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Abstract. In this paper, we investigate the existence of solutions of second order im-

pulsive neutral functional differential inclusions which the nonlinearity F admits convex

and non-convex values. Some results under weaker conditions are presented. Our results

extend previous ones. The methods rely on a fixed point theorem for condensing mul-

tivalued maps and Schaefer’s fixed point theorem combined with lower semi-continuous

multivalued operators with decomposable values.

1. Introduction

In this paper, we consider the existence results of solutions for the following
second-order neutral functional differential inclusions with the form

(1.1)
[
p(t)u′(t)−

∫ t

t−τ

q(s)u(s)ds
]′
∈ F (t, ut), a.e. t ∈ [0, T ] \ {t1, t2, · · · , tm},

(1.2) ∆u|t=tk
= Ik(u(t−k )), ∆u′|t=tk

= Jk(u(t−k )), k = 1, 2, · · · ,m,

(1.3) u(t) = a(t), t ∈ [−τ, 0], u′(0) = η,

where F : [0, T ] × C → P(Rn) is a multi-valued map, C = {ϕ : [−τ, 0] → Rn; ϕ
is continuous everywhere except for a finite number of points t̃ at which ϕ(t̃−) and
ϕ(t̃+) exist with ϕ(t̃−) = ϕ(t̃)}, a ∈ C, Ik, Jk ∈ C(Rn,Rn), p(·) ∈ C([0, T ],R+),
q(·) ∈ C([0, T ], Rn×n), P(Rn) is the family of all nonempty subsets of Rn, 0 = t0 <
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t1 < t2 < · · · < tm < tm+1 = T , ∆u|t=tk
= u(t+k )−u(t−k ), u(t+k ) and u(t−k ) represent

the right and left limits of u(t) at t = tk, respectively. ∆u′|t=tk
is defined similarly.

The element ut ∈ C defined by ut(θ) = u(t+ θ) for θ ∈ [−τ, 0].
Recently, the impulsive differential equations or inclusions were considered by

Nieto[12], Cai[4], Benchohra et al.[2], Chang and Li[6] and Liu et al.[10] using vari-
ous tools such as fixed point theorem, the Leray-Schauder alternative and the lower
and upper solutions method. Note that when q(s) = 0, the differential inclusions
(1.1)-(1.3) have been investigated by Chang and Li[6] and Benchohra, et al.[1]. In
this paper, we establish the existence results for problem (1.1)-(1.3), which the non-
linearity F admits convex and nonconvex values, by using the suitable fixed point
theorem under weaker conditions. Our results extend the corresponding results in
[1], [2], [6].

The study of impulsive differential equations and inclusions is linked to their
utility in simulating processes and phenomena subject to short-time perturbations
during their evolution. The perturbations are performed discretely and their dura-
tion is negligible in comparison with the total duration of the processes and phe-
nomena. That is why the perturbations are considered to take place in the form
of impulses. The theory of impulsive differential equations has seen considerable
development; see the monographs of Lakshmikantham et al. [8].

This paper will be divided into three sections. In Section 2 we will recall some
brief basic definitions and preliminary facts which will be used in the following
sections. In Sections 3 we shall establish existence theorems for (1.1)-(1.3). Our
method involves reducing the existence of solutions to problem (1.1)-(1.3) to a search
for fixed points of suitable multivalued maps on appropriate Banach space. In order
to prove the existence of fixed points, we shall rely on a fixed point theorem for
condensing multivalued maps [11] and the Schaefer’s fixed point theorem [13].

2. Preliminaries

In this section, we list the notations, definitions and preliminary facts which are
used for the rest of this paper.

By C([0, T ],Rn) we denote the Banach space of all continuous functions u from
[0, T ] into Rn with the norm

‖u‖∞ := sup{|u(t)| : t ∈ [0, T ]}.

L1([0, T ],Rn) denotes the Banach space of all measurable functions y : [0, T ] → Rn

which are Lebesgue integrable with the norm

‖y‖L1 :=
∫ T

0

|y(t)|dt.

