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OPTIMALITY AND DUALITY FOR NONSMOOTH
FRACTIONAL ROBUST OPTIMIZATION PROBLEMS WITH
(V, p)-INVEXITY

MoonN HeEe Kim

ABSTRACT. We establish necessary and sufficient optimality conditions
for a nonsmooth fractional robust optimization programming problems.
Moreover, we prove the weak and strong duality theorems under (V, p)-
invexity assumption.

1. Introduction

Let X be a Banach space, and let functions f;,g; : X = R,i=1,--- ,p,j =
1,---,m be given. Consider the following generalized nondifferentiable frac-
tional optimization problem (GFP):

(GFP) Minimize max { fi(2) li=1,-- ,p}
9i(w)
subject to hi(z,v;) <0, v; €V, j=1,---,m,

where v; are uncertain parameters, and v; € V; for some sequentially compact
topological space V;, j =1,--- ,mand f; : X - R, g, : X = Ri=1,---,p
and hj : X xV; = R,j =1,---,m are locally Lipschitz function. We assume
that f;(x) 2 0 and g;(x) >0, i=1,---,p.

Recently, Lee and Kim [5] considered a nonsmooth multiobjective robust op-
timization problem with more than two locally Lipschitz objective functions and
locally Lipschitz constraint functions in the face of data uncertainty. In this pa-
per, we establish necessary and sufficient optimality conditions for a nonsmooth
fractional robust optimization programming problems. Moreover, we prove the
weak and strong duality theorems under (V, p)-invexity assumption.

Now we give some notations for our results in this section;

Let a function f: R™ — R be given. We shall suppose that f is locally
Lipschitz, that is, for each € R™, there exist an open neighborhood U and a
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constant L > 0 such that for all y and z in U,

[f(y) = F(2)| = Llly = =]
Let g : R™ — R U {+o0} be a convex function. The subdifferential of g at
a € domyg is defined by
dg(a) :={v e R" [ g(x) 2 g(a) + (v,z —a) Vz € domg},
where (-, ) is the inner product on R™ and domg := {x € R™ : g(z) < +o00}.
Definition 1. A vector function f : R” — RP is said to be (V,p)-invex at
u € R™ with respect to the function n and 6; : R® — R"™ if there exists «; :

R™ x R — R4 \{0} and p; € R, i = 1,...,p such that for any & € 9f;(u),
t=1,...,pand any z € R", and for all : =1, ..., p,

ai(x,u)lfi(x) = fi(w)] = & n(x,u) + pill0i (2, w)l|*.

Lemma 1.1. [1] Let f and g be Lipschitz near x and suppose that g(x) # 0.
Then 5 is Lipschitz near x, and one has

f> 9(@)0f(x) — f(x)dg(x)
ol =) (z)C .
(5)@ W@y

If in addition f(x) 2 0, g(x) > 0 and if f and —g are regular at x, then equality
holds and g s reqular at x.

Theorem 1.2. [4] Assume that f and g are vector-valued differentiable func-
tions defined on R™ and f(x) > 0, g(x) > 0 for all x € R™. If f and —g are
regular and (V, p)-invex at xq, then g is (V, p)-invex at xo, where

1
_ gi(z) 5 1 \?
a;(x,z9) = gi(xo)az(x,xoL 0;(x,x0) = (gi(fCo)) 0;(x, xo).

Let V be a sequentially compact topological space and let h : X x V — R
be a given function. Now, we will assume that the following conditions hold:

(C1) h(z,v) is upper semicontinuous in (z, v).

(C2) h is locally Lipschitz in x, uniformly for v in V, that is, for each x € X,
there exist and open neighborhood U of « and a constant L > 0 such that for
allyand zin U,and v € V,

|h(y,v) — h(z,v)| = Ll|y — 2|
(C3) ho(x,v;-) = h! (z,v;-), the derivatives being with respect to z.

C4) the generalized gradient 0,h(x,v) with respect to x is weak™ upper
( g g : P pp
semicontinuous in (z,v).

Remark 1. In a suitable setting, conditions (C2), (C3), and (C4) will follow
if the function h is convex in z and continuous in v. These conditions on the
function h also hold when the derivative V h(x,v) with respect to = exists and
is continuous in (z,v).
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We define a function ¥ : X — R
Y(z) == max{h(z,v) |v eV},
and we observe that our conditions (C1)-(C2) imply that ¢ is defined and finite
(with the maximum defining ¢ attained) on X.
V(z):={veV|h(z,v) =)}
It is easy to see that V(z) is nonempty and closed for each z in X.

The following lemma, which is a nonsmooth version of Danskin’s theorem

[2] for max-functions, makes connection between the functions v'(x;d) and
RO (z,v;d).

