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ABSTRACT. In this paper, we investigate the existence of solutions of second order im-
pulsive neutral functional differential inclusions which the nonlinearity F' admits convex
and non-convex values. Some results under weaker conditions are presented. Our results
extend previous ones. The methods rely on a fixed point theorem for condensing mul-
tivalued maps and Schaefer’s fixed point theorem combined with lower semi-continuous
multivalued operators with decomposable values.

1. Introduction
In this paper, we consider the existence results of solutions for the following
second-order neutral functional differential inclusions with the form

/

(L1) [p<t>u'<t> / q(s)u(s)ds] € Plt,ug), ae.t € [0,T)\ {tr,ta, -t}

(1.2) Auli—y, = I(u(ty,)), AU |i=r, = Je(u(ty)), k=1,2,--- ,m,

(1.3) u(t) = a(t),t € [-7,0],4'(0) = n,

where F': [0,T] x C — P(R™) is a multi-valued map, C = {¢ : [-7,0] - R"; ¢
is continuous everywhere except for a finite number of points  at which ¢(£~) and
o(tt) exist with p(t7) = ¢()}, a € O, I, Jp € C(R*,R"), p(-) € C([0,T],Ry),
q(-) € C([0,T], R™*™), P(R™) is the family of all nonempty subsets of R", 0 = ¢, <
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t <ty <o <ty <tmir =T, Aulmy, = u(tl) —ulty), u(t]) and u(t; ) represent
the right and left limits of u(t) at ¢ = ¢, respectively. Au'|;—, is defined similarly.
The element u; € C' defined by u(0) = u(t + ) for § € [—7,0].

Recently, the impulsive differential equations or inclusions were considered by
Nieto[12], Cai[4], Benchohra et al.[2], Chang and Li[6] and Liu et al.[10] using vari-
ous tools such as fixed point theorem, the Leray-Schauder alternative and the lower
and upper solutions method. Note that when ¢(s) = 0, the differential inclusions
(1.1)-(1.3) have been investigated by Chang and Li[6] and Benchohra, et al.[1]. In
this paper, we establish the existence results for problem (1.1)-(1.3), which the non-
linearity F' admits convex and nonconvex values, by using the suitable fixed point
theorem under weaker conditions. Our results extend the corresponding results in
(1, (2], 6.

The study of impulsive differential equations and inclusions is linked to their
utility in simulating processes and phenomena subject to short-time perturbations
during their evolution. The perturbations are performed discretely and their dura-
tion is negligible in comparison with the total duration of the processes and phe-
nomena. That is why the perturbations are considered to take place in the form
of impulses. The theory of impulsive differential equations has seen considerable
development; see the monographs of Lakshmikantham et al. [8].

This paper will be divided into three sections. In Section 2 we will recall some
brief basic definitions and preliminary facts which will be used in the following
sections. In Sections 3 we shall establish existence theorems for (1.1)-(1.3). Our
method involves reducing the existence of solutions to problem (1.1)-(1.3) to a search
for fixed points of suitable multivalued maps on appropriate Banach space. In order
to prove the existence of fixed points, we shall rely on a fixed point theorem for
condensing multivalued maps [11] and the Schaefer’s fixed point theorem [13].

2. Preliminaries

In this section, we list the notations, definitions and preliminary facts which are
used for the rest of this paper.

By C([0,T],R™) we denote the Banach space of all continuous functions u from
[0,T] into R™ with the norm

[ulloo := sup{[u(?)] : ¢ € [0, T]}.

LY([0,T],R™) denotes the Banach space of all measurable functions y : [0,7] — R"
which are Lebesgue integrable with the norm

T
Iyl = / y(t)\dt.

Let E be a nonempty subset of R" and N : E — P(R™) be a multi-valued
map. We say N is lower semi-continuous on E (in brief l.s.c.) if the set {z €
E; N(zx)NC # ¢} is open for any open set C' in R™. We say N is upper semi-
continuous on FE (in brief w.s.c.) if for each xzy € F the set N(x¢) is a nonempty,
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closed subset of F, and if for each open set C' of E containing N(zg), there exists
an open neighborhood B of x such that N(B) C C. We call N is closed on FE if its
graph G(N) = {(z,y) € ExR"™ : y € N(z)} is closed. We call N is compact if for
each bounded set B C E, N(B) is relatively compact. We call N is bounded if for
each bounded set B C E, N(B) is bounded. We call N is a condensing mapping
if a(N(B)) < «a(B) holds for each bounded and noncompact set B C E, where «
denotes the noncompact measure. It is easy to see that a compact mapping must
be a condensing mapping. If the multivalued map N has nonempty compact values,
then N is u.s.c. if and only if N has closed graph. The multi-valued map N has a
fixed point if there exists an x € E such that z € N(x).