Let E be a nonempty subset of Rn and N : E → P (Rn) be a multi-valued
map. We say N is lower semi-continuous on E (in brief l.s.c.) if the set {x ∈
E; N(x) ∩ C 6= φ} is open for any open set C in Rn. We say N is upper semi-
continuous on E (in brief u.s.c.) if for each x0 ∈ E the set N(x0) is a nonempty,
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closed subset of E, and if for each open set C of E containing N(x0), there exists
an open neighborhood B of x0 such that N(B) ⊂ C. We call N is closed on E if its
graph G(N) = {(x, y) ∈ E×Rn : y ∈ N(x)} is closed. We call N is compact if for
each bounded set B ⊂ E, N(B) is relatively compact. We call N is bounded if for
each bounded set B ⊂ E, N(B) is bounded. We call N is a condensing mapping
if α(N(B)) < α(B) holds for each bounded and noncompact set B ⊂ E, where α
denotes the noncompact measure. It is easy to see that a compact mapping must
be a condensing mapping. If the multivalued map N has nonempty compact values,
then N is u.s.c. if and only if N has closed graph. The multi-valued map N has a
fixed point if there exists an x ∈ E such that x ∈ N(x).

Let A denote a subset of [0, T ]×Rn. We call A is L-B measurable if A belongs
to the σ-algebra generated by all sets of the form L × B where L is Lebesgue
measurable in [0, T ] and B is Borel measurable in Rn. A subset S of L1([0, T ],Rn)
is decomposable if for all u, v ∈ S and all measurable subset E of [0, T ], the function
uχE + v[0,T ]\E ∈ S, where χ denotes the characteristic function.

For a metric space (X, d), let Pcl(X) = {Y ∈ P(X) : Y is closed }, Pcp(X) =
{Y ∈ P(X) : Y is compact }. In order to define the solution of (1.1)-(1.3), we
introduce the space Ω = {u : [−τ, T ] → Rn : u ∈ C((tk, tk+1),Rn), u(t−k ) and u(t+k )
exist and u(tk) = u(t−k ), k = 1, · · · ,m, u(t) = a(t) for t ∈ [−τ, 0]}. Then Ω is a
Banach space with the norm ‖u‖Ω := sup{|u(t)| : t ∈ [−τ, T ]}. For a function u in
Ω, we define SF,u by

SF,u = {v ∈ L1([−τ, T ],Rn) : v(t) ∈ F (t, ut), t ∈ [0, T ] and v(t) = a(t), t ∈ [−τ, 0]}.

Definition 2.1. A function u ∈ Ω is said to be a solution of (1.1)-(1.3) if u satisfies

the differential inclusion (1.1) a.e. on [0, T ] \ {t1, t2, · · · , tm} and the conditions
(1.2)-(1.3).

Let Π denote the set of all mappings ϕ : [0,+∞) → [0,+∞), where ϕ(r)
satisfies that there exists a strictly increasing mapping ψ : [0,+∞) → [0,+∞) such
that ψ(0) = 0, limr→∞ ψ(r) = +∞, ψ(r) ≤ r − ϕ(r) for r > 0.

Definition 2.2([9]). Let (X, d) be a metric space and f : X → X is said to
be a separate contraction mapping if there exists a function ϕ ∈ Π such that
d(f(x), f(y)) ≤ ϕ(d(x, y)).

If f : X → X is a contraction mapping with Lipschitz constant k, then f is a
separate contraction mapping with ϕ ∈ Π defined by ϕ(r) = kr. The more results
on separate contraction maps we refer to the paper [9].

Definition 2.3. Let Y be a separable metric space and N : Y → P(L1([0, T ],Rn))
be a multivalued operator. We say N has property (BC) if

(i) N is lower semi-continuous;

(ii) N has nonempty closed and decomposable values.
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The following lemmas will be used in the sequel.

Lemma 2.1([11]). Let N : X → Pcp(X) is a convex, u.s.c. condensing map. If
the set E = {u ∈ X : u ∈ λN(u), for some λ ∈ (0, 1)} is bounded, then N admits
fixed point in X.

Lemma 2.2([3]). Let Y be a separable metric space and N : Y → P(L1([0, T ], Rn))
be a multivalued map with the property (BC). Then N has a continuous selection,
i.e., there exists a continuous function (single-value) g : Y → L1([0, T ],Rn) such
that g(u) ∈ N(u) for every u ∈ Y .