Lemma 1.3. Under the conditions (C1)-(C4), the usual one-sided directional
derivative V' (z; d) exists, and satisfies

V' (w;d) =9°(w;d) = max{hy(z,v;d) | v € V(2)}
= max{(¢,d) | £ € Oph(z,v), veV(x)}.

Lemma 1.4. [7] In addition to the basic conditions (C1)-(C4), suppose that V
is convex, and that h(x,-) is concave on V', for each x € U. Then the following

statements hold:

(i) The set V(z) is conver and sequentially compact.
(i) The set

Oph(z,V(x)) :={& | Fv € V(x) such that & € O h(z,v)}
18 convexr and weak® compact.
(i11) O (x) = {€ | Fv € V(z) such that & € Ozh(z,v)}.
2. Optimality theorems
Let C :={z € X | hj(z,v;) <0, v; € V;, j =1,--- ,m}. Define ¢;(z) :=

max,, cv, hj(z,v;) for each j = 1,--- ,m. Then if h; satisfy the conditions (C1)
and (C2), ¢; : X = R,j=1,---,m, are locally Lipschitz functions.
Let # € C and let us decompose J := {1,--- ,m} into two index sets J =

Ji(x) U Jo(x), where Ji(x) = {j € J | ¥;(z) =0} and Jo(z) = J \ Ji(x). Then
for each j € Jy(x),
Vi(x) = {v; € Vj | hy(x,v5) = ()}
Definition 2. We define an Extended Nonsmooth Mangasarian-Fromovitz con-
straint qualification (ENMFCQ) at x € C as follows:
3d € X such that hgm(x,vj;d) <0, Yv; € Vi(x), Vje€ Ji(x),

where hgw (x,v5;d) denotes the generalized directional derivative of h; with re-
spect to x.

Now from Theorem 3.3 in [7], we can get the following necessary optimality
theorem for a weakly robust efficient solution of (GFP); for simplicity, we give
its proof.
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Theorem 2.1. [7] Assume that f,—g are reqular and hj,j = 1,--- ,m satisfy

the conditions (C1)-(C4). Suppose that for each x € X, h;(z,-) are concave on

Vi,i=1,--- ,m. Let x* € C be a weakly robust efficient solution of (GFP),

then there exist A; >0, i € I(x*):= {i | max{ ) [i=1,... } = ?E;i},
> Mi=landp; >0, j=1,...,m, and v} GV( )]—1 -+ ,m such

i€I(x*)

that

0e > N0 <f> (@) + > mjOshy(z*,v7),
iel(x* Jj=1
pihj(x*,v5) =0, j=1,---,m
Moreover, if we further assume that the Extended Nonsmooth Mangasarian-
Fromowitz constraint qualification (ENMFCQ) holds, then there exist A; = 0,1 =
L.+ ,p, not all zero, yuj 2 0 and vi € Vj(x*),j =1,--- ,m such that

ey Aa(ﬂ) +Zu]8h vh),
iel(z*) g
pihi(x*,v7) =0, j=1,---,m
Proof. Let ¢;(z) = glgig, 1= 1, ...,p. Let * be a solution of (GFP) and
let I(z*) = {i | max{¢;(z*) | i =1,...,p} = ¢:(x*)}. Then by Proposition
2.3.12 in [1], Corollary 5.1.8 in [9] and Theorem 3.3 [6], there exist y1; = 0,0} €
‘/j(x*)v.j_la '7m.7_1,"'am7

0 € co{d¢i(z*) | i € I(x }+Zujah v3) (1)

and pjhj(z*,v;) =0,
where coA is the convexhull of the set A. By Lemma 1.2,
o _9i(@)0fi(x") — Ogi(x™) fi(x")
9¢i(z") =
( (0.0

fi>
=0 < ),

9i =)

and hence from (1), there exist A; > 0, @ € I(z"), 3 ;c7() A = 1 and p; >
0,v5 € Vi(2*),j=1,---,m j=1,...,m such that

0e Z A8<f2>(m*)+2uj8xhj(x*,v;)
j=1

i€l(x*)

and Zujhj(m*,v;) =0.
j=1
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Now we give a sufficient optimality theorem for weakly robust efficient solu-
tions for (GFP):

Theorem 2.2. Let x* be a robust feaible solution of (GFP). Suppose that there
exist \; 2 0,4 € I(x*), > *))\i =1, p; 20 and vy € Vi(a*),j=1,---,m
such that

1€l(x

0e 3 w0 (5) @+ Lonnsta )

i€l (x>
pihi(x*,v7) =0, j=1,--- ,m.
If each fi(-),9i(-),i=1,---,p are (V,p)-invex at z* and h;(-,v}),j =1,--- ,m
are n-inver at x* with respect to the same n and > 4_, Nipi||0;(z,z*)||* = 0,
then x* is a weakly robust efficient solution of (GFP).