Let A denote a subset of [0, 7] x R™. We call A is L-B measurable if A belongs
to the o-algebra generated by all sets of the form L x B where L is Lebesgue
measurable in [0,7] and B is Borel measurable in R™. A subset S of L!([0,T],R")
is decomposable if for all u,v € S and all measurable subset F of [0, T], the function
uxe + v, r\E € S, where x denotes the characteristic function.

For a metric space (X,d), let Py(X) ={Y € P(X) : Y is closed }, P.p(X) =
{Y € P(X) : Y is compact }. In order to define the solution of (1.1)-(1.3), we
introduce the space Q = {u: [-7,T] = R" : u € C((tx, te+1), R"), u(ty ) and u(t}))
exist and u(ty) = u(ty ), k =1,---,m, wu(t) = a(t) for t € [-7,0]}. Then Q is a
Banach space with the norm |lul|q := sup{|u(t)| : t € [-7,T]}. For a function u in
Q, we define Sg, by

Spy ={ve LY[-7,T],R") : v(t) € F(t,u;),t € [0,T] and v(t) = a(t),t € [~7,0]}.
Definition 2.1. A function u €  is said to be a solution of (1.1)-(1.3) if u satisfies

the differential inclusion (1.1) a.e. on [0,7] \ {t1,%2, - ,tm} and the conditions
(1.2)-(1.3).

Let II denote the set of all mappings ¢ : [0,400) — [0,+00), where o(r)
satisfies that there exists a strictly increasing mapping 1 : [0, +00) — [0, +00) such
that ¢(0) = 0, lim,_, o ¥(r) = 400, ¥(r) <1 —@(r) for r > 0.

Definition 2.2([9]). Let (X,d) be a metric space and f : X — X is said to
be a separate contraction mapping if there exists a function ¢ € II such that

d(f(x), f(y)) < e(d(z,y)).

If f: X — X is a contraction mapping with Lipschitz constant k, then f is a
separate contraction mapping with ¢ € II defined by ¢(r) = kr. The more results
on separate contraction maps we refer to the paper [9].

Definition 2.3. Let Y be a separable metric space and N : Y — P(L'([0,T],R"))
be a multivalued operator. We say N has property (BC) if

(i) N is lower semi-continuous;

(ii) N has nonempty closed and decomposable values.
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The following lemmas will be used in the sequel.

Lemma 2.1([11]). Let N : X — P.,(X) is a convez, u.s.c. condensing map. If
the set E = {u € X : u € AN(u), for some A € (0,1)} is bounded, then N admits
fixed point in X.

Lemma 2.2([3]). LetY be a separable metric space and N : Y — P(L'([0,T], R™))
be a multivalued map with the property (BC). Then N has a continuous selection,
i.e., there exists a continuous function (single-value) g :' Y — L([0,T],R"™) such
that g(u) € N(u) for everyu € Y.

Lemma 2.3([13]). Let (X,||-||) be a normed space. H is a continuous mapping
of X into X which is compact on each bounded subset of X. Then either

(i) = AHzx has a solution in X for \=1, or

(ii) the set of all such solutions, 0 < A < 1, is unbounded.

3. Existence results

In this section, we shall prove our main results. Firstly, due to the fixed point
theorem of Martelli [11] for condensing multi-valued map, we establish the existence
result for the problem (1.1)-(1.3) which the nonlinearity F is restricted to be convex-
valued. Let po = mingepo, 1y [p(t)|, p = max,e(o,) [p(t)| and

0 t
w=p(0)n— / q(s)a(s)ds, ¢= sup / lg(s)|ds.
—T te[0,T] Jt—1

Now we give the following assumptions.

(Hy) F(-,u) : [0,T] — P.(R™) is convex and measurable for each v € C and
satisfies u — F(t,u) is u.s.c. for a.e. t € [0,7T.

(Hz) There exist two constants cg,c) such that |[Ix(z)| < ¢, |Jx(2z)| < ¢, for
each k=1,---,m and all z € R".

