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THE INSTABILITY FOR FUNCTIONAL
DIFFERENTIAL EQUATIONS

YouNHEE Ko

ABSTRACT. We consider a system of functional differential equa-
tions z/(t) = F(t,z:) and obtain conditions on a Liapunov func-
tional and a Liapunov function to ensure the instability of the zero
solution.

1. Introduction

It is well known that Liapunov’s direct method sometimes provides a
useful tool in the study of instability of functional differential equations
(FDEs). See, for example, [3] and [13,14]. However, most instability
results are for the autonomous functional differential equations. One of
goals of this paper is to provide an instability theorem for the nonau-
tonomous functional differential equations with finite delay using the
Liapunov’s direct method.

One the other hand, an obstacle often is encountered when one tries
to apply the Liapunov’s direct method; namely, it frequently is diffi-
cult - if not impossible - to construct appropriate Liapunov functions
or functionals in order to make use of known instability theorems. An-
other purpose of this paper is to provide an instability theorem that
eliminates some of the obstacles imposed by this difficulty. In particu-
lar, we employ Liapunov-Razumikhin techniques and omega limit set
properties in order to present an instability result for autonomous func-
tional differential equations with infinite delay. Our result may be the
first instability result which employs Liapunov-Razumikhin techniques
and omega limit set properties for autonomous functional differential
equations with infinite delay.
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Now we present the fundamental notation to which we will refer
throughout this paper.

For x € R™ with z = (21,22, - ,Zxn), |T| denotes the usual norm in
R™.

2. Instability for the Function Differential Equations with
Finite Delay

The purpose of this section is to provide an instability theorem
for the functional differential equations (including the nonautonomous
functional differential equations) with finite delay using the Liapunov’s
direct method. Also example is given as an application for this theo-
rem.

Now we present the fundamental notation and definitions to which
we will refer throughout this section. For fixed r > 0, C denotes the
space of continuous functions mapping [—r, 0] into R™, and for ¢ € C,

llgll = sup . |o(s)] .

—r<s<

Also, C denotes the set of ¢ € C with ||¢|| < H and 0 < H < oco. If
x is a continuous function of u defined for —r < u < A, with A > 0,
and if ¢ is a fixed number satisfying 0 < ¢ < A, then z; denotes the
restriction of z to [t — r,t] so that z; is an element of C denoted by

z(0) =z(t+6)for —r<6<0.
We consider the system
(2.1) z'(t) = F(t,z¢),

where F': R, x Cy — R™ is continuous and takes closed bounded sets
into bounded sets; 0 < H < oo. We denote by z(tp, ) a solution of
(2.1) with initial condition ¢ € C where z+,(to, ¢) = ¢ and we denote by
z(t,to, @) the value of z(tp, @) at t. =’ denotes the right-hand derivative.
It is well known (Burton[3,4]) that for each ¢, € Ry = [0, 00) and each
¢ € Cy, there is at least one solution z(tp,¢) defined on an interval
[to, t+ @) and, if there is an Hy < H with |z(¢, to, ¢)| < H; for all ¢ for
which z(t, to, @) is defined, then a = oo.
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A Liapunov functional is a continuous function V : Ry x Cy —
R, which is locally Lipschitz with respect to ¢. The derivative of
a Liapunov functional V(t,$) along a solution z(t) of (2.1) may be
defined in several equivalent ways. If V is differentiable, the natural
derivative is obtained using the chain rule. Then V’(31)(t,¢) denotes
the derivative of functional V' with respect to (2.1) defined by

V(t + 5’ xt+6(ta ¢)) — V(t7 ¢)
s .

7 T
Vien(t,¢) = 61_1)1(!)1+ sup

DEFINITION 2.1. A continuous function W : R, = [0,00) — Ry is
called a wedge if W(0) = 0 and W is strictly increasing on R .

DEFINITION 2.2. Let F(¢,0) =0 for all ¢ > 0.

(a) The zero solution of (2.1) is said to be stable if for each € > 0 and
to > 0 there is a 6 > 0 such that [¢ € Cs,t > to] imply |z(t,t0,9)| < €.

(b) The zero solution of (2.1) is said to be unstable if there exist
€ > 0 and tp > 0 such that for any § > 0 there is an ¢ with ||¢|| < ¢
and a t; > tg such that |z(t1,%0,¢)| > €.

Notice that stability requires all solutions starting near zero to stay
near zero, but instability calls for the existence of some solutions start-
ing near zero to move well away from zero.

