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BOUNDEDNESS IN THE NONLINEAR FUNCTIONAL

DIFFERENTIAL SYSTEMS

Sang Il Choi and Yoon Hoe Goo

Abstract. In this paper, we investigate bounds for solutions of the non-
linear functional differential systems.

1. Introduction

Pachpatte [14, 15] investigated the stability, boundedness, and the asymp-
totic behavior of the solutions of perturbed nonlinear systems under some suit-
able conditions on the perturbation term g and on the operator T . Goo [10]
studied the stability and boundedness of the solutions of perturbed nonlin-
ear systems under some suitable conditions. In this paper, under conditions
stronger than Goo [10] we examined the bounded result of the solutions of
perturbed nonlinear systems.

Pinto [16, 17] introduced the notion of h-stability (hS) which is an impor-
tant extension of exponential asymptotic stability. He introduced hS with the
intention of obtaining results about stability for a weakly stable system (at
least, weaker than those given exponential asymptotic stability) under some
perturbations. That is, Pinto extended the study of exponential asymptyotic
stability to a variety of reasonable systems called h-systems. Choi, Ryu [5]
and Choi, Koo, and Ryu [4] investigated bounds of solutions for nonlinear per-
turbed systems. Also, Goo [7, 8, 9, 10] and Goo et al. [2, 3, 11] investigated
boundedness of solutions for nonlinear perturbed systems.

The aim of this paper is to obtain some results on boundedness of the non-
linear functional differential systems under suitable conditions on perturbed
term. To do this, we need some integral inequalities.

2. Preliminaries

We consider the nonlinear nonautonomous differential system

(2.1) x′(t) = f(t, x(t)), x(t0) = x0,
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where f ∈ C(R+ × R
n,Rn), R

+ = [0,∞) and R
n is the Euclidean n-space.

We assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on
R

+×R
n and f(t, 0) = 0. Also, we consider the perturbed functional differential

systems of (2.1)

(2.2) y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds+ h(t, y(t), T y(t)), y(t0) = y0,

where g ∈ C(R+×R
n,Rn), h ∈ C[R+×R

n×R
n,Rn] , g(t, 0) = 0, h(t, 0, 0) = 0,

and T : C(R+,Rn) → C(R+,Rn) is a continuous operator. The symbol | · | will
be used to denote any convenient vector norm in R

n.
Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) = x0,

existing on [t0,∞). Then we can consider the associated variational systems
around the zero solution of (2.1) and around x(t), respectively,

(2.3) v′(t) = fx(t, 0)v(t), v(t0) = v0

and

(2.4) z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
We recall some notions of h-stability [16].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called
an h-system if there exist a constant c ≥ 1 and a positive continuous function
h on R

+ such that
|x(t)| ≤ c |x0|h(t)h(t0)

−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t) ).

Definition 2.2. The system (2.1) (the zero solution x = 0 of (2.1)) is called
(hS) h-stable if there exists δ > 0 such that (2.1) is an h-system for |x0| ≤ δ
and h is bounded.

Let M denote the set of all n× n continuous matrices A(t) defined on R
+

and N be the subset of M consisting of those nonsingular matrices S(t) that
are of class C1 with the property that S(t) and S−1(t) are bounded. The notion
of t∞-similarity in M was introduced by Conti [6].

Definition 2.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if
there exists an n× n matrix F (t) absolutely integrable over R+, i.e.,

∫

∞

0

|F (t)|dt < ∞

such that

(2.5) Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)
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for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n× n
continuous matrices on R

+, and it preserves some stability concepts [6, 12].
In this paper, we investigate bounds for solutions of the nonlinear differential

systems using the notion of t∞-similarity.
We give some related properties that we need in the sequel.

Lemma 2.4 ([17]). The linear system

(2.6) x′ = A(t)x, x(t0) = x0,

where A(t) is an n×n continuous matrix, is an h-system (respectively h-stable)
if and only if there exist c ≥ 1 and a positive continuous (respectively bounded)
function h defined on R

+ such that

(2.7) |φ(t, t0)| ≤ c h(t)h(t0)
−1

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.6).

We need Alekseev formula to compare between the solutions of (2.1) and
the solutions of perturbed nonlinear system

(2.8) y′ = f(t, y) + g(t, y), y(t0) = y0,

where g ∈ C(R+ × R
n,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the

solution of (2.8) passing through the point (t0, y0) in R
+ × R

n.
The following is a generalization to nonlinear system of the variation of

constants formula due to Alekseev [1].