Lemma 2.3([13]). Let (X, || · ||) be a normed space. H is a continuous mapping
of X into X which is compact on each bounded subset of X. Then either

(i) x = λHx has a solution in X for λ = 1, or

(ii) the set of all such solutions, 0 < λ < 1, is unbounded.

3. Existence results

In this section, we shall prove our main results. Firstly, due to the fixed point
theorem of Martelli [11] for condensing multi-valued map, we establish the existence
result for the problem (1.1)-(1.3) which the nonlinearity F is restricted to be convex-
valued. Let p0 = mint∈[0,T ] |p(t)|, p̃ = maxt∈[0,T ] |p(t)| and

µ = p(0)η −
∫ 0

−τ

q(s)a(s)ds, q = sup
t∈[0,T ]

∫ t

t−τ

|q(s)|ds.

Now we give the following assumptions.

(H1) F (·, u) : [0, T ] → Pcp(Rn) is convex and measurable for each u ∈ C and
satisfies u→ F (t, u) is u.s.c. for a.e. t ∈ [0, T ].

(H2) There exist two constants ck, c′k such that |Ik(x)| ≤ ck, |Jk(x)| ≤ c′k, for
each k = 1, · · · ,m and all x ∈ Rn.

(H3) ‖F (t, u)‖ = sup{|v(t)| : v(t) ∈ F (t, u)} ≤ l(t)χ(‖u‖) for a.e. t ∈ [0, T ] and all
u ∈ C, where l ∈ L1([0, T ], R+) and χ : R+ → (0,+∞) is continuous and
increasing with∫ T

0

[
p−1(t) + p(t)l(t)

∫ T

t

p−2(r)dr

]
dt <

∫ ∞

c

dv

χ(v) + qv
,

where c = |a(0)|+ Tp−1
0 |µ|+

∑m
i=1

[
ck +

(T − tk)p(tk)
p0

c′k

]
.
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Remark 3.1. In the case p(t) ≡ 1 and q(s) ≡ 0, the assumption (H3) has been
considered by some authors [1,2]. Based on (H1) and (H3), we see that F is an L1-
Carathéodory multivalued map.

Theorem 3.1. Assume that (H1)-(H3) hold. Then the problem (1.1)− (1.3) has at
least one solution on [−τ, T ].

Proof. We transform the problem (1.1)-(1.3) into a fixed point problem. Consider
the multi-valued map M : Ω → P(Ω), defined by M(u) = {h ∈ Ω}, where

h(t) = a(0) +
∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr +
∫ t

0

∫ t

s

p−2(r)drp(s)g(s)ds

+
∫ t

0

p−1(r)drµ+
∑

0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]
, t ∈ [0, T ], g ∈ SF,u

and h(t) = a(t) for t ∈ [−τ, 0]. It is clear that the fixed points of M are solutions
to the problem (1.1)-(1.3). For each u ∈ Ω the set SF,u is nonempty since, by (H1),
F has a measurable selection. We shall prove that M fulfills the assumptions of
Lemma 2.1. The proof will be given by several steps.

Step 1. M(u) is convex for each u ∈ Ω. In fact, if h1, h2 belong to M(u), then
there exist g1, g2 ∈ SF,u such that for each t ∈ [0, T ]

hi(t) = a(0) +
∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr +
∫ t

0

∫ t

s

p−2(r)drp(s)gi(s)ds

+
∫ t

0

p−1(r)drµ+
∑

0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]
, i = 1, 2.

For any d ∈ [0, 1], we have

(dh1 + (1− d)h2)(t)

= a(0) +
∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr +
∫ t

0

∫ t

s

p−2(r)drp(s)(dg1 + (1− d)g2)(s)ds

+
∫ t

0

p−1(r)drµ+
∑

0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]
.

Since SF,u is convex (because F has convex values) then dh1 + (1− d)h2 ∈M(u).