THEOREM 2.1. Let H > 0 and let D,E,V : R x Cy — R be con-
tinuous and locally Lipschitz in ¢, and let n: R — Ry be a function
with [;°n(s)ds = oco. Suppose that there exist wedges Wy, Wa, Ws
and Wy such that, for allt > 0 and ¢ € Chy,

(i) V(t,¢) < Wi(D(t, ),

(if) Vieay(tsze) 2 n@®)Wa(E (2, 24)),
(iif) D(t,z¢) < Wi(l|z:|[) and
(iv) D(t,z¢) > Wa(E(t,z1)) > 0 .

If we can choose a sequence {t,, ¢n} € Ry x Cy such that V(tn, dn) >
0 and lim,_, o0 ||#n}| = 0. Then the zero solution of (2.1) is unstable.
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Proof. Suppose that z = 0 is stable. For ¢ > 0 and ¢ty > 0 there
exists 6 = d(tp,€) > 0 with 0 < § < € such that ||¢|| < § implies
|z(t,to, ¢)| < € for any ¢ > ty. Now we may take the initial function ¢

é
with 3 < |¢(s)| < 6 for any s € [~r,0] such that V(to,¢) > 0. Thus

V(t,z:) < Wa(D(t,zt)) < Wy o Wa(||ze]|) < W1 o Wa(e)
for any ¢ > ¢9 > 0. That is, V(¢,z;) is bounded above on [0, o). But

Vit 2 Viiod) + [ n()Wa(B(s,))ds

to

> Vi(to, ) + / n(s)Wa 0 Wi L (D(s, z.))ds

to

t
> V(to, 8) + Wa 0 Wyt o Wi (V (to, 8)) / n(s)ds — oo

to
as t — oo, which is a contradiction. Hence the proof is complete. O

REMARK 2.1. Some comments for Theorem 2.1 are in order.

(i) The results of Theorem 2.1 can be directly applied to the insta-
bility theory for ordinary differential equations. Thus we may consider
Theorem 4.1.24 in [3] as the corollary of Theorem 2.1

(i) Many instability theorems for FDEs with finite delay are depen-
dent on the length of finite delay. So it is impossible to extend those
theorems in a straightforward manner to FDEs with unbounded de-
lay. But Theorem 2.1 is independent of the length of finite delay. So
its results can be extended in a straightforward manner without much
difficulty to FDEs with unbounded delay.

(iii) Theorem 2.1 has the weakest condition of the coefficient func-
tion 7 in order to insure that the zero solution is unstable.

ExAMPLE 2.1. Consider a scalar equation
t

(2.2) 2(£) = a(t)z(t) + b(t) / s(u)du .

t—r

where a,b: R, — R are continuous such that

) = 2a(0) = [ (-s)lds —rip(t)] 2 0

and [;° n(s)ds = co. Then the zero solution of (2.2) is unstable.
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Proof. Consider the Liapunov functional
0 st

V(t,z:) = 2%(t) — / |b(u — 8)|2?(u)duds

—rJt+s

Then we have
V(12.2) (tv xt)

— 2wt/ (t) - / " d { " b s)|x2(u)du} ds

-7 t t+s

t 4]
= 22(t){a(t)z () + b(t) / s(u)du} — /_ bt — 5)|22(t)ds

t—r

+/0 |b(t)|z%(t + s)ds
t 0
— 2a(t)a2(t) + 2b(t)a(?) / 2(s)ds — 22(2) /_ bt — 5)|ds

t—r

0
+1B(0)| /_ 22(t + 5)ds
> 2a(t)z?(t) — z2(t) |b(—s)|ds — 2|b(¢){|=(t)] /t_ lz(s)|ds

+ |b(t)} t z2(s)ds

t—7r

i t
> 2a(t)2?(t) - 22(1) / b(—s)lds — Ib@)] [ 22(t)ds

= 2a(t)a(t) —2(t) | |b(~s)lds — [b(t)|a* (t)r

— {2at) = [ =)lds = rip@l}a(),

BOL [ (o)~ le(0)? ds

t t t

= [b(t)| . 22 (s)ds — 2b(t)|l=(®)] | lz(s)lds + [b(t)] [ a*(t)dt

t—r t—7r
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=] | #*@)ds = 20lle(®)] | la(e)lds +rip(0)la(0) 2 0,
that is,
[6(¢)] . a?(s)ds — 2[b(t)||=(t)| . |z(s)lds > —r[b(t)|z%(2).

