• Title/Summary/Keyword: fully-differential 회로

Search Result 43, Processing Time 0.026 seconds

A New Unsymmetrical Zinc Phthalocyanine as Photosensitizers for Dye-sensitized Solar Cells

  • Zhang, Dan;Zhang, Xue-Jun;Zhang, Lei;Mao, Li-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1225-1230
    • /
    • 2012
  • A new unsymmetrical zinc phthalocyanine has been designed and synthesized based on the 'push-pull' and extended ${\pi}$-conjugation concept for the dye-sensitized solar cells. Three tert-butoxy groups, which act as electron releasing ('push'), enhance the solubility of phthalocyanine in common organic solvents and reduce the aggregation. Hydroxy substituted 9,10-anthraquinones act as electron acceptors ('pull') for the study of photoinduced electron transfer processes as well as grafting onto nanocrystalline $TiO_2$. The new unsymmetrical zinc phthalocyanine was fully characterized by FTIR, UV-vis, $^1H$ NMR, cyclic voltammetry and differential pulse voltammetry. The new sensitizer was tested in dye-sensitized solar cells, and gave a better performance.

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

Regulated Drain Detection and Its Differential PLL Application to Compensate Processes (드레인 정규화 감지회로를 이용한 차동 PLL 설계 및 차동 공정보상기법)

  • Suh, Benjamin;Cho, Hyun-Mook
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.40-46
    • /
    • 2005
  • A process variation compensation method called 'regulated drain detection' is proposed. This paper also shows the how this newly invented method is applied to a typical differential PLL. The proposed RDD(regulated drain detection) and its PLL application has been designed and tested in a $0.18{\mu}m$ 1-poly 3-metal plain digital process so that its stable performance and higher yield can be proven. The implemented PLL aimed to the operation range of 80MHz - 240MHz and the total die size is only $0.18{\mu}m$ including the internal loop filter. The tracking jitter characteristics is measured to less than 150 peak-to-peak under l.8V supply rail.

  • PDF

A Fully Integrated Ku-band CMOS VCO with Wide Frequency Tuning (Ku-밴드 광대역 CMOS 전압 제어 발진기)

  • Kim, Young Gi;Hwang, Jae Yeon;Yoon, Jong Deok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.83-89
    • /
    • 2014
  • A ku-band complementary cross-coupled differential voltage controlled oscillator is designed, measured and fabricated using $0.18-{\mu}m$ CMOS technology. A 2.4GHz of very wide frequency tuning at oscillating frequency of 14.5GHz is achieved with presented circuit topology and MOS varactors. Measurement results show -1.66dBm output power with 18mA DC current drive from 3.3V power supply. When 5V is applied, the output power is increased to 0.84dBm with 47mA DC current. -74.5dBc/Hz phase noise at 100kHz offset is measured. The die area is $1.02mm{\times}0.66mm$.

Integral C-V Converter for a Fully Differential Capacitive Pressure Sensor (완전차동용량형 압력센서를 위한 적분형 C-V 변환기)

  • Lee, Dae-Sung;Kim, Kyu-Chull;Park, Hyo-Derk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.62-71
    • /
    • 2002
  • An intergral C-V converter is proposed to solve the nonlinearity problem of capacitive pressure sensors. The integral C-V converter consists of a switched-capacitor integrator and a switched-capacitor differential amplifier. It converts the sensor capacitance change which is inversely proportional to an applied pressure into a linear voltage output. Various PSPICE simulations prove that the convertor has excellent characteristics, such as low nonlinearity less than 0.01%/FS and low sensitivity to parallel offset capacitance and parasitic capacitance for the displacement range of sensor diaphragm set to 0 ${\sim}$ 90% of the initial distance between the electrodes in the simulation. We also show that the offset compensation and the gain trimming are easily achieved with the integral C-V converter.

The Third-Order Multibit Sigma-Delta Modulator with Data Weighted Averaging (Data Weighted Averaging을 이용한 3차 멀티비트 Sigma-Delta 변조기)

  • 김선홍;최석우;조성익;김동용
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.107-114
    • /
    • 2004
  • This paper presents block and timing diagrams of the DWA(Data Weighted Averaging) to optimize a feedback time delay of the sigma-delta modulator. Through the MATLAB modeling, the optimized coefficients of the integrators are obtained to design the modulator. The fully differential SC integrators, feedback DAC, 9-level quantizer, and DWA are designed by considering the nonideal characteristics of the modulator. The designed third-order multibit modulator is fabricated in a 0.35${\mu}{\textrm}{m}$ CMOS process. The modulator achieves 75dB signal-to-noise ratio and 74dB dynamic range at 1.2Vp-p 825kHz input signal and 52.8MHE sampling frequency.