Step 2. M maps bounded sets into relatively compact sets in Ω.
Let Br = {u ∈ Ω : ‖u‖Ω ≤ r} be a bounded set in Ω and u ∈ Br, we obtain

that, based upon the assumptions (H2) and (H3), M(Br) is bounded.
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On the other hand, let d = max{|c′k| : k = 1, · · · ,m}. Then, for τ1, τ2 ∈
[tk−1, tk], k = 1, 2, · · · ,m and u ∈ Br, we have

|M(u)(τ2)−M(u)(τ1)|

≤
∣∣∣∣∫ τ2

τ1

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr
∣∣∣∣ +

∣∣∣∣∫ τ2

τ1

∫ τ2

s

p−2(r)drp(s)g(s)ds
∣∣∣∣

+
∣∣∣∣∫ τ1

0

∫ τ2

τ1

p−2(r)drp(s)g(s)ds
∣∣∣∣ +

∣∣∣∣∫ τ2

τ1

p−1(r)drµ
∣∣∣∣ +

∣∣∣∣∣ ∑
τ1<tk<τ2

Ik(u(t−k ))

∣∣∣∣∣
+
p̃

p0
d|τ2 − τ1|.

As |τ2− τ1| → 0, the right hand side of the above inequality tends to zero. The case
τ1, τ2 ∈ [−τ, 0] is obvious. Thus for any sequence {hn} ⊂ M(Br). By above argu-
ments and Ascoli-Arzela theorem, we could choose a common subsequence {hnk

}
such that hnk

(t) uniformly converges to hj
0(t) as k tending to infinity for t ∈ [tj , tj+1],

j = 0, 1, 2, · · · ,m. Take

h0(t) =
{
a(t), t ∈ [−τ, 0],
hj

0(t), t ∈ (tj−1, tj ], j = 1, 2, · · · ,m+ 1,

then h0 ∈ Ω. Thus the subsequence hnk
(t) uniformly converges to h0(t) on [−τ, T ].

This implies that M(Br) is a relatively compact set.

Step 3. The set E = {u ∈ Ω : u ∈ λM(u), for some λ ∈ (0, 1)} is bounded.
Let u ∈ E, that is, u ∈ λM(u) for some λ ∈ (0, 1). Thus there exists g ∈ SF,u

such that

u(t) = λa(0) + λ

∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr + λ

∫ t

0

∫ t

s

p−2(r)drp(s)g(s)ds

+λ
∫ t

0

p−1(r)drµ+ λ
∑

0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]
.

By assumptions (H2) and (H3), we achieve that

|u(t)| ≤ |a(0)|+
∫ t

0

p−1(r)
∫ r

r−τ

|q(s)||u(s)|dsdr + Tp−1
0 |µ|

+
∫ t

0

∫ T

s

p−2(r)drp(s)l(s)χ(‖us‖)ds+
m∑

i=1

[
ck +

(T − tk)p(tk)
p0

c′k

]
.

Let
ζ(t) = sup{|u(s)| : −τ ≤ s ≤ t}, t ∈ [0, T ].
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Then we have

ζ(t) ≤ |a(0)|+
∫ t

0

p−1(r)ζ(r)
∫ r

r−τ

|q(s)|dsdr + Tp−1
0 |µ|

+
∫ t

0

∫ T

s

p−2(r)drp(s)l(s)χ(ζ(s))ds+
m∑

i=1

[
ck +

(T − tk)p(tk)
p0

c′k

]
.

Take the right-hand side of the above inequality as v(t), then we obtain ζ(t) ≤ v(t)
and

v(0) = |a(0)|+ Tp−1
0 |µ|+

m∑
i=1

[
ck +

(T − tk)p(tk)
p0

c′k

]
= c.

Thus

v′(t) ≤ p−1(t)qv(t) +
∫ T

t

p−2(r)drp(t)l(t)χ(v(t))

≤

[
p−1(t) + p(t)l(t)

∫ T

t

p−2(r)dr

]
[χ(v(t)) + qv(t)].

This implies that∫ v(t)

v(0)

dv

χ(v) + qv
≤

∫ T

0

[p−1(t) + p(t)l(t)
∫ T

t

p−2(r)dr]dt <
∫ ∞

v(0)

dv

χ(v) + qv
.

Hence, there exists a constant Q such that v(t) ≤ Q for t ∈ [−τ, T ]. Thus ‖u‖Ω ≤ Q.
This proves that the set E is bounded.

