• 제목/요약/키워드: fractional optimization problem

검색결과 35건 처리시간 0.03초

OPTIMALITY CONDITIONS AND DUALITY IN FRACTIONAL ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee;Kim, Gwi Soo
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.345-349
    • /
    • 2015
  • In this paper, we consider a fractional robust optimization problem (FP) and give necessary optimality theorems for (FP). Establishing a nonfractional optimization problem (NFP) equivalent to (FP), we formulate a Mond-Weir type dual problem for (FP) and prove duality theorems for (FP).

ON OPTIMALITY AND DUALITY FOR GENERALIZED NONDIFFERENTIABLE FRACTIONAL OPTIMIZATION PROBLEMS

  • Kim, Moon-Hee;Kim, Gwi-Soo
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.139-147
    • /
    • 2010
  • A generalized nondifferentiable fractional optimization problem (GFP), which consists of a maximum objective function defined by finite fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions, is considered. Recently, Kim et al. [Journal of Optimization Theory and Applications 129 (2006), no. 1, 131-146] proved optimality theorems and duality theorems for a nondifferentiable multiobjective fractional programming problem (MFP), which consists of a vector-valued function whose components are fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions. In fact if $\overline{x}$ is a solution of (GFP), then $\overline{x}$ is a weakly efficient solution of (MFP), but the converse may not be true. So, it seems to be not trivial that we apply the approach of Kim et al. to (GFP). However, modifying their approach, we obtain optimality conditions and duality results for (GFP).

SOLUTION SETS OF SECOND-ORDER CONE LINEAR FRACTIONAL OPTIMIZATION PROBLEMS

  • Kim, Gwi Soo;Kim, Moon Hee;Lee, Gue Myung
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.65-70
    • /
    • 2021
  • We characterize the solution set for a second-order cone linear fractional optimization problem (P). We present sequential Lagrange multiplier characterizations of the solution set for the problem (P) in terms of sequential Lagrange multipliers of a known solution of (P).

NONLINEAR FRACTIONAL PROGRAMMING PROBLEM WITH INEXACT PARAMETER

  • Bhurjee, A.K.;Panda, G.
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.853-867
    • /
    • 2013
  • In this paper a methodology is developed to solve a nonlinear fractional programming problem, whose objective function and constraints are interval valued functions. Interval valued convex fractional programming problem is studied. This model is transformed to a general convex programming problem and relation between the original problem and the transformed problem is established. These theoretical developments are illustrated through a numerical example.

Quasiconcave Bilevel Programming Problem

  • Arora S.R.;Gaur Anuradha
    • Management Science and Financial Engineering
    • /
    • 제12권1호
    • /
    • pp.113-125
    • /
    • 2006
  • Bilevel programming problem is a two-stage optimization problem where the constraint region of the first level problem is implicitly determined by another optimization problem. In this paper we consider the bilevel quadratic/linear fractional programming problem in which the objective function of the first level is quasiconcave, the objective function of the second level is linear fractional and the feasible region is a convex polyhedron. Considering the relationship between feasible solutions to the problem and bases of the coefficient submatrix associated to variables of the second level, an enumerative algorithm is proposed which finds a global optimum to the problem.

A NONRANDOM VARIATIONAL APPROACH TO STOCHASTIC LINEAR QUADRATIC GAUSSIAN OPTIMIZATION INVOLVING FRACTIONAL NOISES (FLQG)

  • JUMARIE GUY
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.19-32
    • /
    • 2005
  • It is shown that the problem of minimizing (maximizing) a quadratic cost functional (quadratic gain functional) given the dynamics dx = (fx + gu)dt + hdb(t, a) where b(t, a) is a fractional Brownian motion of order a, 0 < 2a < 1, can be solved completely (and meaningfully!) by using the dynamical equations of the moments of x(t). The key is to use fractional Taylor's series to obtain a relation between differential and differential of fractional order.