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OPTIMALITY AND DUALITY FOR NONSMOOTH

FRACTIONAL ROBUST OPTIMIZATION PROBLEMS WITH

(V, ρ)-INVEXITY

Moon Hee Kim

Abstract. We establish necessary and sufficient optimality conditions

for a nonsmooth fractional robust optimization programming problems.
Moreover, we prove the weak and strong duality theorems under (V, ρ)-

invexity assumption.

1. Introduction

Let X be a Banach space, and let functions fi, gi : X → R, i = 1, · · · , p, j =
1, · · · ,m be given. Consider the following generalized nondifferentiable frac-
tional optimization problem (GFP):

(GFP) Minimize max

{
fi(x)

gi(x)
| i = 1, · · · , p

}
subject to hj(x, vj) ≤ 0, vj ∈ Vj , j = 1, · · · ,m,

where vj are uncertain parameters, and vj ∈ Vj for some sequentially compact
topological space Vj , j = 1, · · · ,m and fi : X → R, gi : X → R, i = 1, · · · , p
and hj : X × Vj → R, j = 1, · · · ,m are locally Lipschitz function. We assume
that fi(x) = 0 and gi(x) > 0, i = 1, · · · , p.

Recently, Lee and Kim [5] considered a nonsmooth multiobjective robust op-
timization problem with more than two locally Lipschitz objective functions and
locally Lipschitz constraint functions in the face of data uncertainty. In this pa-
per, we establish necessary and sufficient optimality conditions for a nonsmooth
fractional robust optimization programming problems. Moreover, we prove the
weak and strong duality theorems under (V, ρ)-invexity assumption.

Now we give some notations for our results in this section;
Let a function f : Rn → R be given. We shall suppose that f is locally

Lipschitz, that is, for each x ∈ Rn, there exist an open neighborhood U and a
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constant L > 0 such that for all y and z in U,

|f(y)− f(z)| 5 L‖y − z‖.

Let g : Rn → R ∪ {+∞} be a convex function. The subdifferential of g at
a ∈ domg is defined by

∂g(a) := {v ∈ Rn | g(x) = g(a) + 〈v, x− a〉 ∀x ∈ domg},

where 〈·, ·〉 is the inner product on Rn and domg := {x ∈ Rn : g(x) < +∞}.

Definition 1. A vector function f : Rn → Rp is said to be (V, ρ)-invex at
u ∈ Rn with respect to the function η and θi : Rn → Rn if there exists αi :
Rn × Rn → R+\{0} and ρi ∈ R, i = 1, . . . , p such that for any ξi ∈ ∂fi(u),
i = 1, . . . , p and any x ∈ Rn, and for all i = 1, . . . , p,

αi(x, u)[fi(x)− fi(u)] ≥ ξTi η(x, u) + ρi‖θi(x, u)‖2.

Lemma 1.1. [1] Let f and g be Lipschitz near x and suppose that g(x) 6= 0.

Then f
g is Lipschitz near x, and one has

∂

(
f

g

)
(x) ⊂ g(x)∂f(x)− f(x)∂g(x)

{g(x)}2
.

If in addition f(x) = 0, g(x) > 0 and if f and −g are regular at x, then equality

holds and f
g is regular at x.

Theorem 1.2. [4] Assume that f and g are vector-valued differentiable func-
tions defined on Rn and f(x) ≥ 0, g(x) > 0 for all x ∈ Rn. If f and −g are

regular and (V, ρ)-invex at x0, then f
g is (V, ρ)-invex at x0, where

ᾱi(x, x0) =
gi(x)

gi(x0)
αi(x, x0), θ̄i(x, x0) =

(
1

gi(x0)

) 1
2

θi(x, x0).

Let V be a sequentially compact topological space and let h : X × V → R
be a given function. Now, we will assume that the following conditions hold:

(C1) h(x, v) is upper semicontinuous in (x, v).
(C2) h is locally Lipschitz in x, uniformly for v in V , that is, for each x ∈ X,

there exist and open neighborhood U of x and a constant L > 0 such that for
all y and z in U , and v ∈ V ,

|h(y, v)− h(z, v)| 5 L‖y − z‖.

(C3) h0
x(x, v; ·) = h′x(x, v; ·), the derivatives being with respect to x.

(C4) the generalized gradient ∂xh(x, v) with respect to x is weak∗ upper
semicontinuous in (x, v).