Following similar arguments with [1, p.376-377], we conclude that M has closed
graph. So the multi-valued mapping M is u.s.c.. Meanwhile, the compact map M
is a condensing map. Thus M fulfills the all assumptions of Lemma 2.1, then M
admits a fixed point which is a solution to the problem (1.1)-(1.3). The proof of
Theorem 3.1 is complete. �

Based on the Schaefer’s theorem combined with the selection theorem of Bressan
and Colombo for semi-continuous maps with decomposable values, we will establish
some new existence results for problem (1.1)-(1.3) which the nonlinearity F admits
nonconvex-valued. We consider the following assumptions.

(H4) Assume that F : [0, T ]× C → Pcp(Rn) satisfy

(1) (t, u) → F (t, u) is L-B measurable;

(2) u→ F (t, u) is l.s.c. for a.e. t ∈ [0, T ].

(H5) There exists a function D ∈ L1([0, T ],R+) such that, for a.e. t ∈ [0, T ] and
u ∈ C,

‖F (t, u)‖ = sup{|v(t)| : v(t) ∈ F (t, u)} ≤ D(t).
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(H6) There exists a function ϕ ∈ Π and a constant b > 0 such that

‖Φ(u)‖Ω ≤ ϕ(‖u‖Ω) + b,

where u ∈ Ω and Φ : Ω → Ω defined by

Φ(u)(t)

=
∑

0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]
+

∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr.

Lemma 3.1([7]). Let F : [0, T ] × C → Pcp(Rn) be a multi-valued map and the
assumptions (H4) and (H5) hold. Then F is lower semicontinuous type.

We say F is lower semicontinuous type if its Niemytzki operator

F(u) := {w ∈ L1([0, T ],Rn) : w(t) ∈ F (t, ut) for a.e. t ∈ [0, T ]}

is lower semicontinuous and nonempty closed and decomposable values.

Theorem 3.2. Assume that (H4)-(H6) hold. Then the problem (1.1)−(1.3) admits
at least one solution on [−τ, T ].

Proof. Note that (H4) and (H5) and Lemma 3.1 imply that F is lower semicontinu-
ous type. By Lemma 2.2, there exists a continuous function f : Ω → L1([0, T ],Rn)
such that f(u) ∈ F(u) for all u ∈ Ω.

We consider the corresponding problem

(3.1)
[
p(t)u′(t)−

∫ t

t−τ

q(s)u(s)ds
]′

= f(ut), a.e. t ∈ [0, T ] \ {t1, t2, · · · , tm},

(3.2) ∆u|t=tk
= Ik(u(t−k )), ∆u′|t=tk

= Jk(u(t−k )), k = 1, 2, · · · ,m,

(3.3) u(t) = a(t), t ∈ [−τ, 0], u′(0) = η.

It is clear that if u ∈ Ω is a solution of (3.1)-(3.3), then u is a solution to problem
(1.1)-(1.3). Transform the problem (3.1)-(3.3) into a fixed point problem. Consider
the operators Λ : Ω → Ω defined by

Λ(u)(t) = a(0) +
∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr +
∫ t

0

p−1(s)
∫ s

0

f(ur)drds

+
∫ t

0

p−1(r)drµ+
∑

0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]
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for t ∈ [0, T ] and Λ(u)(t) = a(t) for t ∈ [−τ, 0]. We shall prove that Λ fulfills the
assumptions of Lemma 2.3. It is clear that Λ is continuous by the continuities of
functions f , Ik and Jk. The rest of proof will be given by following two steps.

Step 1. Λ maps bounded sets into relatively compact sets in Ω.
Let Br = {u ∈ Ω : ‖u‖Ω ≤ r} be a bounded set in Ω and u ∈ Br, we obtain,

based upon the assumptions (H5) and (H6),

|Λ(u)(t)|

≤ |a(0)|+ p−1
0 T |µ|+ p−1

0 T

∫ T

0

D(s)ds

+

∣∣∣∣∣ ∑
0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]
+

∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr

∣∣∣∣∣
≤ |a(0)|+ p−1

0 T |µ|+ ϕ(‖u‖Ω) + b

≤ |a(0)|+ p−1
0 T |µ|+ r + b := M.