Consider W1(t) = Wa(t) = 2, Wa(t) = Wy(t) = t and D(t,z;) =
E(t,z:) = |z(t)]. Then all conditions in Theorem 2.1 are satisfied.
Hence, the proof is complete. O

REMARK 2.2. In Example 2.1 if r = 0, then (2.2) can be reduced to
the ordinary differential equation z'(¢) = a(t)z(t). Now we can solve
the equation z'(t) = a(t)z(t) directly. Thus the general solution of
z'(t) = a(t)z(t) is given by

z(t) = x(to)ef:o a(s)ds

for any to > 0. If f0°° a(t) dt = oo, then we can check that the zero
solution of z’(t) = a(t)z(t) is unstable.

3. Instability for Autonomous Functional Differential
Equations with Infinite Delay

The purpose of this section is to provide an instability theorem
that eliminates some of the obstacles which we explained in Section 1.
In particular, we employ Liapunov-Razumikhin techniques and omega
limit set properties in order to present an instability theorem for au-
tonomous functional differential equations with infinite delay. Exam-
ples are given to illustrate that this theorem often is straightforward
to apply when applicable.

We present the standard notation for infinite delay functional differ-
ential equations and the basic definitions to which we will refer through
this section. Also we provide underlying spaces that often arise in a
natural way, and for which standard existence and uniqueness type re-
sults as well as fundamental properties of positive limit sets hold. And
we provide the space which gives the information regarding precom-
pactness of positive orbits.
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Let B be a real vector space either of continuous functions that map
(—00,0] into R™ or of measurable functions that map (—oo, 0] into R™
with elements ¢ and v in B identified when ¢ = 1 a.e on (—00,0] and
#(0) = 9(0). In either case, we assume B - endowed with norm |- |5 -
is a Banach space.

If x:(—00,A) » R*, —o0 < A < 00, then, for any ¢ in (—o0, A),
define xz; : (—00,0] — R™ by z¢(s) = z(t + s), s < 0. Then z; is the
translate of  on (—o00,t] to (—00,0], and ¢ is merely z restricted to

(—00,0].
We consider autonomous FDEs with infinite delay of the form
(3.1) ' = f(z4),

where z’ denotes the right-hand derivative with respect to ¢, and f :
D— R" DCB.

DEFINITION 3.1. A space B (as defined above) is said to be admis-
sible [with respect to (3.1)] whenever there exist continuous functions
K,M : [0,00) — [0,00) and a constant J > 0 such that the following
conditions hold: If z : (—o00, A) — R™ is continuous on [a, A) with z,
in B for some a < A, then, for all ¢ in [a, A),

(B1) z; is an element of B;

(B2) z; is continuous in ¢ with respect to | - |g;

(B3) |zt| g < K(t — a) maxa<s<t |z(s)| + M(t = a)|zq| 5; and

(B4) |¢(0)| < J|@p|g for all ¢ in B.

REMARK 3.1. The above conditions assure a Peano-type existence
result: that is, if D is open and f : D — R™ is continuous, then any
Cauchy problem

(32) o' = f(xt)a zo=¢, ¢ € D’

possesses a continuously differentiable solution that satisfies (3.1) for
all ¢ in some interval [0, A), 0 < A < co. Likewise, typical uniqueness,
continuous-dependence, and continuation results can be obtained by
employing (B1)-(B4). Proofs of results along these lines may be found
in Hale and Kato [15], to name one source. A brief survey, which in-
cludes a substantial list of references related to [15], is given in Haddock
[8]; whereas, an extensive survey of infinite delay equations is given in
Corduneanu and Lakshmikantham [6].
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DEFINITION 3.2. A set T C B is said to be invariant [with respect

to (3.1)] if, for each ¢ € T, there exists a function x : (—o0,00) — R"
such that zo = ¢ and, for all ¢ € (—o00, ),

i. z; € T and

il. 2/(t) = f(x).

DEFINITION 3.3. For ¢ € B, the positive limit set of the positive
orbit {x:(¢) : t > 0} is the (possibly empty) set

Q¢) = {v € B:x:, (¢) — 3 as n — oo for some sequence {t,} T oo}.

The following fundamental theorem is well known. Two references
that provide a detailed account of (a slight variation of) the result
are [17, Section 6.4] and [18, Section 4.4]. We note that a set S is
precompact (in B) if its closure, CI(S), is compact (in B).

