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ON OPTIMALITY AND DUALITY FOR GENERALIZED
NONDIFFERENTIABLE FRACTIONAL OPTIMIZATION

PROBLEMS

Moon Hee Kim and Gwi Soo Kim

Abstract. A generalized nondifferentiable fractional optimization prob-
lem (GFP), which consists of a maximum objective function defined by
finite fractional functions with differentiable functions and support func-
tions, and a constraint set defined by differentiable functions, is consid-
ered. Recently, Kim et al. [Journal of Optimization Theory and Applica-
tions 129 (2006), no. 1, 131–146] proved optimality theorems and duality
theorems for a nondifferentiable multiobjective fractional programming
problem (MFP), which consists of a vector-valued function whose com-
ponents are fractional functions with differentiable functions and support
functions, and a constraint set defined by differentiable functions. In fact
if x̄ is a solution of (GFP), then x̄ is a weakly efficient solution of (MFP),
but the converse may not be true. So, it seems to be not trivial that
we apply the approach of Kim et al. to (GFP). However, modifying their
approach, we obtain optimality conditions and duality results for (GFP).

1. Introduction

Many authors have introduced various concepts of generalized convexity and
have obtained duality results for a fractional programming problem ([2]-[8],
[11]). In [4], Kuk et al. defined the concept of (V, ρ)-invexity for vector-valued
functions, which is generalization of the V -invexity concept; they proved the
generalized Karush-Kuhn-Tucker sufficient optimality theorem as well as weak
and strong duality for nonsmooth multi-objective programs under the (V, ρ)-
invexity assumptions. Later, Kuk et al. [5] extended their results to nonsmooth
multiobjective fractional programs.

In 1996, Mond and Schechter [10] obtained duality and optimality for nondif-
ferentiable multiobjective programming problems in which the objective func-
tion contains a support function.

Received April 22, 2009; Revised September 14, 2009.
2000 Mathematics Subject Classification. Primary 90C26, 90C30, 90C46.
Key words and phrases. fractional optimization problem, weakly efficient solution, opti-

mality condition, duality.
This work was supported by the Korea Science and Engineering Foundation (KOSEF)

NRL program grant funded by the Korea government(MEST)(No. ROA-2008-000-20010-0).

c©2010 The Korean Mathematical Society

139



140 MOON HEE KIM AND GWI SOO KIM

Recently, Kim et al. [2] proved optimality theorem and duality theorem
for a nondifferentiable multiobjective fractional programming problem (MFP),
which consists of a vector-valued function whose components are fractional
functions with differentiable functions and support functions, and a constraint
set defined by differentiable functions.

Now we consider the following generalized fractional problem (GFP):

(GFP) Minimize max
{

fi(x) + s(x|Ci)
gi(x)

| i = 1, . . . , p

}

subject to hj(x) ≤ 0, j = 1, . . . ,m,

where f := (f1, . . . , fp) : Rn → Rp, g := (g1, . . . , gp) : Rn → Rp and h :=
(h1, . . . , hm) : Rn → Rm are continuously differentiable. We assume that
gi(x) > 0, i = 1, . . . , p. For each i = 1, . . . , p, Ci is a compact convex set of Rn

and we define a support function with respect to Ci as follows:

s(x|Ci) := max{〈x, yi〉 | yi ∈ Ci}.
Further let, J(x) = {j : hj(x) = 0}, for any x ∈ Rn and let

ki(x) = s(x|Ci), i = 1, . . . , p.

Then, ki is a convex function and we can prove that

∂ki(x) = {wi ∈ Ci | 〈wi, x〉 = s(x|Ci)},
where ∂ki is the subdifferential of ki.

We recall the nondifferentaible multiobjective fractional programming prob-
lem (MFP) in [2]:

(MFP) Minimize
(

f1(x) + s(x|C1)
g1(x)

, . . . ,
fp(x) + s(x|Cp)

gp(x)

)

subject to hj(x) ≤ 0, j = 1, . . . , m,

where f := (f1, . . . , fp) : Rn → Rp, g := (g1, . . . , gp) : Rn → Rp and h :=
(h1, . . . , hm) : Rn → Rm are continuously differentiable. We assume that
gi(x) > 0, i = 1, . . . , p. Further let, S = {x ∈ Rn | hj(x) ≤ 0, j = 1, . . . , m}.

Weakly efficient solution of (MFP) are defined as follows:

Definition. A point x̄ ∈ S is a weakly efficient solution of (MFP) if there
exist no other feasible point x ∈ S such that fi(x)+s(x|Ci)

gi(x) < fi(x̄)+s(x̄|Ci)
gi(x̄) for all

i = 1, 2, . . . , p.