Proof. Suppose that z* is not a solution of (GFP). Then there exist a feasible
solution = of (GFP) such that

JC N C)

m .
1<i<p gi(7*) ~ 1<i<p gi(®)

Then ) @)
filz®) _ filz
6@~ gilz)

and hence a;(x,z*) > 0,

fi(z) fi(x*):|

a;(xz, x* —

) |55 - 5

Since f(-) and —g(-) are (V, p)-invex and regular at z(, by Theorem 1.3, we have
for any w; € 9 (g—) (x*), i € I(x*)

Jfor all ¢ € I(z™),

win(z,z) + pil 0z, 2*)||* < 0.
Hence, there exist A; 20, i € I(27), }2,c7(,+) A = 1 such that
Z Awin(z, z*) + Z Nipil|0(z, 2*)|* < 0.
iel(x*) i€l (z*)
) Aipi"é($7x*>”2 Z 0,
> Awin(z,a®) <0,

i€l (x*)

Since >

i€l (x*

and so, it follows from (2) that there exist v; € 9.h;(a*,v}),v; € Vj(z¥),
j=1,...,m such that

m

> wvin(e,a*) > 0.
j=1
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Then, by the n-invexity of h, we have

m

Z pihy(z,v5) > Zujh] (z
j=1 j=1

Since Y7L, pyhy(a*,vf) = 0, we have >0, pihj(2,v}) > 0, which is a con-

tradiction since p; 2 0, j = 1,...,m and « is a feasible solution of (GFP).

Consequently, z* is a solution of (GFP). O
3. Duality Theorems

Now, we propose the following Mond-Weir type dual problem (DGFP):

(DGFP)  Maximize max{fi(u) |i:1,...,p}
9i(u)

subject to 0 € Z A0 (ﬂ) (u) + Zﬂjag;h/j(u,vj) (3)

iel(u) v j=1

Z“J (u,v;) =0,
)\Z—ZO, iel(u), Y A=1,

i€l (u)
iy 20, Vj E‘/j, j=1....m
Now we show that the following weak duality theorem holds between (GFP)
and (DGFP).

Theorem 3.1. (Weak Duality ) Assume that f and —g are reqular. Let x be a
feasible for (GFP) and let (u,v,\, i) be feasible for (DGFP). Assume that f(-)
and —g(-) are (V, p)-invex at u, and let h;(-,v;),j =1,--- ,m are n-invezx at u
with respect to the same 1, and 3, 1, Nipil|0i(z,u)||?> > 0. Then the following

holds:
max{gzgz; |i:1,...,p} _max{% [ izl,...,p}.

Proof. Let x be any feasible for (GFP) and let (u, A\, u) be any feasible for
(DGFP). Then there exist u; 20, v; € Vj(x),j =1,---,m such that

Zu] (x,v;) £0 §i i(uw,v5).

By the n-invexity of hj(-,vj), j=1,...,m, there exists v} € d,h;(u,v;), j =
1,---,m such that

> pwivin(a,u) £ 0.
=1
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Using (3), we have there exists w} € 0 (%) (u), i € I(u),

Z A win(z,u) 2 0. (4)

€I (u)

Now suppose that

max{gig; |i=1,...,p} <max{::8§ |i:1,...,p}.

fiw)  fi(u)
(@) = gi(u)

By Theorem 1.3, we have there exists w; € 0 ( ) (u), ¢ € I(u) such that

0>ai(x,u)[ AN )}

gi(u)

Then

, for all ¢ € I(u).

Z win(z,u) +Pz||9 (%U)H2
By using A; =2 0, ¢ € I(u), we have,
Z Awin(x, ) Z Nipillfs(z,w)||* < 0.
€1 (u) €1 (u)
Since ey Xipil|0i(z,u)||> = 0, we have
Z Aiwin(x,u)
1€I(u)

which contradicts (4). Hence the result holds. O

Now we give a strong duality theorem which holds between (GFP) and
(DGFP).

Theorem 3.2. (Strong Duality) If Z is a solution of (GFP) and suppose that
the Extended Mangasarian-Fromouvitz constraint qualification holds. Then there
exist A € RP and i € R™ such that (Z,v,\, i) is feasible for (DGFP). Moreover
if the weak duality holds, then (Z,v,\, 1) is a solution of (DGFP).

Proof. By Theorem 2.1, there exist \; > 0, i € I(z) := {i | max{ gf_((?)
1,...,p}:%}, > Xi=1land fi; >0, j=1,...,m such that
‘ iel(z)

0e Y XNo (fz) (Z) + > [1;0:h;(2,0;)
i€I(T) j=1

m

and Z,u] (z,0;) =0.
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Thus (Z,0, \, fi) is a feasible for (DGFP). On the other hand, by weak duality
(Theorem 3.1),

max{gzgg li=1,- ,p}Zmax{ZEZ; =1, ,p}

for any (DGFP) feasible solution (u, s, \, u). Hence (Z,, A, i) is a solution of
(DGFP). O

S~
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