Remark 1. In a suitable setting, conditions (C2), (C3), and (C4) will follow
if the function h is convex in x and continuous in v. These conditions on the
function h also hold when the derivative ∇xh(x, v) with respect to x exists and
is continuous in (x, v).
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We define a function ψ : X → R
ψ(x) := max{h(x, v) | v ∈ V },

and we observe that our conditions (C1)-(C2) imply that ψ is defined and finite
(with the maximum defining ψ attained) on X.

V (x) := {v ∈ V | h(x, v) = ψ(x)}.
It is easy to see that V (x) is nonempty and closed for each x in X.

The following lemma, which is a nonsmooth version of Danskin’s theorem
[2] for max-functions, makes connection between the functions ψ′(x; d) and
h0(x, v; d).

Lemma 1.3. Under the conditions (C1)-(C4), the usual one-sided directional
derivative ψ′(x; d) exists, and satisfies

ψ′(x; d) = ψ0(x; d) = max{h0
x(x, v; d) | v ∈ V (x)}

= max{〈ξ, d〉 | ξ ∈ ∂xh(x, v), v ∈ V (x)}.

Lemma 1.4. [7] In addition to the basic conditions (C1)-(C4), suppose that V
is convex, and that h(x, ·) is concave on V , for each x ∈ U . Then the following
statements hold:

(i) The set V (x) is convex and sequentially compact.
(ii) The set

∂xh(x, V (x)) := {ξ | ∃v ∈ V (x) such that ξ ∈ ∂xh(x, v)}
is convex and weak∗ compact.
(iii) ∂ψ(x) = {ξ | ∃v ∈ V (x) such that ξ ∈ ∂xh(x, v)}.

2. Optimality theorems

Let C := {x ∈ X | hj(x, vj) ≤ 0, vj ∈ Vj , j = 1, · · · ,m}. Define ψj(x) :=
maxvj∈Vj

hj(x, vj) for each j = 1, · · · ,m. Then if hj satisfy the conditions (C1)
and (C2), ψj : X → R, j = 1, · · · ,m, are locally Lipschitz functions.

Let x ∈ C and let us decompose J := {1, · · · ,m} into two index sets J =
J1(x) ∪ J2(x), where J1(x) = {j ∈ J | ψj(x) = 0} and J2(x) = J \ J1(x). Then
for each j ∈ J1(x),

Vj(x) := {vj ∈ Vj | hj(x, vj) = ψj(x)}.

Definition 2. We define an Extended Nonsmooth Mangasarian-Fromovitz con-
straint qualification (ENMFCQ) at x ∈ C as follows:

∃d ∈ X such that h0
jx(x, vj ; d) < 0, ∀vj ∈ Vj(x), ∀j ∈ J1(x),

where h0
jx(x, vj ; d) denotes the generalized directional derivative of hj with re-

spect to x.

Now from Theorem 3.3 in [7], we can get the following necessary optimality
theorem for a weakly robust efficient solution of (GFP); for simplicity, we give
its proof.
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Theorem 2.1. [7] Assume that f,−g are regular and hj , j = 1, · · · ,m satisfy
the conditions (C1)–(C4). Suppose that for each x ∈ X,hj(x, ·) are concave on
Vj , j = 1, · · · ,m. Let x∗ ∈ C be a weakly robust efficient solution of (GFP),

then there exist λi ≥ 0, i ∈ I(x∗) := {i | max
{

fi(x
∗)

gi(x∗) | i = 1, . . . , p
}

= fi(x
∗)

gi(x∗)},∑
i∈I(x∗)

λi = 1 and µj ≥ 0, j = 1, . . . ,m, and v∗j ∈ Vj(x
∗), j = 1, · · · ,m such

that

0 ∈
∑

i∈I(x∗

λi∂

(
fi
gi

)
(x∗) +

m∑
j=1

µj∂xhj(x
∗, v∗j ),

µjhj(x
∗, v∗j ) = 0, j = 1, · · · ,m.

Moreover, if we further assume that the Extended Nonsmooth Mangasarian-
Fromovitz constraint qualification (ENMFCQ) holds, then there exist λi = 0, i =
1, · · · , p, not all zero, µj = 0 and v∗j ∈ Vj(x∗), j = 1, · · · ,m such that

0 ∈
∑

i∈I(x∗)

λi∂

(
fi
gi

)
(x∗) +

m∑
j=1

µj∂xhj(x
∗, v∗j ),

µjhj(x
∗, v∗j ) = 0, j = 1, · · · ,m.