THEOREM 3.1. The positive limit set, Q(¢), of a precompact posi-
tive orbit {z:(¢) : t > 0} is nonempty, compact, connected, and invari-
ant, and

z(¢) — U¢) ast — oo.
ExXAMPLE 3.1. Suppose

(33) g:(=00,0] — [1,00)

is continuous and nonincreasing on (—o0,0] with g(0) = 1. Further-
more, suppose that f satisfies the following conditions:

(i) %P_) — 1 uniformly on (—c0,0] as u — 0_, (3.4)
(ii) g(s) — oo as s — —oo. (3.5)

Let C, denote the space of continuous functions that map (—oo, 0]
into R™ such that

sup|¢és;| < o0.
We define a norm || - ||, on Cyg by
(3. loll, = sup 2]

0o 9(s)
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Then C, with this norm is a Banach space (cf. Corduneanu [5]).
Now we consider

C; = {¢ € Cg|§ is uniformly continuous on [0, oo)} .

Then the subspace C; of C; is admissible (cf. Haddock [12]).

REMARK 3.2. It is illustrated in Atkinson and Haddock [1] that
(3/4) and (3.5) are not overly restrictive and often can be included in a
natural way in studies involving functional differential equations with
infinite delay.

The next result deals with obtaining sufficient conditions for pre-
compactness of a bounded positive orbit {z; : ¢ > 0} in C, spaces.
Application of such results occurs in dealing the main theorem (Theo-
rem 3.3).

THEOREM 3.2. Suppose g : (—00,00) — [1,00) satisfies (3.3), (3.4)
and (3,5) with g(s) = 1 on [0,00). Ifz : (—o0,00) — R™ such that
¢ = o € C; and z(¢)(t) is bounded and uniformly continuous on
[0,00) and

$(s)

-~ —0ass— —o00,

9(s)
then the set {z(¢) : t > 0} is precompact in C,.

Proof. First we note that z:(¢) € C';‘ for any t > 0, since ¢ = xg €
C; and z(¢)(t) is bounded and uniformly continuous on [0, 00). Thus
the mapping ¢ — x:(¢) is continuous with respect to || - ||, on [0, 00},

zo(s) _ #(s)

=-—+—0ass— —o0
g(s) ~ g(s)

and z is bounded on [0,00), the condition (3.2) in [9] is satisfied (by
(3.5)). Hence, {z; : t > 0} is precompact in Cy by Theorem 3.1 in

[9]. O

since C; is an admissible space. Since

For the remainder of this section we consider an autonomous system
of functional differential equations with infinite delay

(3.7) ' = f(z:),
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where
(3.8) f: C; — R"

is completely continuous, solutions depend continuously on initial val-
ues, and Cg with norm || - || is an admissible space.

By a Liapunov (or Razumikhin) function, we mean a locally Lip-
schitzian function V' : R — R such that (a) V(0) = 0 and (b) if

0 # z(to) is such that z is differentiable at ¢y, then (%) V{z(t)] exists

at t = tp. In particular,

%VWdﬂ]=gmdvuan~fun=m

Z BVg;(zto)] (z,).

For a Liapunov function V, we define the derivative of V' with respect
to (3.7) by

V[$(0) + hf(#)] - VIg(0)]
h

(39)  V'@n(é)=V'(¢) = lim sup

REMARK 3.3. Let z(t) be a solution of (3.7) and let V('3'7) (z¢) > 0.
Then V'[z(t)] is non-decreasing function of ¢t which implies that V [z(t)]
is non-decreasing along a solution of (3.7) (cf. Yoshizawa [19]).

DEFINITION 3.4. The zero solution, = 0, of (3.7) is stable in C;
if for each € > 0 there exists § = §(¢) > 0 such that ||4]|, < ¢ with
¢ € C; implies that [z(¢)(t)] < ¢ for all £ > 0.

The zero solution is said to be unstable in Cj if it is not stable in
C?.

g

THEOREM 3.3. Suppose that there exists a Liapunov function V :

R™ — R, such that (i) V(z) > 0 if z # 0, and V(0) = 0 (ii)

V37 (¢) > 0 for all ¢ € dom(V), where dom(V) = {¢ € C; :

Vig(s)]

V(¢(0)] = sup———=
[¢(0)] U )

stable in C;.