Lemma 2.5. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1)
and (2.8), respectively. If y0 ∈ R

n, then for all t such that x(t, t0, y0) ∈ R
n,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.6 ([5]). If the zero solution of (2.1) is hS, then the zero solution

of (2.3) is hS.

Theorem 2.7 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (2.3)
is hS, then the solution z = 0 of (2.4) is hS.

Lemma 2.8 (Bihari-type inequality). Let u, λ ∈ C(R+), w ∈ C((0,∞)) and

w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c+

∫

t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[

W (c) +

∫

t

t0

λ(s)ds
]

, t0 ≤ t < b1,
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where W (u) =
∫ u

u0

ds

w(s) , W
−1(u) is the inverse of W (u), and

b1 = sup
{

t ≥ t0 : W (c) +

∫

t

t0

λ(s)ds ∈ domW−1
}

.

Lemma 2.9 ([3]). Let u, λ1, λ2, λ3, w ∈ C(R+), w(u) be nondecreasing in u
and u ≤ w(u). If for some c > 0,

u(t) ≤ c+

∫

t

t0

λ1(s)u(s)ds+

∫

t

t0

λ2(s)

∫

s

t0

λ3(τ)w(u(τ))dτds, t ≥ t0 ≥ 0,

then

u(t) ≤ W−1
[

W (c) +

∫

t

t0

(λ1(s) + λ2(s)

∫

s

t0

λ3(τ)dτ)ds
]

, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}

.

Lemma 2.10 ([2]). Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c+

∫

t

t0

λ1(s)w(u(s))ds +

∫

t

t0

λ2(s)

∫

s

t0

λ3(τ)w(u(τ))dτds

+

∫

t

t0

λ4(s)

∫

s

t0

λ5(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[

W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ + λ4(s)

∫ s

t0

λ5(τ)dτ)ds
]

,

t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ

+ λ4(s)

∫

s

t0

λ5(τ)dτ)ds ∈ domW−1
}

.

We obtain the following corollary from Lemma 2.10.

Corollary 2.11. Let u, λ1, λ2, λ3,∈ C(R+), w ∈ C((0,∞)) and w(u) be non-

decreasing in u. Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds +

∫ t

t0

λ2(s)

∫ s

t0

λ3(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[

W (c) +

∫

t

t0

(λ1(s) + λ2(s)

∫

s

t0

λ3(τ)dτ)ds
]

, t0 ≤ t < b1,
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where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}

.

3. Main results

In this section, we investigate bounds for the nonlinear functional differential
systems following [10].

We need the following lemma to prove Theorem 3.2.

Lemma 3.1. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞)), and

w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and

0 ≤ t0 ≤ t,

u(t) ≤ c+

∫

t

t0

λ1(s)w(u(s))ds +

∫

t

t0

λ2(s)

∫

s

t0

(λ3(τ)u(τ)

+ λ4(τ)

∫ τ

t0

λ5(r)w(u(r))dr)dτds +

∫ t

t0

λ6(s)

∫ s

t0

λ7(τ)w(u(τ))dτds.(3.1)

Then

u(t) ≤ W−1
[

W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫

s

t0

λ7(τ)dτ)ds
]

, t0 ≤ t < b1,(3.2)

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫

s

t0

λ7(τ)dτ)ds ∈ domW−1
}

.

Proof. Define a function z(t) by the right member of (3.1). Then, we have
z(t0) = c and

z′(t) = λ1(t)w(u(t)) + λ2(t)

∫ t

t0

(λ3(s)u(s) + λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτ)ds

+ λ6(t)

∫

t

t0

λ7(s)w(u(s))ds

≤ (λ1(t) + λ2(t)

∫

t

t0

(λ3(s) + λ4(s)

∫

s

t0

λ5(τ)dτ)ds

+ λ6(t)

∫ t

t0

λ7(s)ds)w(z(t)), t ≥ t0.
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Since z(t) and w(u) are nondecreasing, u ≤ w(u), and u(t) ≤ z(t). Therefore,
by integrating on [t0, t], the function z satisfies

z(t) ≤ c+

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫

s

t0

λ7(τ)dτ)w(z(s)))ds.(3.3)

It follows from Lemma 2.8 that (3.3) yields the estimate (3.2). �

To obtain the bounded result, the following assumptions are needed:
(H1) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ

for some constant δ > 0.
(H2) The solution x = 0 of (1.1) is hS with the increasing function h.
(H3) w(u) is nondecreasing in u such that u ≤ w(u) and 1

v
w(u) ≤ w(u

v
) for

some v > 0.