(H3) ||F(t, )] =sup{|v(t)] : v(t) € F(t,u)} < I(t)x(||ul|]) for a.e. t € [0,T] and all
u € C, where [ € L'([0,7], Ry) and ¥ : Ry — (0,+00) is continuous and
increasing with

T . T Ly o] dv
/ [p 0+ ptoe) [ o <r>dr] < [

. T — t)pl(t
where ¢ = [a(0)] + Tpp ] + X7, [ * (p)p“] '
0
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Remark 3.1. In the case p(t) = 1 and ¢(s) = 0, the assumption (H3) has been
considered by some authors [1,2]. Based on (H;) and (Hs), we see that F is an L!-
Carathéodory multivalued map.

Theorem 3.1. Assume that (Hy)-(Hs) hold. Then the problem (1.1) — (1.3) has at
least one solution on [—7,T].

Proof. We transform the problem (1.1)-(1.3) into a fixed point problem. Consider
the multi-valued map M : Q — P(Q), defined by M (u) = {h € 2}, where

h(t) = a(O)—l—/Otp_l(r) /7: dsdr—i—/ / r)drp(s)g(s)ds

A Ndrp+ Y [ / p((r))drjk(u(k))]

0<tp<t k
,t € [OaT]ag € SF,u

and h(t) = a(t) for t € [—7,0]. It is clear that the fixed points of M are solutions
to the problem (1.1)-(1.3). For each u € Q the set Sp,, is nonempty since, by (Hi),
F has a measurable selection. We shall prove that M fulfills the assumptions of
Lemma 2.1. The proof will be given by several steps.

Step 1. M(u) is convex for each u € Q. In fact, if hy, he belong to M(u), then
there exist g1, g2 € Sg,, such that for each ¢t € [0, 7]

hi(t) = a(O)—l—/Otp_l(r) /7: dsdr—i—/ / r)drp(s)g;(s)ds

/ r)drp + Z l /t p((T))erk(u( k))] Ji=1,2.

0<tp<t

For any d € [0, 1], we have

(dh1 + (1 = d)h2)(?)
-
0

h
= a(0)+ Lr) /77_ s)dsdr —i—/ / r)drp(s)(dgi + (1 — d)g2)(s)ds
/ rydrp+ [ /t p((r)) drJi(u(ty, ))] :

0<trp<t

Since Sg,, is convex (because F has convex values) then dhy + (1 — d)he € M (u).

Step 2. M maps bounded sets into relatively compact sets in €.
Let B, = {u € Q : ||ul]lo < r} be a bounded set in 2 and v € B,, we obtain
that, based upon the assumptions (Hs) and (Hs), M(B,) is bounded.
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On the other hand, let d = max{|c,| : & = 1,---,m}. Then, for 7,7 €
[tk—1,tk], K=1,2,--- ,m and u € B,, we have

(M (u)(73) — M(u)(r)|
p*()/f a(s)u(s)dsdr| +

r)drp(s)g(s)ds| +

r)drp(s)g(s)ds

/ rydrp|+| T fk<u<t,:>>|

71 <t <T2

+£d|’7'2 — 7'1|.
Po

As |7y — 11| — 0, the right hand side of the above inequality tends to zero. The case
71,72 € [—7,0] is obvious. Thus for any sequence {h,} C M(B,). By above argu-
ments and Ascoli-Arzela theorem, we could choose a common subsequence {h,,, }
such that h,,, (t) uniformly converges to h)(t) as k tending to infinity for ¢ € [t;,¢;41],
7=0,1,2,--- ,m. Take

ho(t) = a(t),t € [-7,0],
O Rb(), te oty 5=1,2,-- ,m+1,

then hy € Q. Thus the subsequence h,, (t) uniformly converges to hg(t) on [—7, T].
This implies that M (B,) is a relatively compact set.

Step 3. The set E = {u € Q:u € AM(u), for some A € (0,1)} is bounded.
Let u € E, that is, u € AM (u) for some A € (0,1). Thus there exists g € Sp,,
such that

u(t) = /\a(0)+/\/tp1(r)/r a(s)u dsdr+/\// F)drp(s)g(s)ds

+/\/ rydrp+ Ay [ / p((r)) drJi (u(t k))] .

O<tp<t k

By assumptions (H3) and (Hs), we achieve that
u(®) < 1a(O) +/ p0) [l luslasdr+ Ty
/ / s fu)ds + 3 [+ T ],

i=1 Po

Let
C(t) = sup{Ju(s)|: —7 < s < t},t €10,T).
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Then we have

r

) < )+ / P () / lg(s)\dsdr + Tpg 4

e SR i 3 T

Take the right-hand side of the above inequality as v(t), then we obtain ((¢t) < v(t)

and
(0) = a(O)] + Tpg ] + Y [k i ”‘jj”o(tk)]

Thus

T
V(L) < p_l(t)qv(t)Jr/t P2 (r)drp(t)l(t)x (v())

T

[p*(t) T+ p()I(E) / b

t

IA

2(T)drl [x(v(t) + qu(B)]-

This implies that

v(t) dv T . T L 0o dv
Lo e = Jy b0 n0n) [y o< [

Hence, there exists a constant @ such that v(t) < @ for t € [—7,T]. Thus |Ju[q < Q.
This proves that the set F is bounded.