Proof. Let φi(x) = fi(x)
gi(x) , i = 1, . . . , p. Let x∗ be a solution of (GFP) and

let I(x∗) = {i | max{φi(x∗) | i = 1, . . . , p} = φi(x
∗)}. Then by Proposition

2.3.12 in [1], Corollary 5.1.8 in [9] and Theorem 3.3 [6], there exist µj = 0, v∗j ∈
Vj(x

∗), j = 1, · · · ,m j = 1, . . . ,m,

0 ∈ co{∂φi(x∗) | i ∈ I(x∗)}+

m∑
j=1

µj∂xhj(x
∗, v∗j ) (1)

and µjhj(x
∗, v∗j ) = 0,

where coA is the convexhull of the set A. By Lemma 1.2,

∂φi(x
∗) =

gi(x
∗)∂fi(x

∗)− ∂gi(x∗)fi(x∗)
(gi(x∗))2

=∂

(
fi
gi

)
(x∗),

and hence from (1), there exist λi ≥ 0, i ∈ I(x∗),
∑

i∈I(x∗) λi = 1 and µj ≥
0, v∗j ∈ Vj(x∗), j = 1, · · · ,m j = 1, . . . ,m such that

0 ∈
∑

i∈I(x∗)

λi∂

(
fi
gi

)
(x∗) +

m∑
j=1

µj∂xhj(x
∗, v∗j )

and

m∑
j=1

µjhj(x
∗, v∗j ) = 0.

�
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Now we give a sufficient optimality theorem for weakly robust efficient solu-
tions for (GFP):

Theorem 2.2. Let x∗ be a robust feaible solution of (GFP). Suppose that there
exist λi = 0, i ∈ I(x∗),

∑
i∈I(x∗) λi = 1, µj = 0 and v∗j ∈ Vj(x∗), j = 1, · · · ,m

such that

0 ∈
∑

i∈I(x∗)

λi∂

(
fi
gi

)
(x∗) +

m∑
j=1

µj∂xhj(x
∗, v∗j ), (2)

µjhj(x
∗, v∗j ) = 0, j = 1, · · · ,m.

If each fi(·), gi(·), i = 1, · · · , p are (V, ρ)-invex at x∗ and hj(·, v∗j ), j = 1, · · · ,m
are η-invex at x∗ with respect to the same η and

∑p
i=1 λiρi‖θi(x, x∗)‖2 = 0,

then x∗ is a weakly robust efficient solution of (GFP).

Proof. Suppose that x∗ is not a solution of (GFP). Then there exist a feasible
solution x of (GFP) such that

max
15i5p

fi(x
∗)

gi(x∗)
> max

15i5p

fi(x)

gi(x)
.

Then
fi(x

∗)

gi(x∗)
>
fi(x)

gi(x)
, for all i ∈ I(x∗),

and hence ᾱi(x, x
∗) > 0,

ᾱi(x, x
∗)

[
fi(x)

gi(x)
− fi(x

∗)

gi(x∗)

]
< 0.

Since f(·) and −g(·) are (V, ρ)-invex and regular at x0, by Theorem 1.3, we have

for any wi ∈ ∂
(

fi
gi

)
(x∗), i ∈ I(x∗)

wiη(x, x∗) + ρi‖θ̄(x, x∗)‖2 < 0.

Hence, there exist λi = 0, i ∈ I(x∗),
∑

i∈I(x∗) λi = 1 such that∑
i∈I(x∗)

λiwiη(x, x∗) +
∑

i∈I(x∗)

λiρi‖θ̄(x, x∗)‖2 < 0.

Since
∑

i∈I(x∗) λiρi‖θ̄(x, x∗)‖2 = 0,∑
i∈I(x∗)

λiwiη(x, x∗) < 0,

and so, it follows from (2) that there exist νj ∈ ∂xhj(x
∗, v∗j ), v∗j ∈ Vj(x

∗),
j = 1, . . . ,m such that

m∑
j=1

µjνjη(x, x∗) > 0.
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Then, by the η-invexity of h, we have
m∑
j=1

µjhj(x, v
∗
j ) >

m∑
j=1

µjhj(x
∗, v∗j ).

Since
∑m

j=1 µjhj(x
∗, v∗j ) = 0, we have

∑m
j=1 µjhj(x, v

∗
j ) > 0, which is a con-

tradiction since µj = 0, j = 1, . . . ,m and x is a feasible solution of (GFP).
Consequently, x∗ is a solution of (GFP). �

3. Duality Theorems

Now, we propose the following Mond-Weir type dual problem (DGFP):

(DGFP) Maximize max

{
fi(u)

gi(u)
| i = 1, . . . , p

}
subject to 0 ∈

∑
i∈I(u)

λi∂

(
fi
gi

)
(u) +

m∑
j=1

µj∂xhj(u, vj) (3)

m∑
j=1

µjhj(u, vj) = 0,

λi = 0, i ∈ I(u),
∑

i∈I(u)

λi = 1,

µj = 0, vj ∈ Vj , j = 1, . . . ,m.