Then sol(GFP) ⊂ WEff(MFP), where sol(GFP) is the set of all minimum
of (GFP) and WEff(MFP) is the set of all weakly efficient solution of (MFP).
But the converse may not be true.

Example 1.1. Let f1(x) = x, f2(x) = x2, C1 = C2 = {0}, g1(x) = g2(x) = 1
and h(x) = x. Then sol(GFP) = {0} and WEff(MFP) = (−∞, 0].
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The above example says that the inclusion: WEff(MFP) ⊂ sol(GFP) may
not be true. So, it seems to be not trivial that we apply the approach of Kim
et al. [2] to (GFP). However, in this paper, we can modifying their approach,
we obtain optimality conditions and duality results for (GFP).

We introduce the following definition due to Kuk et al. [4].

Definition. A vector function f : Rn → Rp is said to be (V, ρ)-invex at
u ∈ Rn with respect to the functions η and θi : Rn × Rn → Rn if there exists
αi : Rn×Rn → R+ \ {0} and ρi ∈ R, i = 1, . . . , p such that for any x ∈ Rn and
for all i = 1, . . . , p,

αi(x, u) [fi(x)− fi(u)] ≥ ∇fi(u)η(x, u) + ρi‖θi(x, u)‖2.
Definition. A vector function f : Rn → Rp is said to be η-invex at u ∈ Rn

such that for any x ∈ Rn and for all i = 1, . . . , p,

fi(x)− fi(u) ≥ ∇fi(u)η(x, u).

We recall the following theorem due to Kim et al. [2]

Theorem 1.1. Assume that f and g are vector-valued differentiable functions
defined on Rn and f(x) + 〈w, x〉 ≥ 0, g(x) > 0 for all x ∈ Rn. If f(·) + 〈w, ·〉
and −g(·) are (V, ρ)-invex at x0, then f(·)+〈w,·〉

g(·) is (V, ρ)-invex at x0, where

ᾱi(x, x0) =
gi(x)
gi(x0)

αi(x, x0), θ̄i(x, x0) =
(

1
gi(x0)

) 1
2

θ(x, x0),

that is, for all i,

αi(x, x0)
[
fi(x) + 〈wi, x〉

gi(x)
− fi(x0) + 〈wi, x0〉

gi(x0)

]

≥ gi(x0)
gi(x)

[
∇

(
fi(x0) + 〈wi, x0〉

gi(x0)

)
η(x, x0) + ρi‖

(
1

gi(x0)

) 1
2

θi(x, x0)‖2
]

.

2. Optimality conditions

Now, we establish the Kuhn-Tucker necessary and sufficient conditions for
a solution of (GFP).

Theorem 2.1 (Kuhn-Tucker Necessary Optimality Theorem). If x0

is a solution of (GFP), and assume that 0 6∈ co{∇hj(x0) | j ∈ J(x0)}, then

there exist λi ≥ 0, i ∈ I(x0) := {i | max
{

fi(x0)+s(x0|Ci)
gi(x0)

| i = 1, . . . , p
}
},
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∑
i∈I(x0)

λi = 1, µj ≥ 0, j = 1, . . . , m and wi ∈ Ci, i ∈ I(x0) such that

∑

i∈I(x0)

λi∇
(

fi(x0) + 〈wi, x0〉
gi(x0)

)
+

m∑

j=1

µj∇hj(x0) = 0,

〈wi, x0〉 = s(x0|Ci),
m∑

j=1

µjhj(x0) = 0.

Proof. Let ϕi(x) = fi(x)+s(x|Ci)
gi(x) , i = 1, . . . , p. Let x0 be a solution of (GFP)

and let I(x0) = {i | max{ϕi(x0) | i = 1, . . . , p}}. Then by Proposition 2.3.12
in [1] and Corollary 5.1.8 in [9], there exist µj ≥ 0, j = 1, . . . , m,

0 ∈ co{∂cϕi(x0) | i ∈ I(x0)}+
m∑

j=1

µj∂
chj(x0)

and µjhj(x0) = 0.

Thus there exist λi ≥ 0, i ∈ I(x0),
∑

i∈I(x0)
λi = 1 such that

0 ∈
∑

i∈I(x0)

λi∂
cϕi(x0) +

m∑

j=1

µj∇hj(x0)(2.1)

and µjhj(x0) = 0.

By Proposition 2.3.14 in [1],

∂cϕi(x0) =
gi(x0)(∇fi(x0) + ∂s(x0|Ci))− (fi(x0) + s(x0|Ci))∇gi(x0)

g2
i (x0)

.

