co(EX̃i), v) = 0.

Then

lim
n→∞

d∞(
1

n
⊕ni=1 X̃i,

1

n
⊕ni=1 coE(X̃i))→ 0 a.s.

if and only if for each α ∈ [0, 1],

lim
n→∞

h(
1

n
⊕ni=1 LαX̃i,

1

n
⊕ni=1 co(ELαX̃i))→ 0 a.s.

and

lim
n→∞

h(
1

n
⊕ni=1 Lα+X̃i,

1

n
⊕ni=1 co(ELα+X̃i))→ 0 a.s..

Proof. The necessity is trivial. To prove the sufficiency, it suffices to
prove that

d∞(
1

n
⊕ni=1 X̃i, v) → 0 a.s. n→∞.

Let S̃n = 1
n
⊕ni=1X̃i and let ε > 0 be given. By Lemma 3.6 (or Lemma 4

of Guan and Li [10]), there exists a partition 0 = α0 < α1 < · · · < αr = 1
such that

h(Lαkv, Lα+
k−1
v) < ε/2 for all k = 1, . . . , r.

Then by our assumption, we can find a natural number N such that

h(co(ELαS̃i), Lαv) < ε/2 for all α ∈ [0, 1] and n ≥ N.

If 0 < α ≤ 1, then αk−1 < α ≤ αk for some k. Since Lαk S̃n ⊂ LαS̃n ⊂
Lα+

k−1
S̃n and Lαkv ⊂ Lαv ⊂ Lα+

k−1
v, we have that for n ≥ N,
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h(LαS̃n, Lαv)

≤ max[h(Lαk S̃n, Lα+
k−1
v), h(Lα+

k−1
S̃n, Lαkv)]

≤ max[h(Lαk S̃n, Lαkv), h(Lα+
k−1
S̃n, Lα+

k−1
v)] + ε/2

≤ max[h(Lαk S̃n, co(ELαk S̃n), h(Lα+
k−1
S̃n, co(ELα+

k−1
S̃n)] + ε.

Thus for n ≥ N,

d∞(S̃n, v)

= max
1≤k≤r

sup
αk−1<α≤αk

h(LαS̃n, Lαv)

≤ max
1≤k≤r

h(Lαk S̃n, co(ELαk S̃n))

+ max
1≤k≤r

h(Lα+
k−1
S̃n, co(ELα+

k−1
S̃n)) + ε.

Therefore, by assumption we obtain

d∞(S̃n, v) ≤ ε a.s. as n→∞.
This completes the proof.

If {X̃n} is a sequence of level-wise independent and CUI fuzzy random
variables, then for each α ∈ [0, 1], {LαX̃n} and {Lα+X̃n} are sequences
of independent and CUI random sets. Thus if

∞∑
n=1

1

np
E‖X̃n‖p <∞ for some 1 ≤ p ≤ 2,

by strong law of large numbers for random sets obtained Taylor and
Inoue [26],

lim
n→∞

h(
1

n
⊕ni=1 LαX̃i,⊕ni=1

1

n
co(ELαX̃i))→ 0 a.s.

and

lim
n→∞

h(
1

n
⊕ni=1 Lα+X̃i,⊕ni=1

1

n
co(ELα+X̃i))→ 0 a.s..

Therefore, the above theorem is a generalization of Theorem 3.1.

Corollary 3.11. Let {X̃n} be a sequence of identically distributed
fuzzy random variables with E‖X̃1‖ <∞.
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Then

lim
n→∞

d∞(
1

n
⊕ni=1 X̃i, co(EX̃1))→ 0 a.s.

if and only if for each α ∈ [0, 1]

lim
n→∞

h(
1

n
⊕ni=1 LαXi, co(ELαX1))→ 0 a.s.

and

lim
n→∞

h(
1

n
⊕ni=1 Lα+Xi, co(ELα+X1))→ 0 a.s..
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alized strong law of large numbers, Probab. Theory Related Fields 114 (1999),
401–417.

[4] A. Colubi, J. S. Dominguez-Menchero, M. López-Diáz, and R. Körner, A method
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