• Title/Summary/Keyword: functional differential system

Search Result 135, Processing Time 0.022 seconds

LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Goo, Yoon Hoe
    • The Pure and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • The present paper is concerned with the notions of Lipschitz and asymptotic for perturbed functional differential system knowing the corresponding stability of functional differential system. We investigate Lipschitz and asymptotic stability for perturbed functional differential systems. The main tool used is integral inequalities of the Bihari-type, and all that sort of things.

THE INSTABILITY FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Ko, Young-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.757-771
    • /
    • 1999
  • We consider a system of functional differential equations x'(t)=F(t, $x_t$) and obtain conditions on a Liapunov functional and a Liapunov function to ensure the instability of the zero solution.

  • PDF

BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.347-359
    • /
    • 2016
  • In this paper, we show that the solutions to perturbed functional differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$, have a bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of $t_{\infty}$-similarity.

Second Order Impulsive Neutral Functional Differential Inclusions

  • Liu, Yicheng;Li, Zhixiang
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, we investigate the existence of solutions of second order impulsive neutral functional differential inclusions which the nonlinearity F admits convex and non-convex values. Some results under weaker conditions are presented. Our results extend previous ones. The methods rely on a fixed point theorem for condensing multivalued maps and Schaefer's fixed point theorem combined with lower semi-continuous multivalued operators with decomposable values.