Since

∂cϕi(x0) =
{

gi(x0)(∇fi(x0) + wi)− (fi(x0) + 〈wi, x0〉)∇gi(x0)
g2

i (x0)
| wi ∈ Ci,

〈wi, x0〉 = s(x0|Ci), i ∈ I(x0)}
=

{
∇

(
fi(x0) + 〈wi, x0〉

gi(x0)

)
|wi ∈ Ci, 〈wi, x0〉 = s(x0|Ci), i ∈ I(x0)

}

and hence from (2.1), there exist λi ≥ 0, i ∈ I(x0),
∑

i∈I(x0)
λi = 1, µj ≥

0, j = 1, . . . ,m and wi ∈ Ci, i ∈ I(x0) such that

∑

i∈I(x0)

λi∇
(

fi(x0) + 〈wi, x0〉
gi(x0)

)
+

m∑

j=1

µj∇hj(x0) = 0,

〈wi, x0〉 = s(x0|Ci),
m∑

j=1

µjhj(x0) = 0.

¤
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Theorem 2.2 (Kuhn-Tucker Sufficient Optimality Theorem). Let x0

be a feasible solution of (GFP). Suppose that there exist λi ≥ 0, i ∈ I(x0),∑
i∈I(x0)

λi = 1, µj ≥ 0, j = 1, . . . , m and wi ∈ Ci, i ∈ I(x0) such that

∑

i∈I(x0)

λi∇
(

fi(x0) + 〈wi, x0〉
gi(x0)

)
+

m∑

j=1

µj∇hj(x0) = 0,(2.2)

〈wi, x0〉 = s(x0|Ci),
m∑

j=1

µjhj(x0) = 0.

If f(·) + 〈w, ·〉 and −g(·) are (V, ρ)-invex at x0, and h is η-invex at x0 with
respect to the same η, and

∑
i∈I(x0)

λiρi‖θ̄i(x, x0)‖2 ≥ 0, then x0 is a solution
of (GFP).

Proof. Suppose that x0 is not a solution of (GFP). Then there exist a feasible
solution x of (GFP) such that

max
1≤i≤p

fi(x) + s(x|Ci)
gi(x)

< max
1≤i≤p

fi(x0) + s(x0|Ci)
gi(x0)

.

Then
fi(x) + s(x|Ci)

gi(x)
<

fi(x0) + s(x0|Ci)
gi(x0)

for all i ∈ I(x0).

Since 〈wi, x0〉 = s(x0|Ci) and wi ∈ Ci, we have for all i ∈ I(x0),

fi(x) + 〈wi, x〉
gi(x)

≤ fi(x) + s(x|Ci)
gi(x)

<
fi(x0) + s(x0|Ci)

gi(x0)

=
fi(x0) + 〈wi, x0〉

gi(x0)

and hence ᾱi(x, x0) > 0,

ᾱi(x, x0)
[
fi(x) + 〈wi, x〉

gi(x)
− fi(x0) + 〈wi, x0〉

gi(x0)

]
< 0.

By the (V, ρ)-invexity of f(·) + 〈w, ·〉 and −g(·) at x0, and by Theorem 1.1, we
have

∇
(

fi(x0) + 〈wi, x0〉
gi(x0)

)
η(x, x0) + ρi‖θ̄i(x, x0)‖2 < 0.

Hence, we have
∑

i∈I(x0)

λi∇
(

fi(x0) + 〈wi, x0〉
gi(x0)

)
η(x, x0) +

∑

i∈I(x0)

λiρi‖θ̄i(x, x0)‖2 < 0.
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Since
∑

i∈I(x0)
λiρi‖θ̄i(x, x0)‖2 ≥ 0,

∑

i∈I(x0)

λi∇
(

fi(x0) + 〈wi, x0〉
gi(x0)

)
η(x, x0) < 0

and so, it follows from (2.2) that
m∑

j=1

µj∇hj(x0)η(x, x0) > 0.

Then, by the η-invexity of h, we have
m∑

j=1

µjhj(x)−
m∑

j=1

µjhj(x0) > 0.

Since
∑m

j=1 µjhj(x0) = 0, we have
∑m

j=1 µjhj(x) > 0, which is a contradiction
since µj ≥ 0, j = 1, . . . , m and x is a feasible solution of (GFP). Consequently,
x0 is a solution of (GFP). ¤

3. Duality theorems

Now, we propose the following Mond-Weir type dual problem (DGFP):

(DGFP) Maximize max
{

fi(u) + s(u|Ci)
gi(u)

| i = 1, . . . , p

}

subject to
∑

i∈I(u)

λi∇
(

fi(u) + 〈wi, u〉
gi(u)

)
+

m∑

j=1

µj∇hj(u) = 0,(3.1)

wi ∈ Ci, 〈wi, u〉 = s(u|Ci), i ∈ I(u)
m∑

j=1

µjhj(u) = 0,

λi ≥ 0, i ∈ I(u),
∑

i∈I(u)

λi = 1, µj ≥ 0, j =1, . . . ,m.

