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BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL
SYSTEMS VIA t∞-SIMILARITY

Yoon Hoe Goo*

Abstract. In this paper, we show that the solutions to perturbed
functional differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T y(s))ds,

have a bounded properties. To show the bounded properties, we
impose conditions on the perturbed part

∫ t

t0
g(s, y(s), T y(s))ds and

on the fundamental matrix of the unperturbed system y′ = f(t, y)
using the notion of t∞-similarity.

1. Introduction

One of the most useful methods available for studying the qualitative
properties of the solutions of a nonlinear system of differential equations
involves the use of the variation of constants formula and a integral
inequality. This gives an intergral equation satisfied by the solutions
of the nonlinear system. Using these methods, we investigate bounds
for solutions of the nonlinear differential systems further allowing more
general perturbations that were previously allowed using the notions of
t∞-similarity and h-stability.

The notion of h-stability (hS) was introduced by Pinto [17,18] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems. Pachpatte[15,16] investigated the stability, boundedness, and
the asymptotic behavior of the solutions of perturbed nonlinear systems
under some suitable conditions on the perturbation term g and on the

Received January 22, 2016; Accepted May 09, 2016.
2010 Mathematics Subject Classification: Primary 34C11, 34D10.
Key words and phrases: h-stability, t∞-similarity, bounded, functional perturbed

differential system.



348 Yoon Hoe Goo

operator T . Choi and Ryu [4] and Choi, Koo and Ryu [5] investigated
bounds of solutions for nonlinear perturbed systems. Also, Goo [7,8,9]
and Goo et al. [3,11] studied the boundedness of solutions for the per-
turbed differential systems.

2. Preliminaries

We are interested in the relations between the solutions of the unper-
turbed nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

and the solutions of the perturbed differential system of (2.1) including
an operator T such that

(2.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

where f ∈ C(R+ × Rn,Rn), g ∈ C(R+ × Rn × Rn,Rn), R+ = [0,∞) ,
f(t, 0) = 0, g(t, 0, 0) = 0, and T : C(R+,Rn) → C(R+,Rn) is a contin-
uous operator and Rn is an n-dimensional Euclidean space. We always
assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous
on R+×Rn. The symbol | · | will be used to denote any convenient vector
norm in Rn.

Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
We recall the notion of h-stability [17].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called an (hS)h-stable if there exist a constant c ≥ 1, and a positive
bounded continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1
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for t ≥ t0 ≥ 0 and |x0| < δ (here h(t)−1 = 1
h(t)).

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[6].

Definition 2.2. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [6, 12].

We give some related properties that we need in the sequal.

Lemma 2.3. [18] The linear system

x′ = A(t)x, x(t0) = x0,(2.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(2.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.6).

We need Alekseev formula to compare between the solutions of (2.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].
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Lemma 2.4. [2] Let x and y be a solution of (2.1) and (2.8), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.5. [4] If the zero solution of (2.1) is hS, then the zero
solution of (2.3) is hS.

Theorem 2.6. [5] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (2.3) is hS, then the solution z = 0 of (2.4) is hS.

Lemma 2.7. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈
C((0,∞)) and w(u) be nondecreasing in u. Suppose that, for some
c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1
}

.

Lemma 2.8. [10] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that
for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

(λ4(τ)u(τ)

+ λ5(τ)
∫ τ

t0

λ6(r)u(r)dr)dτds +
∫ t

t0

λ7(s)
∫ s

t0

λ8(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)+λ3(s)
∫ s

t0

(λ4(τ) + λ5(τ)
∫ τ

t0

λ6(r)dr)dτ

+ λ7(s)
∫ s

t0

λ8(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and
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b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

(λ4(τ)

+ λ5(τ)
∫ τ

t0

λ6(r)dr)dτ + λ7(s)
∫ s

t0

λ8(τ)dτ)ds ∈ domW−1
}

.

For the proof we need the following corollaries.

Corollary 2.9. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t
t0

λ1(s)
∫ s
t0

(λ2(τ)u(τ) + λ3(τ)
∫ τ
t0

λ4(r)u(r)dr)dτds

+
∫ t
t0

λ5(s)
∫ s
t0

λ6(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(λ1(s)
∫ s
t0

(λ2(τ) + λ3(τ)
∫ τ
t0

λ4(r)dr)dτ

+λ5(s)
∫ s
t0

λ6(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t
t0

(λ1(s)
∫ s
t0

(λ2(τ) + λ3(τ)
∫ τ
t0

λ4(r)dr)dτ

+λ5(s)
∫ s
t0

λ6(τ)dτ)ds ∈ domW−1
}

.