Following similar arguments with [1, p.376-377], we conclude that M has closed
graph. So the multi-valued mapping M is u.s.c.. Meanwhile, the compact map M
is a condensing map. Thus M fulfills the all assumptions of Lemma 2.1, then M
admits a fixed point which is a solution to the problem (1.1)-(1.3). The proof of
Theorem 3.1 is complete. g

Based on the Schaefer’s theorem combined with the selection theorem of Bressan
and Colombo for semi-continuous maps with decomposable values, we will establish
some new existence results for problem (1.1)-(1.3) which the nonlinearity F' admits
nonconvex-valued. We consider the following assumptions.

(H4) Assume that F': [0,T] x C' — P,,(R™) satisfy
(1) (t,u) — F(t,u) is L-B measurable;
(2) uw— F(t,u) is Ls.c. for a.e. t € [0,T].
(H5) There exists a function D € L'([0,T],R.) such that, for a.e. t € [0,T] and

ueC,
[E(t, w)ll = sup{|v(?)] : v(t) € F(t,u)} < D(t).
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(Hg) There exists a function ¢ € II and a constant b > 0 such that

[2(u)lle < ¢(lulle) + b,

where u € Q and ¢ : Q — Q defined by

P (u)(t)
= Z [Ik(u(tk))—k/ I;((tf))drjk(u(tk)) +/0 pt(r) /T q(s)u(s)dsdr.
0<tp<t th r=T

Lemma 3.1([7]). Let F : [0,T] x C — P, (R") be a multi-valued map and the
assumptions (Hy) and (Hs) hold. Then F is lower semicontinuous type.

We say F' is lower semicontinuous type if its Niemytzki operator
F(u) == {w € L*([0,T],R™) : w(t) € F(t,u) for a.e. t € [0,T]}

is lower semicontinuous and nonempty closed and decomposable values.
Theorem 3.2. Assume that (Hy)-(Hg) hold. Then the problem (1.1)—(1.3) admits
at least one solution on [—7,T].

Proof. Note that (H,) and (Hs) and Lemma 3.1 imply that F is lower semicontinu-
ous type. By Lemma 2.2, there exists a continuous function f : Q — L([0,T],R")
such that f(u) € F(u) for all u € Q.

We consider the corresponding problem

!

(3.1) [p(t)u'(t) — /t_ q(s)u(s)ds] = f(ut), a.e. t €0, T)\ {t1,t2, - ,tm}s

(3.2) Aulyy, = I (u(ty)), AU |, = Ji(u(ty)), k=1,2,---,m,

(3.3) u(t) = a(t), t € [-7,0], «'(0) =n.

It is clear that if u € § is a solution of (3.1)-(3.3), then u is a solution to problem
(1.1)-(1.3). Transform the problem (3.1)-(3.3) into a fixed point problem. Consider
the operators A :  — Q defined by

¢

A = a0+ [ 570 [ a6 [ s

v [t ¥ [Mu(t,:m / ‘p(t”dwk(u(t,:»]

0<tp<t tE p(?“)




Second Order Impulsive Neutral Functional Differential Inclusions 9

for t € [0,T] and A(u)(t) = a(t) for t € [—7,0]. We shall prove that A fulfills the
assumptions of Lemma 2.3. It is clear that A is continuous by the continuities of
functions f, I and Ji. The rest of proof will be given by following two steps.

Step 1. A maps bounded sets into relatively compact sets in 2.
Let By = {u € Q: ||ulla < r} be a bounded set in 2 and v € B,, we obtain,
based upon the assumptions (Hs) and (Hg),

[A(w) (@)

T
< \a(0)|+p51T|u|+p51T/0 D(s)ds
- tp(tk) B t . r
+ 0§<t [Ik(u(tk))+ /A o) drJi(u(ty))| + /0 p () / B q(s)u(s)dsdr
< a0)] +py ' Tlul + e([lulla) +b
< a(0)] +po ' Tu| + 7 +b:= M.