Thus, for each u ∈ Br, we have ‖Λ(u)‖Ω ≤M.
On the other hand, let Jr = max{|Jk(x)| : |x| ≤ r, k = 1, · · · ,m}. Then, for

τ1, τ2 ∈ [tk−1, tk],k = 1, 2, · · · ,m and u ∈ Br, we have

|Λ(u)(τ2)− Λ(u)(τ1)|

≤
∣∣∣∣∫ τ2

τ1

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr
∣∣∣∣ +

∣∣∣∣∫ τ2

τ1

p−1(s)
∫ s

0

f(ur)drds
∣∣∣∣

+
∣∣∣∣∫ τ2

τ1

p−1(r)drµ
∣∣∣∣ +

∣∣∣∣∣ ∑
τ1<tk<τ2

Ik(u(t−k ))

∣∣∣∣∣ +
p̃

p0
Jr|τ2 − τ1|.

As |τ2 − τ1| → 0, the right hand side of the above inequality tends to zero. The
case τ1, τ2 ∈ [−τ, 0] is similar. Thus for any sequence {hn} ⊂ Λ(Br). By above
arguments and Ascoli-Arzela theorem, we can choose a common subsequence {hnk

}
such that hnk

(t) uniformly converges to hj
0(t) as k tending to infinity for t ∈ [tj , tj+1],

j = 0, 1, 2, · · · ,m. Take

h0(t) =

{
a(t), t ∈ [−τ, 0]
hj

0(t), t ∈ (tj−1, tj ], j = 1, 2, · · · ,m+ 1

then h0 ∈ Ω. Thus the subsequence hnk
(t) uniformly converges to h0(t) on [−τ, T ].

This implies that Λ(Br) is a relatively compact set.

Step 2. The set E = {u ∈ Ω : ∃θ ∈ (0, 1), u = θΛ(u)} is bounded.
Indeed, let u ∈ E, then u(t) = θΛ(u)(t) for some θ ∈ (0, 1). Note that (H6), we

obtain

|u(t)| ≤ |a(0)|+ p−1
0 T‖D‖L1 + p−1

0 T |µ|+ θϕ(‖u‖Ω) + θb

≤ s+ ϕ(‖u‖Ω),



10 Yicheng Liu and Zhixiang Li

where s = |ϕ(0)|+ p−1
0 T‖D‖L1 + p−1

0 T |µ|+ b. Thus we have ‖u‖Ω ≤ s+ ϕ(‖u‖Ω).
Since ϕ(·) ∈ Π, we can achieve

ψ(‖u‖Ω) ≤ ‖u‖Ω − ϕ(‖u‖Ω) ≤ s.

Hence, from the monotonousness of ψ(·), we get ‖u‖Ω ≤ ψ−1(s) <∞. This implies
that the set E is bounded.

In view of Lemma 2.3, we deduce that Λ has a fixed point which is a solution
of the problem (1.1)-(1.3). �

Corollary 3.1. Assume that (H4) and (H5) holds. In addition, if one of following
conditions hold :

(A1) there exists ϕ ∈ Π such that ‖Φ(x)− Φ(y)‖Ω ≤ ϕ(‖x− y‖Ω).

(A2) there exist constants ck,c′k,dk and bk such that, for each x ∈ Rn,

|Ik(x)| ≤ ck|x|+bk, |Jk(x)| ≤ c′k|x|+dk,
m∑

k=1

(
ck +

T − tk
p0

p(tk)c′k

)
< 1−Tq

p0
.

Then the problem (1.1)− (1.3) admits at least one solution on [−τ, T ].

Proof. We only show the conditions (A1) and (A2) imply the assumption (H6)
respectively. First, if the condition (A1) holds, then there exists a function ϕ ∈ Π
such that

‖Φ(u)− Φ(v)‖Ω ≤ ϕ(‖u− v‖Ω),

where u, v ∈ Ω. Take v = 0 and b :=
∑m

k=1

(
|Ik(0)|+ T − tk

p0
p(tk)|Jk(0)|

)
≥

‖Φ(0)‖Ω, we obtain the assumption (H6) immediately.
If the condition (A2) holds, for each t ∈ [0, T ], we have

|Φ(u)(t)| =

∣∣∣∣∣ ∑
0<tk<t

[
Ik(u(t−k )) +

∫ t

tk

p(tk)
p(r)

drJk(u(t−k ))