Corollary 2.10. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)u(τ)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

(λ1(s)+λ2(s)+λ3(s)
∫ s

t0

λ4(τ)dτ)ds ∈ domW−1
}

.
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Corollary 2.11. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds

+
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

(λ1(s)+λ2(s)+λ3(s)
∫ s

t0

λ4(τ)dτ)ds ∈ domW−1
}

.

Lemma 2.12. [9] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that
for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)
∫ s

t0

(λ3(τ)u(τ) + λ4(τ)w(u(τ))

+ λ5(τ)
∫ τ

t0

λ6(r)w(u(r))dr)dτds +
∫ t

t0

λ7(s)
∫ s

t0

λ8(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

(λ3(τ) + λ4(τ)

+ λ5(τ)
∫ τ

t0

λ6(r)dr)dτ + λ7(s)
∫ s

t0

λ8(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

(λ3(τ) + λ4(τ)

+λ5(τ)
∫ τ

t0

λ6(r)dr)dτ + λ7(s)
∫ s

t0

λ8(τ)dτ)ds ∈ domW−1
}

.

We prepare the following corollary for the proof.



Boundedness in functional differential systems 353

Corollary 2.13. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)
∫ s

t0

(λ2(τ)u(τ) + λ3(τ)w(u(τ))

+ λ4(τ)
∫ τ

t0

λ5(r)w(u(r))dr)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

λ1(s)
∫ s
t0

(λ2(τ) + λ3(τ) + λ4(τ)
∫ τ
t0

λ5(r)dr)dτds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ1(s)
∫ s

t0

(λ2(τ) + λ3(τ)

+ λ4(τ)
∫ τ

t0

λ5(r)dr)dτds ∈ domW−1
}

.

3. Main results

In this section, we investigate boundedness for solutions of perturbed
functional differential systems using the notions of t∞-similarity and
h-stability.

To obtain the bounded result, the following assumptions are needed:
(H1) w(u) is nondecreasing function in u such that u ≤ w(u) and

1
vw(u) ≤ w(u

v ) for some v > 0.
(H2) The solution x = 0 of (2.1) is hS with the increasing function h.
(H3) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ

for some constant δ > 0.

Theorem 3.1. Let a, b, c, k ∈ C(R+). Suppose that (H1), (H2), (H3),
and g in (2.2) satisfies

|g(t, y, Ty)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)|,

|Ty(t)| ≤ c(t)
∫ t

t0

k(s)|y(s)|ds
(3.1)

where a, b, c, k, w ∈ L1(R+), w ∈ C((0,∞)), T is a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (2.2) is bounded on [t0,∞) and
it satisfies
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|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

∫ s

t0

(
a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr
)
dτds

]
,

where W , W−1 are the same functions as in Lemma 2.7, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

∫ s

t0

(
a(τ) + b(τ)

+ c(τ)
∫ τ

t0

k(r)dr
)
dτds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By (H2) and Theorem 2.5, the solution
v = 0 of (2.3) is hS. Therefore, because of (H3), by Theorem 2.6, the so-
lution z = 0 of (2.4) is hS. Applying the nonlinear variation of constants
formula Lemma 2.4, (H2), together with (3.1), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1

∫ s

t0

(
a(τ)|y(τ)|

+ b(τ)w(|y(τ)|) + c(τ)
∫ τ

t0

k(r)|y(r)|dr
)
dτds.

By the assumptions (H1) and (H2), we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
∫ s

t0

(
a(τ)

|y(τ)|
h(τ)

+ b(τ)w
( |y(τ)|

h(τ)

)

+ c(τ)
∫ τ

t0

k(r)
|y(r)|
h(r)

dr
)
dτds.

Putting u(t) = |y(t)||h(t)|−1, then, by Corollary 2.9, it follows that

|y(t)| ≤ h(t)W−1
[
W (c)+ c2

∫ t

t0

∫ s

t0

(
a(τ)+ b(τ)+ c(τ)

∫ τ

t0

k(r)dr
)
dτds

]

where c = c1|y0|h(t0)−1. From the above estimation, we obtain the
desired result. Thus, the theorem is proved.