> 0}. Then the zero solution of (3.7) is un-
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Proof. Let € > 0 be given and consider any § with 0 < § < €. Let

¢ € C* be chosen so that V[¢(0)] = supv—[(b@ and 0 < |¢(s)| < d for
g s<0 9(s) 2
all s € (—o0,0]. Thus,
. (O]
el =38 s <9 ~°
and
V,(3.7) [¢] >0,
since Vid(s)]
s
O et 7"

We claim that there exists t* > 0 such that |z(¢)(t)] = €. Suppose
not. Then z(¢)(¢) and z'(¢) are defined and bounded on [0,00). Now
we may assume that g(t) = 1 on [0, co0). Therefore we note that all
conditions in Theorem 3.1 in [9] are satisfied. That is, {z:(¢) : t > 0}
is Cy-precompact. Also note that {z:(¢) : t > 0} C Cj, since ¢ € C}
and z(¢)(t) is bounded. Thus {z:(¢) : ¢ > 0} is C}-precompact. By
Theorem 3.1, the positive limit set £2(¢) is nonempty. Therefore, there
exist ¥ € Q(¢) and a sequence {¢,} 1 oo such that

zt, (@) — Y as n — oo.
Note that z; (¢)(s) — ¥(s) as n — oo for all s € (—0,0].
Now we note that {V(z(¢)(t)) : t > 0} is strictly increasing and
bounded above from the fact that V[(¢(0)] = sup Vs[;é.)s)] , and z(¢)(t)
3<0
is bounded on [0, 00). Therefore, there exists a positive real number p
such that

p= lim V(a(9)(®)).
Thus we have

V()] = lim Ve, ($)(0)] = lm Viz(#)(t)] = p
and

Vi(s)] = lim Ve, ($)(s)] = lim V(z(6)(tn+5)] < p
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for s < 0. Therefore, we note that

[(s)]
g9(s)

>0

Vip(0) = sup~

and V'[¢] > 0.

But zi(¢y) € Q(¢) for any t > 0, since Q(¢) is positively invariant.
This implies that for any ¢ > 0 there is a sequence (s,) T as n — oo
such that z:(¥) = lim,, 00 s, (¢). Thus we have

VI@)(O)] = V(lim 2, (8)(0) = lim V(z(@)(s:) < p,
which contradicts V’[¢)] > 0. Hence, the proof is complete. a

ExaAMPLE 3.2. Consider a scalar equation

t

(3.10) 7' (t) = az(t) + / b(t — s)z(s)ds.

—0o0
Let g be a continuous function which satisfies the conditions (3.3), (3.4)
and (3.5), and let b : [0, 00) — R be a continuous function such that
fi)oo |b(—s)]g(s)ds < a. then the zero solution of (3.10) is unstable in
C;.
Proof. Let V(z(t)) = |z(¢)|. If z(t) > 0, then

V' (3.10)[xe] = |2(t)]

= az(t) +/ b(t — s)z(s)ds
0
= az(t) +/ b(—s)z¢(s)ds

0 IS
> aa(t) - [ oo |b<—s>|g(s>'—£'ds

0

> allzlly — |lzill, / Ib(—5)lg(s)ds

— o0

0
~(a- / b(—s)lg(s)ds)l[zellg > 0

— 00
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if |lz¢||g = |z(t)| = z(t) > 0, that is,

_ R0)
lz(t)| = V[z:(0)] = SS% o0s) > 0.
If z(t) < 0, then
V' 3.0)[ze] = |z(t)/
= —2/(1)
= —az(t) — /_ b(t — s)z(s)ds

0
— —ax(t) - / b(—s)wu(s)ds

-0

0
> ala)l - [ I(-9)lg(s) '”j((j))'ds

0

> alladly = llolly [ Ib(=s)lg(s)ds

—o0

0 -
= llzelly(a - / 1b(~5)lg(s)ds) > 0

if ||z¢|lg = |=(t)] = —z(t) > 0. From the above theorem, the zero
solution of (3.10) is unstable in Cj. d

ExXAMPLE 3.3. Consider a scalar equation

(3.11) Z'(t) = az(t) + ba(t — r) + /t c(t — s)z(s)ds,

-0

where r > 0. Let g be a continuous function which satisfies the condi-
tions (3.3), (3.4) and (3.5) with g(s) = 1 on [~r,0],and let ¢ : [0, o0) —
R be a continuous function such that |b| + fi) o lc(—5)|g(s) < a. then
the zero solution of (3.11) is unstable in C;.
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Proof. Consider a Liapunov function V(z(t)) = |z(t)|. If z(t) > 0,

then

V' anlzd] = z(®)l

= az(t) + bz(t — 1) + /_ b(t — s)z(s)ds

0 $

> ale ()]~ Pl — [ b(-s)lg(s) s
* 0

> allelly — Bllcll = lladls [ 1b(=s)lo(s)ds

0
=@ - [ b-9lgls)ds)llly >,

—00

if ||zillg = |2(t)] = z(t) > 0. If z(t) < O, then we can prove the
example by the similar argument. Hence the proof is complete. O
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