]∣∣∣∣∣ + p−1
0 Tq‖u‖Ω

≤
m∑

k=1

(
ck|u(t−k )|+ T − tk

p0
p(tk)c′k|u(t−k )|

)

+
m∑

k=1

(
bk +

T − tk
p0

p(tk)dk

)
+ p−1

0 Tq‖u‖Ω

≤

[
m∑

k=1

(
ck +

T − tk
p0

p(tk)c′k

)
+ p−1

0 Tq

]
‖u‖Ω +

m∑
k=1

(
bk +

T − tk
p0

p(tk)dk

)
.

Thus

‖Φ(u)‖Ω ≤

[
m∑

k=1

(
ck +

T − tk
p0

p(tk)c′k

)
+ p−1

0 Tq

]
‖u‖Ω+

m∑
k=1

(
bk +

T − tk
p0

p(tk)dk

)
.
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By
∑m

k=1

(
ck +

T − tk
p0

p(tk)c′k

)
< 1 − Tq

p0
, we define a function as ϕ(r) =[∑m

k=1

(
ck +

T − tk
p0

p(tk)c′k

)
+ p−1

0 Tq

]
r for r > 0. Then ϕ ∈ Π fulfills the as-

sumption (H6). Thus it follows from Theorem 3.2 that the problem (1.1)-(1.3)
admits a solution in Ω. The proof of Corollary 3.1 is complete. �

From the above proof of Theorem 3.2, we immediately obtain the following
corollaries.

Corollary 3.2. Assume that (H4) and (H5) hold. Then the problem (1.1) − (1.3)
admits at least one solution on [−τ, T ], provided

|Ik(x)− Ik(y)| ≤ ck|x− y|, |Jk(x)− Jk(y)| ≤ c′k|x− y|, k = 1, 2, · · · ,m

and
m∑

k=1

(
ck +

T − tk
p0

p(tk)c′k

)
< 1− Tq

p0
.

Corollary 3.3. Assume that (H2),(H4) and (H5) hold. Then the problem (1.1)−
(1.3) admits at least one solution on [−τ, T ], provided Tq < p0.

Theorem 3.3. Assume that (H4),(H5) and the following condition hold :

(H7) 0 ≤ lim|x|→∞
|Ik(x)|
|x|

≤ ck, k = 1, · · · ,m ;

(H8) 0 ≤ lim|x|→∞
|Jk(x)|
|x|

≤ c′k, k = 1, · · · ,m.

Then the problem (1.1)− (1.3) admits at least one solution on [−τ, T ], provided

m∑
k=1

(
ck +

T − tk
p0

p(tk)c′k

)
< 1− Tq

p0
.

Proof. Firstly, we transform the problem (3.1)-(3.3) into a fixed point problem.
Consider the operators A : Ω → Ω defined by

A(u)(t) = a(0) +
∫ t

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr +
∫ t

0

p−1(s)
∫ s

0

f(ur)drd

+
∫ t

0

p−1(r)dr
[
p(0)η −

∫ 0

−τ

q(s)a(s)ds
]

+
∑

0<tk<t

[
Ik(u(tk)) +

∫ t

tk

p(tk)
p(r)

drJk(u(tk))

]
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for t ∈ [0, T ] and A(u)(t) = a(t) for t ∈ [−τ, 0]. We shall prove that A fulfills the
assumptions of Lemma 2.3. Based on the step 1 in proof of Theorem 3.2, we only
prove the set E = {u ∈ Ω : ∃λ ∈ (0, 1), u = λA(u)} is bounded. From conditions
(H7) and (H8), we conclude that there exist positive constants εk, ε

′
k, k = 1, · · · ,m

and K such that, for all |u| > K,

|Ik(u)| ≤ (ck + εk)|u|, |Jk(u)| ≤ (c′k + ε′k)|u|,

and
m∑

k=1

(
ck + εk +

T − tk
p0

p(tk)(c′k + ε′k)
)
< 1− Tq

p0
.