Proteome Analysis for 3T3-L1 Adipocyte Differentiation

  • Rahman, Atiar;Kumar, Suresh G.;Lee, Sung-Hak;Hyun, Sun-Hwang;Kim, Hyun-Ah;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1895-1902
    • /
    • 2008
  • Adipose tissue is an important endocrine organ involved in the control of whole body energy homeostasis and insulin sensitivity. Considering the increased incidence of obesity and obesity-related disorders, including diabetes, it is important to understand thoroughly the process of adipocyte differentiation and its control. Therefore, we performed a differential proteome mapping strategy using two-dimensional gel electrophoresis combined with peptide mass fingerprinting to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3-L1 pre-adipocytes in response to an adipogenic cocktail. In the current study, we identified 46 differentially expressed proteins, 6 of which have not been addressed previously in 3T3-L1 cell differentiation. Notably, we found that phosphoribosyl pyrophosphate synthetase (PRPS), a regulator of cell proliferation, was preferentially expressed in pre-adipocytes than in fully differentiated adipocytes. In conclusion, our results provide valuable information for further understanding of the adipogenic process.

Linear cascode current-mode integrator (선형 캐스코드 전류모드 적분기)

  • Kim, Byoung-Wook;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1477-1483
    • /
    • 2013
  • This paper proposes a low-voltage current-mode integrator for a continuous-time current-mode baseband channel selection filter. The low-voltage current-mode linear cascode integrator is introduced to offer advantages of high current gain and improved unity-gain frequency. The proposed current-mode integrator has fully differential input and output structure consisting of CMOS complementary circuit. Additional cascode transistors which are operated in linear region are inserted for bias to achieve the low-voltage feature. Frequency range is also controllable by selecting proper bias voltage. From simulation results, it can be noticed that the implemented integrator achieves design specification such as low-voltage operation, current gain, and unity gain frequency.

Design of a CMOS x-ray line scan sensors (CMOS x-ray 라인 스캔 센서 설계)

  • Heo, Chang-Won;Jang, Ji-Hye;Jin, Liyan;Heo, Sung-Kyn;Kim, Tae-Woo;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2369-2379
    • /
    • 2013
  • A CMOS x-ray line scan sensor which is used in both medical imaging and non-destructive diagnosis is designed. It has a pixel array of 512 columns ${\times}$ 4 rows and a built-in DC-DC converter. The pixel circuit is newly proposed to have three binning modes such as no binning, $2{\times}2$ binning, and $4{\times}4$ binning in order to select one of pixel sizes of $100{\mu}m$, $200{\mu}m$, and $400{\mu}m$. It is designed to output a fully differential image signal which is insensitive to power supply and input common mode noises. The layout size of the designed line scan sensor with a $0.18{\mu}m$ x-ray CMOS image sensor process is $51,304{\mu}m{\times}5,945{\mu}m$.

A Design of Low-Power Wideband Bipolar Current Conveyor (CCII) and Its Application to Universal Instrumentation Amplifiers (저전력 광대역 바이폴라 전류 콘베이어(CCII)와 이를 이용한 유니버셜 계측 증폭기의 설계)

    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.143-152
    • /
    • 2004
  • A novel low-power wideband bipolar second-generation current conveyors(CCIIs) and its application to universal instrumentation amplifier(UIA) were proposed. The CCII for accuracy voltage or current transfer characteristics and low current input impedance adopted adaptive current bias circuit into conventional class Ab CCII. The UIA consists of only two CCIIs and four resistors. Three instrumentation function of the UIA can be realized by selection of input signals and resistors. The simulation results show that the CCII has input impedance of 2.0$\Omega$ and the voltage gain of 60㏈ for frequency range from 0 to 50KHz when used as a voltage amplifier. The CCII has also good characteristics of current follower for current range from -100㎃ to +100㎃. The simulation results show that the UIA has three instrumentation amplifier functions without resistor matching. The UIA has the voltage gain of 40㏈ for frequency range from 0 to 100KHz when used as a fully-differential instrumentation amplifier. The power dissipations of the CCII and the UIA are 0.75㎽ and 1.5㎽ at supply voltage of $\pm$2.5V, respectively.