Thus, for each u € B,, we have ||A(u)||q < M.
On the other hand, let J, = max{|Jy(x)| : || < r, k =1,---,m}. Then, for
T1,T2 € [tk—1,tk],k =1,2,-- ,m and u € B,, we have

AQu)(r2) — Alw)(m)
[t [ atsyasar « | [T [ punars
> h()

1
T1<tp<T2

/ p~H(r)drp

<

+

+ +

p
=+ *JT|T2 — 7'1|.
Po

1

As |7o — 11| — 0, the right hand side of the above inequality tends to zero. The
case 71,72 € [—,0] is similar. Thus for any sequence {h,} C A(B,). By above
arguments and Ascoli-Arzela theorem, we can choose a common subsequence {hy,, }
such that h,,, (¢) uniformly converges to h)(t) as k tending to infinity for ¢ € [t;,t;41],
7=0,1,2,--- ,m. Take

ho(t) = {a(t), t € [-,0]

Rht), te(tji,t], j=1,2,- ,m+1

then hg € Q. Thus the subsequence h,, (t) uniformly converges to ho(t) on [—7,T].
This implies that A(B,) is a relatively compact set.

Step 2. Theset E={ue€Q:30 € (0,1),u =0A(u)} is bounded.
Indeed, let u € E, then u(t) = OA(u)(t) for some 6 € (0,1). Note that (Hg), we
obtain
|a(0)] +pg Tl + pg ' Tlul + 8([lulle) + 6b
s+ e(llulle),

Ju(®)]

IA A
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where s = [(0)| + py "T[Dl1: + py "Tlul + b. Thus we have [ulla < s + p(llulla).
Since ¢(-) € II, we can achieve

P(llulle) < llulla = e(ulle) < s.

Hence, from the monotonousness of ¥(-), we get |Jullq < 1~!(s) < co. This implies
that the set F is bounded.

In view of Lemma 2.3, we deduce that A has a fixed point which is a solution
of the problem (1.1)-(1.3). O

Corollary 3.1. Assume that (Hy) and (Hs) holds. In addition, if one of following
conditions hold :

(A1) there exists ¢ € 11 such that || ®(z) — (y)|la < ¢(|z — ylla)-
Ay) there exist constants cy,c; ,dy and by, such that, for each x € R™,
k

Y ) <1-12

m
T_
14(2)] < cxlel+bp, [r(@)] < hlol+dy, S (ck n
k=1

Then the problem (1.1) — (1.3) admits at least one solution on [—7,T).

Proof. We only show the conditions (A;) and (Ag) imply the assumption (Hg)
respectively. First, if the condition (A;) holds, then there exists a function ¢ € II
such that

[@(u) = @(v)llo < ¢(llu—vle),

T _
where u,v € Q. Take v = 0 and b = ) ;" <|Ik(0)|+

’“p(tk>|Jk<o>|) >

|2(0)|lq, we obtain the assumption (Hg) immediately.
If the condition (A3) holds, for each t € [0, 7], we have

@l = | ¥ [fk<u<t,:>>+ / p(( ))d et ||+ p5 Talulle
< 3" (et + T ptwodute )
k=1
3 (et g0 ) + i Tl
k=1
< |3 (et o ptanre ) 45" Bl + 3 (o + T a1 )
k=1 k=1
Thus
@) < [Z («:w p(twc;)waqu lulla > <bk+Tt’“p<tk>dk).
k=1 k=1
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. T—t T _
By >, e+ kp(tk)cz) < 1- —q, we define a function as ¢(r) =
Po

Po
|:Z?—1 (Ck +
sumption (Hg). Thus it follows from Theorem 3.2 that the problem (1.1)-(1.3)
admits a solution in ). The proof of Corollary 3.1 is complete. (]

tr
kp()%)c%) —|—p51Tq] r for r > 0. Then ¢ € II fulfills the as-
)

From the above proof of Theorem 3.2, we immediately obtain the following
corollaries.

Corollary 3.2. Assume that (Hy) and (Hs) hold. Then the problem (1.1) — (1.3)
admits at least one solution on [—7,T], provided

Ik (2) — I ()| < ekl —yl, |Ju(z) = Te(y)| < cple—y|, E=1,2,--- \m

and

- Tt T
Z <Ck + kp(tk)c§€> <1- -9
Po

b1 Do

Corollary 3.3. Assume that (Hs),(H4) and (Hs) hold. Then the problem (1.1) —
(1.3) admits at least one solution on [—7,T], provided T'q < po.