We prove E is bounded by contradiction. Suppose that there exists a sequence
un ∈ E such that ‖un‖Ω → +∞ as n → +∞. For any constant C1 > K and each
n, we define

Dn = {t : t ∈ [0, T ], |un(t)| ≤ C1}; L = max{|Ik(x)| : |x| ≤ C1};
L′ = max{|Jk(x)| : |x| ≤ C1}; Ln = max{|Ik(un(t))| : t ∈ Dn};
L′n = max{|Jk(un(t))| : t ∈ Dn}.

It is clear that Ln ≤ L and L′n ≤ L′ for each n. Then, for each n, we have

|un(t)| ≤ |a(0)|+

∣∣∣∣∣
∫ T

0

p−1(r)
∫ r

r−τ

q(s)u(s)dsdr

∣∣∣∣∣ +
∣∣∣∣∫ t

0

p−1(s)
∫ s

0

f(ur)drds
∣∣∣∣

+

∣∣∣∣∣
∫ T

0

p−1(r)drµ

∣∣∣∣∣ +

∣∣∣∣∣ ∑
0<tk<t

[
Ik(un(tk)) +

∫ t

tk

p(tk)
p(r)

drJk(un(tk))

]∣∣∣∣∣
≤ S +

Tq

p0
‖un‖Ω +

∑
tk∈Dn

|Ik(un(t−k ))|+
∑

tk∈[0,T ]\Dn

|Ik(un(t−k ))|

+
T p̃

p0

∑
tk∈Dn

|Jk(un(t−k ))|+
∑

tk∈[0,T ]\Dn

T − tk
p0

p(tk)|Jk(un(t−k ))|

≤ S +mL+
T p̃

p0
mL′ +

∑
tk∈[0,T ]\Dn

|Ik(un(t−k ))|

+
T − tk
p0

p(tk)
∑

tk∈[0,T ]\Dn

|Jk(un(t−k ))|+ Tq

p0
‖un‖Ω

≤ S +mL+
T p̃

p0
mL′ +

[
m∑

k=1

(
ck + εk +

T − tk
p0

p(tk)(c′k + ε′k)
)

+
Tq

p0

]
‖un‖Ω,

where S = |a(0)|+

∣∣∣∣∣
∫ T

0

p−1(r)dr
[
p(0)η −

∫ 0

−τ

q(s)a(s)ds
]∣∣∣∣∣+ p−1

0 T‖D‖L1 . Thus we
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have

‖un‖Ω ≤ S+mL+
T p̃

p0
mL′+

[
m∑

k=1

(
ck + εk +

T − tk
p0

p(tk)(c′k + ε′k)
)

+
Tq

p0

]
‖un‖Ω.

This implies

‖un‖Ω ≤
S +mL+

T p̃

p0
mL′

1−
[∑m

k=1

(
ck + εk +

T − tk
p0

p(tk)(c′k + ε′k)
)

+
Tq

p0

] <∞.

Since ‖un‖Ω → +∞ as n goes to infinity, we arrive to a contradiction. Thus the
proof of boundedness of set E is complete. The proof of Theorem 3.3 is complete.
�

Corollary 3.4. Assume that (H4) and (H5) hold. In addition, if one of following
conditions holds :

(A3) lim|x|→∞
|Ik(x)|
|x|

= 0, lim|x|→∞
|Jk(x)|
|x|

= 0, k = 1, · · · ,m and Tq < p0.

(A4) There exist constants ck, c′k,bk, b
′
k ∈ R and αk, α

′
k ∈ [0, 1) such that, for each

x ∈ Rn,

|Ik(x)| ≤ ck|x|αk + bk, |Jk(x)| ≤ c′k|x|α
′
k + b′k and Tq < p0.

Then the problem (1.1)− (1.3) admits at least one solution on [−τ, T ].

Remark 3.2. (1) Let q(s) = 0 in the problems (1.1)-(1.3), then the Corollary 3.1
and Corollary 3.4 deduce to [6, Theorem 3.2] and [6, Theorem 3.3] respectively.
(2) Impulsive differential equations and inclusions under the conditions (H2),(A2)−
(A4) have been widely studied by many authors, see for instance [1], [2], [6], [12].
Obviously, (A2) and (H2) are special cases of (H6); (A3) and (A4) are special cases
of (H7) and (H8).

Acknowledgment. The authors are grateful to the reviewers for their valuable
comments.
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