Remark 3.2. Letting a(t) = 0 in Theorem 3.1, we obtain the similar
result as that of Theorem 3.5 in [13].
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Theorem 3.3. Let a, b, c, k ∈ C(R+). Suppose that (H1), (H2), (H3),
and g in (2.2) satisfies

(3.2)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)|,

and

(3.3) |Ty(t)| ≤ c(t)
∫ t

t0

k(s)|y(s)|ds

where a, b, c, k, w ∈ L1(R+), w ∈ C((0,∞)), T is a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (2.2) is bounded on [t0,∞) and
it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(
a(s) + b(s)

+ c(s)
∫ s

t0

k(τ)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the same argument as in the proof
in Theorem 3.1, the solution z = 0 of (2.4) is hS. Using the nonlinear
variation of constants formula Lemma 2.4, (H2), together with (3.2) and
(3.3), we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
a(s)|y(s)|+ b(s)w(|y(s)|)

+ c(s)
∫ s

t0

k(τ)|y(τ)|dτ
)
ds.

Using the assumptions (H1) and (H2), we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
a(s)

|y(s)|
h(s)

+ b(s)w
( |y(s)|

h(s)

)

+ c(s)
∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτ
)
ds.
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Set u(t) = |y(t)||h(t)|−1. Then, by Corollary 2.10, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ
)
ds

]
,

where c = c1|y0|h(t) h(t0)−1. The above estimation yields the desired
result since the function h is bounded, and so the proof is complete.

Remark 3.4. Letting b(t) = 0 in Theorem 3.3, we obtain the similar
result as that of Theorem 3.1 in [11].

Theorem 3.5. Let a, b, c, k ∈ C(R+). Suppose that (H1), (H2), (H3),
and g in (2.2) satisfies

|g(t, y, Ty)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)|,

|Ty(t)| ≤ c(t)
∫ t

t0

k(s)w(|y(s)|)ds
(3.4)

where a, b, c, k, w ∈ L1(R+), w ∈ C((0,∞)), T is a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (2.2) is bounded on [t0,∞) and

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

∫ s

t0

(
a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr
)
dτds

]

where W , W−1 are the same functions as in Lemma 2.7, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

∫ s

t0

(
a(τ) + b(τ)

+ c(τ)
∫ τ

t0

k(r)dr
)
dτds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the same argument as in the proof in
Theorem 3.1, the solution z = 0 of (2.4) is hS. By Lemma 2.3, Lemma
2.4, (H2), together with (3.4), we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1

∫ s

t0

(
a(τ)|y(τ)|

+ b(τ)w(|y(τ)|) + c(τ)
∫ τ

t0

k(r)w(|y(r)|)dr
)
dτds.

By the assumptions (H1) and (H2), we have
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|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
∫ s

t0

(
a(τ)

|y(τ)|
h(τ)

+ b(τ)w(
|y(τ)|
h(τ)

) + c(τ)
∫ τ

t0

k(r)w(
|y(r)|
h(r)

)dr
)
dτds.

Set u(t) = |y(t)||h(t)|−1. Then, it follows from Corollary 2.13 that we
have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

∫ s

t0

(
a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr
)
dτds

]
,

where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (2.2) is
bounded on [t0,∞), and so the proof is complete.

Remark 3.6. Letting a(t) = 0 in Theorem 3.5, we obtain the similar
result as that of Theorem 3.4 in [3].

Theorem 3.7. Let a, b, c, k ∈ C(R+). Suppose that (H1), (H2), (H3),
and g in (2.2) satisfies

(3.5)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)|,

and

(3.6) |Ty(t)| ≤ c(t)
∫ t

t0

k(s)w(|y(s)|)ds

where a, b, c, k, w ∈ L1(R+), w ∈ C((0,∞)), T is a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (2.2) is bounded on [t0,∞) and
it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.7,
and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(
a(s) + b(s)

+ c(s)
∫ s

t0

k(τ)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. By the same argument as in the proof
in Theorem 3.1, the solution z = 0 of (2.4) is hS. Using the nonlinear
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variation of constants formula Lemma 2.4, (H2), together with (3.5) and
(3.6), we have

|y(t)| ≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
a(s)|y(s)|+ b(s)w(|y(s)|)

+ c(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ
)
ds.

Using (H1) and (H2), we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
a(s)

|y(s)|
h(s)

+ b(s)w(
|y(s)|
h(s)

)

+ c(s)
∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτ
)
ds.

Letting u(t) = |y(t)||h(t)|−1, then, by Corollary 2.11, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ
)
ds

]
,

where c = c1|y0|h(t) h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of
(2.2) is bounded on [t0,∞), and so the proof is complete.

Remark 3.8. Letting b(t) = 0 in Theorem 3.7, we obtain the similar
result as that of Theorem 3.1 in [3].
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