Theorem 3.3. Assume that (Hy),(Hs) and the following condition hold :

— 1]
o <o hn
— J]

Then the problem (1.1) — (1.3) admits at least one solution on [—7,T)|, provided

m
T—t T
E (ck + kp(tk)c;c) <1- -9
Po

1 Po

Proof. Firstly, we transform the problem (3.1)-(3.3) into a fixed point problem.
Consider the operators A : Q — Q defined by

10 = a0+ [ 570 [ a6 [ sa

+ > [fk<u<tk>>+ / p(tk)dmk(um))]

0<tp<t
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for t € [0,T] and A(u)(t) = a(t) for t € [—7,0]. We shall prove that A fulfills the
assumptions of Lemma 2.3. Based on the step 1 in proof of Theorem 3.2, we only
prove the set E = {u € Q: 3\ € (0,1),u = MA(u)} is bounded. From conditions
(H7) and (Hg), we conclude that there exist positive constants ey, &), k=1,---,m
and K such that, for all |u| > K,

[Tk (u)| < (ex +ex)lul, | Th(u)] < (¢, +&p)lul,

and
m
T—t T
Z (ck +eg + ) R p(te) (c —|—6;€)> <1--4
0

b1 Po

We prove FE is bounded by contradiction. Suppose that there exists a sequence
u, € E such that ||u,|lq — 400 as n — 4o00. For any constant C; > K and each
n, we define

D, = {t:t€]0,T],|u,(t)| <C1}; L =max{|Ix(x)]:|z| < C1};
L' = max{|Ji(z)|:|z| <C1}; L, =max{|Tx(un(t))|: t € Dy};
L, = max{|Jp(u,(t))| :t € D,}.

It is clear that L, < L and L!, < L’ for each n. Then, for each n, we have

T r t s
@] < I+ | [ p70) [ autopdsdr| + | [ 57 [ par)aras
0 r—T1 0 0
T -1 ' p(tk)
+ / p Ll +| Y Ik(un(tk))—i—/ (1)
0 0<trp<t o, PAT
Tq _ _
< S+ —unllat+ D Te(un )+ D [(un(ty))]
Po tr€Dy tr€[0,T1\Dy,
Tp _ T —ty _
= > [ (un )+ D P(ti)| Tk (un(ty,))]
Po tr €Dy tr€[0,T1\D», Po
-
< S+mL+ L + ST Tn(un(ty)]
Po tx€[0,T]\ D,
T —ty, _ Tq
+ ptr) Y [ Teua(t) + = llunlla
th[O,T]\Dn Po
Tp U T—t T
< S+mL+ P + Z <ck + e + kp(tk)(cﬁc —l—E%)) + -4 |un o,
Po 1 Po Po

/OTpl(T)dr [p(O)U - /O q(s)a(s)ds]

-7

where S = |a(0)| + +p 'T|| D] 1. Thus we
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have

-
lunlle < S+mL+ p—me'—i— tn .

- Tt T
> (c;c +er+ " p(te)(ch, + s;)) + p—oq

st Po

This implies

T3
S +mL + —me’
Do

m T—t T
- [zk_l <k bt T kp(thcwew) n q}

Po

lunlla < < .

Since |Junllq — 400 as n goes to infinity, we arrive to a contradiction. Thus the
proof of boundedness of set E is complete. The proof of Theorem 3.3 is complete.
O

Corollary 3.4. Assume that (Hy) and (Hs) hold. In addition, if one of following
conditions holds :

| I ()]
||

I
(Az) limpy| oo —— =0, lim|y) oo =0,k=1,---,m and Tq < pg.
Ay) There exist constants cg, ¢,,bk, b, € R and ay, o), € [0,1) such that, for each
k k k
r € R",

[Tk (2)| < cgl|z|®" + b, |Jr(z)] < cﬁc|x|a; + b}, and Tq < po.

Then the problem (1.1) — (1.3) admits at least one solution on [—7,T].

Remark 3.2. (1) Let ¢(s) = 0 in the problems (1.1)-(1.3), then the Corollary 3.1
and Corollary 3.4 deduce to [6, Theorem 3.2] and [6, Theorem 3.3] respectively.
(2) Impulsive differential equations and inclusions under the conditions (Hs),(Asz) —
(A4) have been widely studied by many authors, see for instance [1], [2], [6], [12].
Obviously, (Az2) and (Hs) are special cases of (Hg); (As) and (A4) are special cases
of (H7) and (Hs)

Acknowledgment. The authors are grateful to the reviewers for their valuable
comments.
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