Now we show that the following weak duality theorem holds between (GFP)
and (DGFP).

Theorem 3.1. (Weak Duality) Assume that f and −g are regular. Let x be a
feasible for (GFP) and let (u, v, λ, µ) be feasible for (DGFP). Assume that f(·)
and −g(·) are (V, ρ)-invex at u, and let hj(·, vj), j = 1, · · · ,m are η-invex at u
with respect to the same η, and

∑
i∈I(u) λiρi‖θ̄i(x, u)‖2 > 0. Then the following

holds:

max

{
fi(x)

gi(x)
| i = 1, . . . , p

}
= max

{
fi(u)

gi(u)
| i = 1, . . . , p

}
.

Proof. Let x be any feasible for (GFP) and let (u, λ, µ) be any feasible for
(DGFP). Then there exist µj = 0, vj ∈ Vj(x), j = 1, · · · ,m such that

m∑
j=1

µjhj(x, vj) 5 0 5
m∑
j=1

µjhj(u, vj).

By the η-invexity of hj(·, vj), j = 1, . . . ,m, there exists ν∗j ∈ ∂xhj(u, vj), j =
1, · · · ,m such that

m∑
j=1

µjν
∗
j η(x, u) 5 0.
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Using (3), we have there exists w∗i ∈ ∂
(

fi
gi

)
(u), i ∈ I(u),∑

i∈I(u)

λi w
∗
i η(x, u) = 0. (4)

Now suppose that

max

{
fi(x)

gi(x)
| i = 1, . . . , p

}
< max

{
fi(u)

gi(u)
| i = 1, . . . , p

}
.

Then
fi(x)

gi(x)
<
fi(u)

gi(u)
, for all i ∈ I(u).

By Theorem 1.3, we have there exists w∗i ∈ ∂
(

fi
gi

)
(u), i ∈ I(u) such that

0 > ᾱi(x, u)

[
fi(x)

gi(x)
− fi(u)

gi(u)

]
= w∗i η(x, u) + ρi‖θ̄i(x, u)‖2.

By using λi = 0, i ∈ I(u), we have,∑
i∈I(u)

λiw
∗
i η(x, u) +

∑
i∈I(u)

λiρi‖θ̄i(x, u)‖2 < 0.

Since
∑

i∈I(u) λiρi‖θ̄i(x, u)‖2 = 0, we have∑
i∈I(u)

λiw
∗
i η(x, u) < 0,

which contradicts (4). Hence the result holds. �
Now we give a strong duality theorem which holds between (GFP) and

(DGFP).

Theorem 3.2. (Strong Duality) If x̄ is a solution of (GFP) and suppose that
the Extended Mangasarian-Fromovitz constraint qualification holds. Then there
exist λ̄ ∈ Rp and µ̄ ∈ Rm such that (x̄, v̄, λ̄, µ̄) is feasible for (DGFP). Moreover
if the weak duality holds, then (x̄, v̄, λ̄, µ̄) is a solution of (DGFP).

Proof. By Theorem 2.1, there exist λ̄i ≥ 0, i ∈ I(x̄) := {i | max{ f(x̄)

gi(x̄) | i =

1, . . . , p} =
f(x̄)

gi(x̄)},
∑

i∈I(x̄)

λ̄i = 1 and µ̄j ≥ 0, j = 1, . . . ,m such that

0 ∈
∑

i∈I(x̄)

λ̄i∂

(
fi
gi

)
(x̄) +

m∑
j=1

µ̄j∂xhj(x̄, v̄j)

and

m∑
j=1

µ̄jhj(x̄, v̄j) = 0.
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Thus (x̄, v̄, λ̄, µ̄) is a feasible for (DGFP). On the other hand, by weak duality
(Theorem 3.1),

max

{
fi(x̄)

gi(x̄)
| i = 1, · · · , p

}
≥ max

{
fi(u)

gi(u)
| i = 1, · · · , p

}
for any (DGFP) feasible solution (u, v̄, λ, µ). Hence (x̄, v̄, λ̄, µ̄) is a solution of
(DGFP). �
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