Theorem 3.2. Let a, b, c, k, q, u, w ∈ C(R+). Suppose that (H1), (H2), and

(H3) hold, and g in (2.2) satisfies

(3.4) |g(t, y(t))| ≤ a(t)|y(t)|+ b(t)

∫

t

t0

k(s)w(|y(s)|)ds

and

(3.5)

|h(t, y(t), T y(t))| ≤ c(t)(w(|y(t)|) + |Ty(t)|),

|Ty(t)| ≤

∫

t

t0

q(s)w(|y(s)|)ds, t ≥ t0 ≥ 0,

where a, b, c, k, q ∈ L1(R
+). Then, any solution y(t) = y(t, t0, y0) of (2.2) is

bounded on [t0,∞) and

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫ t

t0

(c(s) +

∫ s

t0

(a(τ)

+ b(τ)

∫

τ

t0

k(r)dr)dτ + c(s)

∫

s

t0

q(τ)dτ)ds
]

,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫

t

t0

(c(s) +

∫

s

t0

(a(τ) + b(τ)

∫

τ

t0

k(r)dr)dτ

+ c(s)

∫ s

t0

q(τ)dτ)ds ∈ domW−1
}

.

Proof. Using the nonlinear variation of constants formula of Alekseev [1], any
solutions of (2.1) and (2.2) with the same initial values are represented by
(3.6)

y(t, t0, y0) = x(t, t0, y0)+

∫

t

t0

Φ(t, s, y(s))(

∫

s

t0

g(τ, y(τ))dτ+h(s, y(s), T y(s)))ds.
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By Theorem 2.6, since the solution x = 0 of (2.1) is hS, the solution v = 0 of
(2.3) is hS. Therefore from (H1) and by Theorem 2.7, the solution z = 0 of
(2.4) is hS. By Lemma 2.4, the hS condition of x = 0 of (2.1), (3.4), (3.5), and
(3.6), we have

|y(t)| ≤ |x(t)|+

∫ t

t0

|Φ(t, s, y(s))|(

∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)
−1

(

∫ s

t0

(a(τ)|y(τ)|

+ b(τ)

∫ τ

t0

k(r)w(|y(r)|)dr)dτ + c(s)(w(|y(s)|)

+

∫

s

t0

q(τ)w(|y(τ)|)dτ)
)

ds.

It follows from (H2) and (H3) that

≤ c1|y0|h(t)h(t0)
−1 +

∫

t

t0

c2h(t)
(

c(s)w(
|y(s)|

h(s)
)

+

∫ s

t0

(a(τ)
|y(τ)|

h(τ)
+ b(τ)

∫ τ

t0

k(r)w(
|y(r)|

h(r)
)dr)dτ

+ c(s)

∫

s

t0

q(τ)w(
|y(τ)|

h(τ)
)dτ

)

ds.

Set u(t) = |y(t)||h(t)|−1. Then, from Lemma 3.1, we have

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫ t

t0

(c(s) +

∫ s

t0

(a(τ)

+ b(τ)

∫ τ

t0

k(r)dr)dτ + c(s)

∫ s

t0

q(τ)dτ)ds
]

,

where c = c1|y0|h(t0)−1. From the above estimation, we obtain the desired
result. Thus, the theorem is proved. �

Remark 3.3. Letting c(t) = 0 in Theorem 3.2, we obtain the similar result as
that of Theorem 3.4 in [7].

Theorem 3.4. Let a, b, c, k, q, u, w ∈ C(R+). Suppose that (H1), (H2), and

(H3) hold, and g in (2.2) satisfies

(3.7)

∫ s

t0

|g(τ, y(τ))|dτ ≤ a(s)w(|y(s))| + b(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ

and

(3.8)

|h(s, y(s), T y(s))| ≤ c(s)(w(|y(s)|) + |Ty(s)|),

|Ty(s)| ≤

∫

s

t0

q(τ)w(|y(τ)|)dτ, s ≥ t0 ≥ 0,
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where a, b, c, k, q ∈ L1(R
+). Then, any solution y(t) = y(t, t0, y0) of (2.2) is

bounded on [t0,∞) and it satisfies

|y(t)|≤ h(t)W−1
[

W (c)+c2

∫

t

t0

(a(s)+c(s)+b(s)