Now we show that the following weak duality theorem holds between (GFP)
and (DGFP).

Theorem 3.1 (Weak Duality). Let x be a feasible for (GFP) and let (u, λ, µ,
w) be feasible for (DGFP). Assume that f(·)+ 〈w, ·〉 and −g(·) are (V, ρ)-invex
at u, and let h is η-invex at u with respect to the same η, and

∑

i∈I(u)

λiρi‖θ̄i(x, u)‖2 ≥ 0.

Then the following holds:

max
{

fi(x) + s(x|Ci)
gi(x)

| i = 1, . . . , p

}
≥ max

{
fi(u) + s(u|Ci)

gi(u)
| i = 1, . . . , p

}
.
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Proof. Let x be any feasible for (GFP) and let (u, λ, µ, w) be any feasible for
(DGFP). Then we have

m∑

j=1

µjhj(x) ≤ 0 ≤
m∑

j=1

µjhj(u).

By the η-invexity of hj(u), j = 1, . . . ,m, we have
m∑

j=1

µj∇hj(u)η(x, u) ≤ 0.

Using (3.1), we obtain

(3.2)
∑

i∈I(u)

λi∇
(

fi(u) + 〈wi, u〉
gi(u)

)
η(x, u) ≥ 0.

Now suppose that

max
{

fi(x) + s(x|Ci)
gi(x)

| i = 1, . . . , p

}
< max

{
fi(u) + s(u|Ci)

gi(u)
| i = 1, . . . , p

}
.

Then
fi(x) + s(x|Ci)

gi(x)
<

fi(u) + s(u|Ci)
gi(u)

for all i ∈ I(u).

Since 〈wi, u〉 = s(u|Ci), we have for all i ∈ I(u),

fi(x) + 〈wi, x〉
gi(x)

<
fi(u) + 〈wi, u〉

gi(u)
.

By Theorem 1.1, we have,

0 > ᾱi(x, u)
[
fi(x) + 〈wi, x〉

gi(x)
− fi(u) + 〈wi, u〉

gi(u)

]

≥ ∇
(

fi(u) + 〈wi, u〉
gi(u)

)
η(x, u) + ρi‖θ̄i(x, u)‖2.

By using λi ≥ 0, i ∈ I(u), we have,
∑

i∈I(u)

λi∇
(

fi(u) + 〈wi, u〉
gi(u)

)
η(x, u) +

∑

i∈I(u)

λiρi‖θ̄i(x, u)‖2 < 0.

Since
∑

i∈I(u) λiρi‖θ̄i(x, u)‖2 ≥ 0, we have

∑

i∈I(u)

λi∇
(

fi(u) + 〈wi, u〉
gi(u)

)
η(x, u) < 0,

which contradicts (3.2). Hence the result holds. ¤

Now we give a strong duality theorem which holds between (GFP) and
(DGFP).
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Theorem 3.2 (Strong Duality). If x̄ be a solution of (GFP) and suppose
that 0 6∈ co{∇hj(x̄) | j ∈ J(x̄)}. Then there exist λ̄ ∈ Rp, µ̄ ∈ Rm and w̄ ∈ C
such that (x̄, λ̄, µ̄, w̄) is feasible for (DGFP). Moreover if the weak duality holds,
then (x̄, λ̄, µ̄, w̄) is a solution of (DGFP).

Proof. By Theorem 2.1, there exist λ̄ ∈ Rp, µ̄ ∈ Rm and w̄i ∈ Ci, i ∈ I(x̄),
such that

∑

i∈I(x̄)

λ̄i∇
(

fi(x̄) + 〈w̄i, x̄〉
gi(x̄)

)
+

m∑

j=1

µ̄j∇hj(x̄) = 0,

〈w̄i, x̄〉 = s(x̄|Ci),
m∑

j=1

µjhj(x̄) = 0,

λi ≥ 0, i ∈ I(x̄),
∑

i∈I(x̄)

λi = 1.

Thus (x̄, λ̄, µ̄, w̄) is a feasible for (DGFP). On the other hand, by weak duality
(Theorem 3.1),

max
{

fi(x̄) + s(x̄|Ci)
gi(x̄)

| i = 1, . . . , p

}
≥ max

{
fi(u) + s(u|Ci)

gi(u)
| i = 1, . . . , p

}

for any (DGFP) feasible solution (u, λ, µ, w). Hence (x̄, λ̄, µ̄, w̄) is a solution of
(DGFP). ¤
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