∫

s

t0

k(τ)dτ+c(s)

∫

s

t0

q(τ)dτ)ds
]

,

t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.8 and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ

+ c(s)

∫ s

t0

q(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and
(2.2), respectively. By the same argument as in the proof in Theorem 3.2, the
solution z = 0 of (2.4) is hS. Applying Lemma 2.4, (3.6), (3.7), and (3.8), we
have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫

t

t0

c2h(t)h(s)
−1

(

(a(s)w(|y(s)|)

+ b(s)

∫

s

t0

k(τ)w(|y(τ)|)dτ + c(s)(w(|y(s)|) +

∫

s

t0

q(τ)w(|y(τ)|)dτ)
)

ds.

By the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫

t

t0

c2h(t)
(

(a(s) + c(s))w(
|y(s)|

h(s)
)

+ b(s)

∫ s

t0

k(τ)w(
|y(τ)|

h(τ)
)dτ + c(s)

∫ s

t0

q(τ)w(
|y(τ)|

h(τ)
)dτ

)

ds.

Define u(t) = |y(t)||h(t)|−1. Then, by Lemma 2.10, we have

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫

t

t0

(a(s) + c(s) + b(s)

∫

s

t0

k(τ)dτ

+ c(s)

∫ s

t0

q(τ)dτ
]

, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result since
the function h is bounded. Hence, the proof is complete. �

We obtain the following corollary using Corollary 2.11.

Corollary 3.5. Let a, b, k, q, u, w ∈ C(R+). Suppose that (H1), (H2), and (H3)
hold, and g in (2.2) satisfies the condition (3.7) of Theorem 3.4 and

|h(s, y(s), T y(s))| ≤ b(s)(w(|y(s)|) + |Ty(s)|),

|Ty(s)| ≤

∫ s

t0

q(τ)w(|y(τ)|)dτ, s ≥ t0 ≥ 0,
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where a, b, k, q ∈ L1(R
+). Then, any solution y(t) = y(t, t0, y0) of (2.2) is

bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫ t

t0

(a(s) + b(s) + b(s)

∫ s

t0

(k(τ) + q(τ)dτ)ds
]

,

t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + b(s)

+ b(s)

∫

s

t0

(k(τ) + q(τ))dτ)ds ∈ domW−1
}

.

Remark 3.6. Letting c(s) = 0 in Theorem 3.4, we obtain the same result as
that of Theorem 3.2 in [7].

We need the following lemma for the proof of Theorem 3.8.

Lemma 3.7. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that, for some c ≥ 0, we have

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)
(

∫ s

t0

(λ3(τ)w(u(τ))

+ λ4(τ)

∫

τ

t0

λ5(s)u(r)dr)dτ + λ6(s)

∫

s

t0

λ7(τ)u(τ)dτ
)

ds, t ≥ t0.(3.9)

Then

u(t) ≤ W−1
[

W (c) +

∫

t

t0

[λ1(s) + λ2(s)
(

∫

s

t0

(λ3(τ)

+ λ4(τ)

∫ τ

t0

λ5(r)dr)dτ + λ6(s)

∫ s

t0

λ7(τ)dτ
)

]ds
]

, t ≥ t0.(3.10)

Proof. Define a function v(t) by the right member of (3.9). Then, we have
v(t0) = c and

v′(t) = λ1(t)u(t) + λ2(t)
(

∫ t

t0

(λ3(s)w(u(s)) + λ4(s)

∫ s

t0

λ5(τ)u(τ)dτ)ds

+ λ6(t)

∫

t

t0

λ7(s)u(s)ds
)

≤
[

λ1(t) + λ2(t)
(

∫

t

t0

(λ3(s) + λ4(s)

∫

s

t0

λ5(τ)dτ)ds

+ λ6(t)

∫ t

t0

λ7(s)ds
)]

w(v(t)), t ≥ t0.
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Since v(t) is nondecreasing, u ≤ w(u), and u(t) ≤ v(t). Now, by integrating
the above inequality on [t0, t] and v(t0) = c, we have

v(t) ≤ c+

∫

t

t0

(

λ1(s) + λ2(s)

∫

s

t0

(λ3(τ) + λ4(τ)

∫

τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫ s

t0

λ7(τ)dτ
)

w(z(s))ds.(3.11)

Thus, (3.11) yields the estimate (3.10). �

Theorem 3.8. Let a, b, c, k, q, u, w ∈ C(R+). Suppose that (H1), (H2), and

(H3) hold, and g in (2.2) satisfies

(3.12) |g(t, y(t))| ≤ a(t)w(|y(t)|) + b(t)

∫

t

t0

k(s)|y(s)|ds

and

(3.13)

|h(t, y(t), T y(t))| ≤ c(t)(|y(t)|+ |Ty(t)|),

|Ty(t)| ≤

∫ t

t0

q(s)|y(s)|ds, t ≥ t0 ≥ 0,

where a, b, c, k, q ∈ L1(R
+). Then, any solution y(t) = y(t, t0, y0) of (2.2) is

bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+ c(s)

∫

s

t0

q(τ)dτ ]ds
]

,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+ c(s)

∫

s

t0

q(τ)dτ ]ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and
(2.2), respectively. By the same argument as in the proof in Theorem 3.2, the
solution z = 0 of (2.4) is hS. Applying the nonlinear variation of constants
formula (3.6), the hS condition of x = 0 of (2.1), (3.12), and (3.13), we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫

t

t0

c2h(t)h(s)
−1

(

∫

s

t0

(a(τ)w(|y(τ)|)

+ b(τ)

∫ τ

t0

k(r)|y(r)|dr)dτ + c(s)(|y(s)| +

∫ s

t0

q(τ)|y(τ)|dτ)
)

ds.
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Using (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫

t

t0

c2h(t)
(

c(s)
|y(s)|

h(s)

+

∫

s

t0

(a(τ)w(
|y(τ)|

h(τ)
) + b(τ)

∫

τ

t0

k(r)
|y(r)|

h(r)
dr)dτ

+ c(s)

∫ s

t0

q(τ)
|y(τ)|

h(τ)
dτ

)

ds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 3.7, we have

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+ c(s)

∫

s

t0

q(τ)dτ ]ds
]

,

where c = c1|y0|h(t0)
−1. The above estimation yields the desired result since

the function h is bounded, and so the proof is complete. �

Remark 3.9. Letting c(t) = 0 in Theorem 3.8, we obtain the similar result as
that of Theorem 3.7 in [9].

Theorem 3.10. Let a, b, c, q ∈ C(R+). Suppose that (H1), (H2), and (H3)
hold, and g in (2.2) satisfies

(3.14)

∫

t

t0

|g(s, y(s))|ds ≤ a(t)|y(t)|,

|h(t, y(t), T y(t))| ≤ b(t)|y(t)|+ c(t)|Ty(t)|

and

(3.15) |Ty(t)| ≤

∫

t

t0

q(s)w(|y(s)|)ds,

where a, b, c, q ∈ L1(R
+). Then, any solution y(t) = y(t, t0, y0) of (2.2) is

bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫

t

t0

(a(s) + b(s) + c(s)

∫

s

t0

q(τ)dτ)ds
]

, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + b(s) + c(s)

∫ s

t0

q(τ)dτ)ds ∈ domW−1
}

.

Proof. It is well known that the solution of (1.2) is represented by the integral
equation (3.6). By the same argument as in the proof in Theorem 3.2, the
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solution z = 0 of (2.4) is hS. Applying Lemma 2.4, the hS condition of x = 0
of (2.1), (3.7), (3.14), and (3.15), we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫

t

t0

c2h(t)h(s)
−1

(

(a(s) + b(s))|y(s)|

+ c(s)

∫

s

t0

q(τ)w(|y(τ)|)dτ
)

ds.

Using the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫

t

t0

c2h(t)
(

(a(s) + b(s))
|y(s)|

h(s)

+ c(s)

∫ s

t0

q(τ)w(
|y(τ)|

h(τ)
)dτ

)

ds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 2.9, we have

|y(t)| ≤ h(t)W−1
[

W (c) + c2

∫

t

t0

(a(s) + b(s) + c(s)

∫

s

t0

q(τ)dτ)ds
]

,

where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (2.2) is
bounded on [t0,∞). This completes the proof. �

Remark 3.11. Letting w(u) = u and b(t) = c(t) = 0 in Theorem 3.10, we obtain
the similar result as that of Theorem 3.3 in [11].
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